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Introduction/Motivation

want to model syntactic dependency tree:

states: “tags”, or word categories (noun, plural noun, etc.)
observations: words
structure: tag-pair dependencies (syntax)
problem: word categories are too coarse, don’t give enough
discriminative power for automatic parsers
fix #1: give tags their actual lexical form
fix #2: manually split tagset
fix #3: learn splits with heuristics
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Proposed Solution

“Infinite Tree”: recursive branching structure, potentially
infinite states
three different children dependency forms
some notation:

t : tree and root node
c (t) : list of t’s children
ci (t) : i th child of t
p (t) : parent of t

zt ∈ {1, . . . ,C} : state of t
xt : observation (word) at t



Finite Trees

(conjugate) dirichlet prior H on observation parameters:
φk | H ∼ H
emissions parameterized by F : xt | zt ∼ F (φzt )

state z ′t for child of t depends on zt , multinomial:
z ′t | zt ∼Multinomial(πzt )

uniform prior on multinomial state parameters:
πk | ρ ∼ Dir(ρ, . . . ,ρ)



Finite Trees, cont.

Independent Children: (given parent)

Ptr (t) = P (xt | zt) ∏
t ′∈c(t)

P
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)
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Simultaneous Children: (no independence assumed at all)
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ct ∼ λk (multinomial, learned)
Markov Children:
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Dirichlet Process & HDP



Infinite Trees

mostly same, now have dirichlet process as prior



Infinite Trees, cont.

Independent Children:
mostly same, now infinite states, πk ∼ DP (α0,β )

HDP-HMM is same, but with only one child
Simultaneous Children:
sparsity exacerbated even further

P
((

z ′t
)

t ′∈c(t) | π
)
= ∏

t ′∈c(t)
P (zt ′ | π) = ∏

t ′∈c(t)
πz ′t

λk | ζ , Lk ∼ DP (ζ ,Lk), Lk is a deterministic function of πk ,
acts as base measure
Markov Children:
same, now πki ∼ DP (α0,β ) (from i to k)
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Inference

sampler: (1) sample state assignments z , (2) sample counts
m, (3) sample global stick β

mjk : number of elements from πk corresponding to βj

njk : number of observations with state k and parent state j
marginal counts represented with dot (·)



Inference, cont., 1

sampling z

P
(
zt = k | z−t ,β

)
∝ P

(
zt = k,(zt ′)t ′∈s(t) | zp (t)

)
·P

(
(zt ′)t ′∈s(t) | zt = k

)
· f −xt

k (xt)

f −x(t)
k (xt) =

·nxtk +ρ

·nk +Nρ



Inference, cont., 2

sample β :

(β1, . . . ,βK ,βu)∼ Dir (m·1, . . . ,m·K ,α0)



Experiments

only have structure, not tags:



Experiments, cont.

results: learning and splitting tags


