## Coalescent Theory and its applications to Population Genetics

Based on:

Recent progress in coalescent theory – Nathanael Berestycki Coalescent Theory – Magnus Nordborg The Coalescent – John Wakeley Combinatorial Stochastic Processes – Jim Pitman

#### November 10, 2011 Presented by: Daniel Klein and Layla Oesper

## Super Fast Biology Primer

- DNA can be thought of as a string containing only A,C,G,T.
- The letter present at a particular location is the string is often referred to as an allele.



### Super Fast Biology Primer

- Humans are diploid meaning they have two copies of every chromosome.
- A haploid organism (e.g., bacteria) has a single copy of a chromosome.

Diploid Genome: ACCTGGTACGGCGCGTTA ACGATGTAGGGCGCGTAA

 $\sim$  CG genotype at position 3

#### Genetic Drift

A basic mechanism underlying evolution. Refers to the change in frequency of alleles in a population due to random sampling.



#### Various Theories

- Wright-Fisher Model

   Generations do not overlap
- Cannings Model
  - -Generations do not overlap
  - -More control over number of offspring
- Moran Model

-Assumes generations overlap

#### Various Theories

- Wright-Fisher Model

   Generations do not overlap
- Cannings Model
  - -Generations do not overlap
  - -More control over number of offspring
- Moran Model

-Assumes generations overlap

#### Various Theories

- Wright-Fisher Model

   Generations do not overlap
- Moran Model
  - -Assumes generations overlap

WARNING: For the purposes of this presentation, we will ignore the fact that people are diploid (have 2 copies of each chromosome).





## Wright-Fisher Alleles

- Assume only two possible alleles (A or a) at any location in the genome.
  - -i copies of A in generation t, having frequency p = i/N
  - -N-i copies of a in generation t+1, having frequency 1-p
- Probability of j copies of A in generation t+1:

$$P_{ij} = \binom{N}{j} p^j (1-p)^{N-j} \qquad 0 \le j \le N,$$



#### **Coalescent Models**



(N >> n)

#### **Ancestral Partitions**

Let  $x_1, x_2, ..., x_N$  be the current generation. The <u>ancestral partition</u> at generation t is just the partition where i~j if and only if  $x_i$  and  $x_j$  have a common ancestor in generation t.

#### **Ancestral Partitions**



#### **Ancestral Partitions**

Generation: t Pop Size: N





Generation: t Pop Size: N

Generation: t + n – 1 Pop Size: N

Generation: t + n Pop Size: N









 Expected amount of time for 2 lineages to join or coalesce is just N generations.



• Rescale time: 1 unit = N generations

Probability lineages stay distinct for x units of rescaled time:

$$(1 - 1/N)^{N_X} -> e^{-x}$$

(decay of heterozygosity interpretation)

#### Assumptions

- 1.Population of constant size, and individuals typically have few offspring.
- 2.Population is well-mixed. Everybody is liable to interact with anybody.

3.No selection acts on the population.

#### Assumptions

- We are assuming <u>neutrality.</u>
  - -Different alleles do not have an affect upon survival.
  - -This allows any generation to be viewed as an exchangeable partition.
- The biology is a lot more complicated than what we are presenting.
  - -Recombination
  - -Diploid genomes

#### Preliminaries

 The coalescent is a stochastic process that takes values on exchangeable random partitions, so it is helpful to understand exchangeable random partitions.

**Definition 1.1.** An exchangeable random partition  $\Pi$  is a random element of  $\mathcal{P}$  whose law is invariant under the action of any permutation  $\sigma$  of  $\mathbb{N}$ with finite support: that is,  $\Pi$  and  $\Pi_{\sigma}$  have the same distribution for all  $\sigma$ .

• **Observation**: Given a tiling of the unit interval, there is always a neat way to generate an exchangeable random partition associated with the tiling.

-Stated formally as Kingman's correspondence





#### Formally: Paintbox process

$$S_0 = \left\{ s = (s_0, s_1, \ldots) : s_1 \ge s_2 \ge \ldots, \sum_{i=0}^{\infty} s_i = 1 \right\}$$

**Definition 1.2.**  $\Pi$  is the paintbox partition derived from s.



#### Connection to De Finetti's Theorem:

**Theorem 1.1.** (Kingman [107]) Let  $\Pi$  be any exchangeable random partition. Then there exists a probability distribution  $\mu(ds)$  on  $S_0$  such that

$$\mathbb{P}(\Pi \in \cdot) = \int_{s \in \mathcal{S}_0} \mu(ds) \rho_s(\cdot).$$

### Kingman's correspondence

Measure-theoretic details to deal with dust: intuition is that dust cannot be characterized by a pdf, so judging convergence by pdf is not useful.

#### $\Pi \in \mathcal{P} \longleftrightarrow s \in \mathcal{S}_0.$

**Corollary 1.1.** This correspondence is a 1-1 map between the law of exchangeable random partitions  $\Pi$  and distributions  $\mu$  on  $S_0$ . This map is Kingman's correspondence.

**Theorem 1.2.** Convergence in distribution of the random partitions  $(\Pi_{\varepsilon})_{\varepsilon>0}$ , is equivalent to the convergence in distributions of their ranked frequencies  $(s_1^{\varepsilon}, s_2^{\varepsilon}, \ldots)_{\varepsilon>0}$ .

#### Size-biased picking

- Mostly technical, but a few intuition-building results
  - Picking an arbitrary block is not well-defined
  - Introduce r.v. X, mass of block containing first individual
  - Exchangeability doesn't quite mean block containing first individual is typical, since larger blocks are more likely to contain any individual
- Results with the following flavor:

**Theorem 1.4.** Let  $\Pi$  be a random exchangeable partition, and let N be the number of blocks of  $\Pi$ . Then we have the formula:

 $\mathbb{E}(N) = \mathbb{E}(1/X).$ 

#### Asymptotics

**Definitions:**  $K_n$ , which is the number of blocks of  $\Pi_n$  (the restriction of  $\Pi$  to [n]).  $K_{n,r}$ , which is the number of blocks of size  $r, 1 \le r \le n$ .

**Theorem 1.11.** Let  $0 < \alpha < 1$ . There is equivalence between the following properties:

(i) 
$$P_j \sim Z j^{-\alpha}$$
 almost surely as  $j \to \infty$ , for some  $Z > 0$ .

(ii)  $K_n \sim Dn^{\alpha}$  almost surely as  $n \to \infty$ , for some D > 0.

Furthermore, when this happens, Z and D are related through

$$Z = \left(\frac{D}{\Gamma(1-\alpha)}\right)^{1/\alpha},$$

and we have: (iii) For any  $r \ge 1$ ,  $K_{n,r} \sim \frac{\alpha(1-\alpha)\dots(r-1-\alpha)}{r!} Dn^{\alpha}$  as  $n \to \infty$ .

#### Asymptotics

The Pitman–Yor distribution verifies the assumptions of the theorem, hence:

**Theorem 1.12.** Let  $\Pi$  be a  $PD(\alpha, 0)$  random partition. Then there exists a random variable S such that

$$\frac{K_n}{n^{\alpha}} \longrightarrow S \qquad \text{Power law for cluster sizes!}$$

almost surely. Moreover S has the Mittag-Leffer distribution:

$$\mathbb{P}(S \in dx) = \frac{1}{\pi\alpha} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!} \Gamma(\alpha k+1) s^{k-1} \sin(\pi\alpha k).$$

#### Kingman's n-Coalescent

# A process $(\Pi_t^n, t \ge 0)$ with values in the space of partitions $[n] = \{1, ..., n\}$ defined by:

- 1. Initially  $\Pi_0^n$  is the trivial partition in singletons.
- 2.  $\Pi^n$  is a strong Markov process in continuous time, where the transition rates  $q(\pi, \pi')$  are as follow: they are positive if and only if  $\pi'$  is obtained from merging two blocks of  $\pi$ , in which case  $q(\pi, \pi') = 1$



Гime

#### Kingman's n-Coalescent

<u>Consistency</u>: If we restrict  $\Pi^n$  to partitions of {1,..., m} where m < n, then  $\Pi^{m,n}$  is an m-coalescent.

#### Kolmogorov's extension theorem

**Proposition 2.1.** There exists a unique in law process  $(\Pi_t, t \ge 0)$  with values in  $\mathcal{P}$ , such that the restriction of  $\Pi$  to  $\mathcal{P}_n$  is an n-coalescent.  $(\Pi_t, t \ge 0)$  is called Kingman's coalescent.

#### Kingman's coalescent

**Theorem 5.1.** Kingman [253] There exists a uniquely distributed  $\mathcal{P}_{\mathbb{N}}$ -valued process  $(\Pi_{\infty}(t), t \geq 0)$ , called Kingman's coalescent, with the following properties:

- $\Pi_{\infty}(0)$  is the partition of  $\mathbb{N}$  into singletons;
- for each n the restriction (Π<sub>n</sub>(t), t ≥ 0) of (Π<sub>∞</sub>(t), t ≥ 0) to [n] is a Markov chain with càdlàg paths with following transition rates: from state Π = {A<sub>1</sub>,...,A<sub>k</sub>} ∈ P<sub>[n]</sub>, the only possible transitions are to one of the (<sup>k</sup><sub>2</sub>) partitions Π<sub>i,j</sub> obtained by merging blocks A<sub>i</sub> and A<sub>j</sub> to form A<sub>i</sub> ∪ A<sub>j</sub>, and leaving all other blocks unchanged, for some 1 ≤ i < j ≤ k, with</li>

$$\Pi \to \Pi_{i,j} \ at \ rate \ 1 \tag{5.1}$$

#### What do the trees look like?



#### What do the trees look like?

Let T(k) be scaled time until a coalescent event, when k lineages exist.

$$E\left[\sum_{k=2}^{n} T(k)\right] = \sum_{k=2}^{n} E[T(k)] = \sum_{k=2}^{n} \frac{2}{k(k-1)} = 2\left(1 - \frac{1}{n}\right),$$

Over half the expected time occurs for E[T(2)] = 1 (the last pair to coalesce)! The variance in total tree height is also dominated by T(2).

#### Properties

- Bifurcating tree
- Branch lengths are exponentially distributed



-Exponential distribution is memoryless

Pr(T > s + t | T > s) = Pr(T > t) for all  $s,t \ge 0$ 

- -Allows all lineages to equal probability of coalescence at any time point.
- -Allows the partitions to remain exchangeable.

#### Constructions

- Kolmogorov's Extension Theorem
- Pure death process on partitions labeled by least element
- Large-population limits of biological models

   Wright-Fisher
  - -Moran
  - -Cannings
- Aldous' construction
- Cutting a rooted random segment
- . . . diversity of constructions suggests universality

#### Aldous' construction



**Theorem 2.2.**  $(S(t), t \ge 0)$  has the distribution of the asymptotic frequencies of Kingman's coalescent.

#### Cutting a random rooted segment



**Lemma 2.1.** The random partition associated with a uniform element of  $\mathcal{R}_{n,k}$  has the same distribution as  $\Pi_k^n$ , where  $(\Pi_k^n)_{n \ge k \ge 1}$  is the set of successive states visited by Kingman's n-coalescent.

#### Cutting a random rooted segment

Special payoff is a conditional version of Ewens' Sampling Formula:

**Corollary 2.3.** Let  $1 \le k \le n$ . Then for any partition of [n] with exactly k blocks, say  $\pi = (B_1, B_2, \ldots, B_k)$ , we have:

$$\mathbb{P}(\Pi_k^n = \pi) = \frac{(n-k)!k!(k-1)!}{n!(n-1)!} \prod_{i=1}^k |B_i|!$$
(2.6)

#### Wright-Fisher limit theorem

**Theorem 2.4.** Fix  $n \ge 1$ , and let  $\Pi_t^{N,n}$  denote the ancestral partition at time t of n randomly chosen individuals from the population at time t = 0. That is,  $i \sim j$  if and only if  $x_i$  and  $x_j$  share the same ancestor at time -t. Then as  $N \to \infty$ , and keeping n fixed, speeding up time by a factor N:

$$(\Pi_{Nt}^{N,n}, t \ge 0) \longrightarrow_d (\Pi_t^n, t \ge 0)$$

where  $\longrightarrow_d$  indicates convergence in distribution under the Skorokhod topology of  $\mathbb{D}([0,\infty),\mathcal{P}_n)$ , and  $(\Pi_t^n,t\geq 0)$  is Kingman's n-coalescent.



#### Moran limit theorem

**Theorem 2.3.** Let  $n \ge 1$  be fixed, and let  $x_1, \ldots, x_n$  be n individuals sampled without replacement from the population at time t = 0. For every  $N \ge n$ , let  $\Pi_t^{N,n}$  be the ancestral partition obtained by declaring  $i \sim j$  if and only if  $x_i$  and  $x_j$  have a common ancestor at time -t. Then, speeding up time by (N-1)/2, we find:

 $(\Pi_{(N-1)t/2}^{N,n}, t \ge 0)$  is an n-coalescent.

#### Down from Infinity

#### Let $N_t$ be the number of blocks of $\Pi(t)$ .

**Theorem 2.1.** Let E be the event that for all t > 0,  $N_t < \infty$ . Then  $\mathbb{P}(E) = 1$ .

That is - all the "dust" has coagulated!



#### Down from infinity

Intuitively, pass to continuum and model with differential equation:

$$\begin{cases} u'(t) &= -\frac{u(t)^2}{2} \\ u(0) &= +\infty. \end{cases}$$

#### Solving:

$$N_t \sim \frac{2}{t}, \quad t \to 0$$

#### How does it all fit together?

#### Wright-Fisher meets Kingsman

**Theorem 2.7.** Let  $\mathbb{E}^{\rightarrow}$  and  $\mathbb{E}^{\leftarrow}$  denote respectively the laws of a Wright-Fisher diffusion and of Kingman's coalescent. Then, for all 0 , $and for all <math>n \ge 1$ , we have:

$$\mathbb{E}_p^{\rightarrow}((X_t)^n) = \mathbb{E}_n^{\leftarrow}\left(p^{|\Pi_t|}\right) \tag{2.13}$$

where  $|\Pi_t|$  denotes the number of blocks of the random partition  $\Pi_t$ .

#### Back to alleles

We want to analyze the allelic partition of Kingman's coalescent.



#### Ewens Sampling (original)

**Theorem 1.6.** Let  $\pi$  be any given partition of [n], whose block size are  $n_1, \ldots, n_k$ .

$$\mathbb{P}(\Pi_n = \pi) = \frac{\theta^k}{(\theta) \dots (\theta + n - 1)} \prod_{i=1}^k (n_i - 1)!$$

#### Ewen Sampling (allelic)

**Theorem 2.9.** Let  $\Pi$  be the allelic partition obtained from Kingman's coalescent and the infinite alleles model with mutation rate  $\theta/2$ . Then  $\Pi$  has the law of a Poisson-Dirichlet random partition with parameter  $\theta$ . In particular, the probability that  $A_1 = a_1, A_2 = a_2, \ldots, A_n = a_n$ , is given by:

$$p(a_1, \dots, a_n) = \frac{n!}{\theta(\theta + 1) \dots (\theta + n - 1)} \prod_{j=1}^n \frac{(\theta/j)^{a_j}}{a_j!}.$$
 (2.19)

#### Inference?

**Theorem 2.10.** let  $\Pi$  be a  $PD(\theta)$  random partition, and let  $\Pi_n$  be its restriction to [n], with  $K_n$  blocks. Then

$$\frac{K_n}{\log n} \longrightarrow \theta, \quad a.s. \tag{2.23}$$

as  $n \to \infty$ . Moreover,

$$\frac{K_n - \theta \log n}{\sqrt{\theta \log n}} \longrightarrow_d \mathcal{N}(0, 1).$$
(2.24)

#### Coalescent and coagulation?

Recall fragmentation/coagulation from Wood et al. (2009). Pitman (2006) claims coalescents are governed by coagulation operators, but the details are murky . . .

**Theorem 5.7.** [357, Theorem 6] A coalescent process  $\Pi_{\infty}^{\pi}$  starting at  $\pi$  with  $|\pi| = n$  for some  $1 \leq n \leq \infty$  is a  $\Lambda$ -coalescent if and only if  $\Pi_n$  defined by (5.6) is distributed as the restriction to [n] of a  $\Lambda$ -coalescent. The semigroup of the  $\Lambda$ -coalescent on  $\mathcal{P}_{\mathbb{N}}$  is thus given by

$$\mathbb{P}^{\Lambda,\pi}(\Pi_{\infty}(t) \in \cdot) = p_t^{\Lambda} \operatorname{-COAG}(\pi, \cdot)$$
(5.7)

where  $p_t^{\Lambda}(\cdot) := \mathbb{P}^{\Lambda,1^{\infty}}(\Pi_{\infty}(t) \in \cdot)$  is the distribution of an exchangeable random partition of  $\mathbb{N}$  with the EPPF  $p_t^{\Lambda}(n_1, \ldots, n_k)$  which is uniquely determined by Kolmogorov equations for the finite state chains  $\Pi_n$  for  $n = 2, 3, \ldots$ 

#### Questions?