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Super Fast Biology Primer

* DNA can be thought of as a string
containing only A,C,G,T.

* The letter present at a particular location
is the string is often referred to as an
allele.

Genome:
ACGGTACGGCGCGTTA

C allele at position 3




Super Fast Biology Primer

* Humans are diploid - meaning they have
two copies of every chromosome.

* A haploid organism (e.g., bacteria) has a
single copy of a chromosome.

Diploid Genome:
ACCTGGTACGGCGCGTTA
ACGATGTAGGGCGCGTAA

\CG genotype at position 3




Genetic Drift

A basic mechanism underlying
evolution. Refers to the change in
frequency of alleles in a population due
to random sampling.
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Various Theories

* Wright-Fisher Model
—Generations do not overlap

* Cannings Model
—Generations do not overlap
—More control over number of offspring

* Moran Model
—Assumes generations overlap

Thursday, November 10, 11



Various Theories

* Wright-Fisher Model
—Generations do not overlap

* Cannings Model
—Generations do not overlap
—More control over number of offspring

* Moran Model
—Assumes generations overlap

Thursday, November 10, 11



Various Theories

* Wright-Fisher Model
—Generations do not overlap

* Moran Model
—Assumes generations overlap

WARNING: For the purposes of this presentation,
we will ignore the fact that people are diploid
(have 2 copies of each chromosome).




Wright-Fisher Mode|

Generation: t
Pop Size: N

Generation: t + 1
Pop Size: N

Generation: t + n
Pop Size: N
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Wright-Fisher Model




Wright-Fisher Alleles

* Assume only two possible alleles (A or a)
at any location in the genome.
—i copies of A in generation t, having frequency
p=1/N
—N-i copies of a in generation t+1, having
frequency 1-p
* Probability of j copies of A in generation
t+1:

N\ . K5
P, = ( | )p’(l —p)N I <3< i¥:
| J




Wright-Fisher Model
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Coalescent Models

MRCA of the t MRCA of the
<«— Ppopulation PR sample

(N >>n)
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Ancestral Partitions

Let X, X5,..., Xy be the current

generation. The ancestral partition at
generation t is just the partition where
i~j if and only if x; and x; have a
common ancestor in generation t.




Ancestral Partitions
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Generation: t e o o
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Ancestral Partitions
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Wright-Fisher Model
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Wright-Fisher Model
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Wright-Fisher Model

| O O © )
Generation: t e o o
Pop Size: N
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Wright-Fisher Model
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Wright-Fisher Model

» Expected amount of time for 2 lineages
to join or coalesce is just N generations.

h 4
* Rescale time: 1 unit = N generations

Probability lineages stay distinct for x
units of rescaled time:

(1 - 1/N)Nx—> e

(decay of heterozygosity interpretation)
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Assumptions

1.Population of constant size, and
individuals typically have few offspring.

2.Population is well-mixed. Everybody is
liable to interact with anybody.

3.No selection acts on the population.




Assumptions

* We are assuming neutrality.

—Different alleles do not have an affect upon
survival.

—This allows any generation to be viewed as an
exchangeable partition.

* The biology is a lot more complicated
than what we are presenting.

—Recombination
—Diploid genomes
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Preliminaries

* The coalescent is a stochastic process that takes values
on exchangeable random partitions, so it is helpful to
understand exchangeable random partitions.

Definition 1.1. An exchangeable random partition 11 is a random element
of P whose law is invariant under the action of any permutation o of N
with finite support: that is, I1 and I1, have the same distribution for all o.

* Observation: Given a tiling of the unit interval, there is

always a neat way to generate an exchangeable random
partition associated with the tiling.

—Stated formally as Kingman’s correspondence
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Tilings and Partitions
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Tilings and Partitions
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Formally: Paintbox process
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Definition 1.2. II is the paintbox partition derived from s. ‘— m

Connection to De Finetti’s Theorem:

Theorem 1.1. (Kingman [107]) Let Il be any exchangeable random par-
tition. Then there exists a probability distribution u(ds) on Sy such that

P(Il € ) = / u(ds)ps ().
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Kingman’'s correspondence

Measure-theoretic details to deal with dust: intuition is that
dust cannot be characterized by a pdf, so judging convergence
by pdf is not useful.

ITeP +—seSy

Corollary 1.1. This correspondence is a 1-1 map between the law of ex-
changeable random partitions 11 and distributions pu on Sg. This map 1s
Kingman’s correspondence.

Theorem 1.2. Convergence in distribution of the random partitions
(Ile)es0, is equivalent to the convergence in distributions of their ranked
frequencies (s5,55,...)e>0-
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Size-biased picking

* Mostly technical, but a few intuition-building results
— Picking an arbitrary block is not well-defined
— Introduce r.v. X, mass of block containing first individual

— Exchangeability doesn’t quite mean block containing
first individual is typical, since larger blocks are more
likely to contain any individual

» Results with the following flavor:

Theorem 1.4. Let 11 be a random exchangeable partition, and let N be
the number of blocks of 11. Then we have the formula:

E(N) = E(1/X).
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Asymptotics

Definitions: K,,, which is the number of blocks of II,, (the restriction of II to [n]).

K, r, which is the number of blocks of size r, 1 <r < n.

Theorem 1.11. Let 0 < a < 1. There is equivalence between the following
properties:

(i) P; ~ Zj—% almost surely as j — oo, for some Z > 0.
1) K, ~ Dn® almost surely as n — oo, for some D > 0.
(i)

Furthermore, when this happens, Z and D are related through

D 1/
/ = :
'l — «)
and we have:

(iii) For anyr > 1, K, , ~ O‘(l_a)“r'!(r_l_a)Dno‘ as n — oo.
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Asymptotics

The Pitman-Yor distribution verifies the assumptions of the theorem,
hence:

Theorem 1.12. Let II be a PD(«,0) random partition. Then there exists
a random variable S such that

Ko,

na

, S Power law for cluster sizes!

almost surely. Moreover S has the Mittag-Leffer distribution:

1 o0 k—l—l
P(S € dx) = — Z I'(ak + 1)s" 1 sin(rak).
T
k=1
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Kingman’s n-Coalescent

A process (117.t > 0) with values in the

space of partitions [n]={1, ..., n} defined
by:
1. Initially II{; is the trivial partition in singletons.

2. II" is a strong Markov process in continuous time, where the transi-
tion rates a(7.7') are as follow: thev are positive if and onlv if 7’ is
obtained from merging two blocks of 7, in which case ¢(7.7") =1
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Kingman’s n-Coalescent
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Kingman’s n-Coalescent

Consistency: If we restrict 1" to
partitions of {1,..., m} where m < n, then
[1M:" is an m-coalescent.

_|_
Kolmogorov’s extension theorem

Proposition 2.1. There exists a unique in law process (11;,t > 0) with
values in P, such that the restriction of 11 to P, is an n-coalescent.
(IT;,t > 0) is called Kingman’s coalescent.
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Kingman’s coalescent

Theorem 5.1. Kingman [253] There exists a uniquely distributed Py-valued
process (Il (t),t > 0), called Kingman’s coalescent, with the following proper-

ties:
o 11..(0) is the partition of N into singletons;
e for each n the restriction (IL,(t),t > 0) of (Il (t),t > 0) to [n] is a
Markov chain with cadlag paths with following transition rates: from state
Il = {Ay,..., A} € Py, , the only possible transitions are to one of the

(g) partitions 11; ; obtained by merging blocks A; and A; to form A; U A;,
and leaving all other blocks unchanged, for some 1 <1 < j <k, with

II — II; ; at rate 1 (5.1)

Cadlag (continuous from right, limits from
left) paths suggests Skorokhod topology, can
“‘wiggle space and time a bit”

Thursday, November 10, 11



What do the trees look like?
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What do the trees look like?

Let T(k) be scaled time until a coalescent
event, when k lineages exist.

E[kz T(k)| = ;E[Tw)] - Z & A,Q_ = 2(1- %)

k=2
Over half the expected time occurs for
E[T(2)] = 1 (the last pair to coalesce)!

The variance in total tree height is also
dominated by T(2).




Properties

* Bifurcating tree

* Branch lengths are exponentially
distributed

-

—Exponential distribution is memoryless

Pr(T>s+t|T>s)=Pr(T>t)foralls,t =0
—Allows all lineages to equal probability of

coalescence at any time point.

|

{123} 4

{12343 X

W23 433} v

—Allows the partitions to remain exchangeable.

7(2)

7(3)
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Constructions

» Kolmogorov’s Extension Theorem

* Pure death process on partitions labeled by least
element

* Large-population limits of biological models
—Wright-Fisher
—Moran
—Cannings

* Aldous’ construction

» Cutting a rooted random segment

... diversity of constructions suggests universality
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Aldous’ construction

A Stick locations uniform
(U1, T1) random

E; exponential with rate

1G-1)/2

@)
Tj = Z Ei. < oo
‘ k=341
=

1

Theorem 2.2. (S(t),t > 0) has the distribution of the asymptotic fre-
quencies of Kingman’s coalescent.
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Cutting a random rooted segment

0 0 0 0 6
()

v w2 & G (e

Lemma 2.1. The random partition associated with a uniform element
of Rk has the same distribution as 11}, where (II7),>k>1 is the set of
successive states visited by Kingman’s n-coalescent.
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Cutting a random rooted segment

Special payoff is a conditional version of
Ewens’ Sampling Formula:

Corollary 2.3. Let 1 < k <n. Then for any partition of [n] with exactly
k blocks, say m = (B1, Ba, ..., B), we have:

Py =) = RS H|B\' 2.6

n!(n — 1)!
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Wright-Fisher limit theorem

Theorem 2.4. Fixn > 1, and let Hiv’n denote the ancestral partition at
timet of n randomly chosen individuals from the population at time t = 0.
That is, v ~ 7 tf and only if x; and x; share the same ancestor at time —t.
Then as N — oo, and keeping n fized, speeding up time by a factor N:

(TNt > 0) —q (7, £ > 0)

where — g4 indicates convergence in distribution under the Skorokhod topol-
o9y of D([0,0),Pyr), and (II},t > 0) is Kingman’s n-coalescent.
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Moran limit theorem

Theorem 2.3. Let n > 1 be fized, and let x1,...,x, be n individuals
sampled without replacement from the population at time t = 0. For every
N > n, let H,];V’n be the ancestral partition obtained by declaring © ~ 7 if

and only if x; and x; have a common ancestor at time —t. Then, speeding
up time by (N —1)/2, we find:

(HZ\}il)t/Q,t > 0) is an n-coalescent.
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Down from Infinity

Let N, be the number of blocks of l1(t).

Theorem 2.1. Let E be the event that for allt > 0, N; < oo. Then
P(E) = 1.

That is - all the “"dust” has coagulated!

Proof relies on
showing foralle> |, limsupP(N;" > M) < «.

0, there exists N— OC

M>0 such that: g0 - P(i )
( )
Z
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Down from infinity

Intuitively, pass to continuum and model with differential equation:

Solving:

2
Nth, t— 0
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How does it all fit together?




Wright-Fisher meets Kingsman

Theorem 2.7. Let K= and K= denote respectively the laws of a Wright-
Fisher diffusion and of Kingman’s coalescent. Then. for all 0 < p < 1,
and for all n > 1, we have:

E; (X)) =E; (p'”f‘) (2.13)

where |I1;| denotes the number of blocks of the random partition
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Back to alleles

We want to analyze the allelic partition
of Kingman’s coalescent.

/ Mutation Event

Assume mutations occur
onh coalescent tree as
Poisson process with

intensity per unit length
0/2.
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Ewens Sampling (original)

Theorem 1.6. Let m be any given partition of [n|, whose block size are

Pl =ar )= »

6)1
(8)(9+11_1) (”i_l)!

1

L.

l
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Ewen Sampling (allelic)

Theorem 2.9. Let II be the allelic partition obtained from Kingman’s
coalescent and the infinite alleles model with mutation rate 6/2. Then 11
has the law of a Poisson-Dirichlet random partition with parameter 6. In

particular, the probability that A1 = a1, Ao = ao, ..., A, = a,, 18 given
by:

n! — (0/5)%
U] o ¢ ¢ o o nm — - . 2.19
Pla,- ) = G N 1) H a;! (2.19)

J=1
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Inference?

Theorem 2.10. let II be a PD(0) random partition, and let 11,, be its
restriction to |n], with K, blocks. Then

K
i > 6 .S. 2.23
o 17 , 4.8 (2.23)
as n — oo. Moreover,
K, —01
e L N(0,1). (2.24)

V0 logn
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Coalescent and coagulation?

Recall fragmentation/coagulation from Wood et al. (2009).
Pitman (2006) claims coalescents are governed by coagulation
operators, but the details are murky . . .

Theorem 5.7. [357, Theorem 6] A coalescent process 11T, starting at ™ with
IT| =n for some 1 <n < oo is a A-coalescent if and only if 11,, defined by (5.6)
is distributed as the restriction to [n] of a A-coalescent. The semigroup of the
A-coalescent on Py is thus given by

P (Mo (t) € ) = p -coac(r, - ) (5.7)

where p*(-) 1= Pt (I (t) € -) is the distribution of an exchangeable random

partition of N with the EPPF pé\(nl, ..., nk) which is uniquely determined by
Kolmogorov equations for the finite state chains I1,, forn =2,3,....
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Questions?




