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Super Fast Biology Primer
• DNA can be thought of as a string 
containing only A,C,G,T.  
• The letter present at a particular location 
is the string is often referred to as an 
allele.

Genome: 
ACCTGGTACGGCGCGTTA

C allele at position 3
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Super Fast Biology Primer
• Humans are diploid – meaning they have 
two copies of every chromosome.
• A haploid organism (e.g., bacteria) has a 
single copy of a chromosome.

Diploid Genome: 
ACCTGGTACGGCGCGTTA                               
ACGATGTAGGGCGCGTAA

CG genotype at position 3
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Genetic Drift
 A basic mechanism underlying 

evolution.  Refers to the change in 
frequency of alleles in a population due 
to random sampling. 

A C

A C

Tim
e
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Various Theories
• Wright-Fisher Model
–Generations do not overlap

• Cannings Model
–Generations do not overlap
–More control over number of offspring

• Moran Model
–Assumes generations overlap
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Various Theories
• Wright-Fisher Model
–Generations do not overlap

• Moran Model
–Assumes generations overlap

WARNING: For the purposes of this presentation, 
we will ignore the fact that people are diploid 
(have 2 copies of each chromosome).
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Wright-Fisher Model
Generation: t
Pop Size: N

Generation: t + 1
Pop Size: N

Generation: t + n
Pop Size: N
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Wright-Fisher Model
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Wright-Fisher Alleles
• Assume only two possible alleles (A or a) 
at any location in the genome.
–i copies of A in generation t, having frequency 
p = i/N
–N-i copies of a in generation t+1, having 
frequency 1-p

• Probability of j copies of A in generation 
t+1:
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Wright-Fisher Model
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Coalescent Models

(N >> n)
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Ancestral Partitions
 Let x1, x2,…, xN be the current 

generation.  The ancestral partition at 
generation t is just the partition where 
i~j if and only if xi and xj have a 
common ancestor in generation t.
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Ancestral Partitions

Generation: t
Pop Size: N

Generation: t + 1
Pop Size: N

Thursday, November 10, 11



Ancestral Partitions

Generation: t
Pop Size: N

Generation: t + 1
Pop Size: N
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Wright-Fisher Model
Generation: t
Pop Size: N

Generation: t + n - 1
Pop Size: N

Generation: t + n
Pop Size: N
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Wright-Fisher Model

Generation: t
Pop Size: N

Generation: t + 1
Pop Size: N

1/N
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Wright-Fisher Model

Generation: t
Pop Size: N

Generation: t + 1
Pop Size: N

1 - 1/N
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Wright-Fisher Model

Generation: t
Pop Size: N

Generation: t + n
Pop Size: N

(1 - 1/N)n
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Wright-Fisher Model
• Expected amount of time for 2 lineages 
to join or coalesce is just N generations. 

• Rescale time: 1 unit = N generations

Probability lineages stay distinct for x 
units of rescaled time:

(1 – 1/N)Nx ->  e-x

(decay of heterozygosity interpretation)
Thursday, November 10, 11



Assumptions
1.Population of constant size, and 

individuals typically have few offspring.
2.Population is well-mixed.  Everybody is 

liable to interact with anybody.
3.No selection acts on the population.
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Assumptions
• We are assuming neutrality.
–Different alleles do not have an affect upon 
survival.  
–This allows any generation to be viewed as an 
exchangeable partition.

• The biology is a lot more complicated 
than what we are presenting.
–Recombination
–Diploid genomes
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Preliminaries
• The coalescent is a stochastic process that takes values 

on exchangeable random partitions, so it is helpful to 
understand exchangeable random partitions.

• Observation: Given a tiling of the unit interval, there is 
always a neat way to generate an exchangeable random 
partition associated with the tiling.
–Stated formally as Kingman’s correspondence

23
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Tilings and Partitions
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Tilings and Partitions

Dust
Exchangeable 

Partition
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Formally: Paintbox process 

N. Berestycki 11
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Figure 1.1: The paintbox process associates a random partition Π to any
tiling of the unit interval. Here Π|[8] = ({1, 4}, {2}, {3, 7}, {5}, {6}, {8}).
Note how 2 and 6 form singletons.

∑∞
i=0 si = 1 (note that we do not require s0 ≥ s1):

S0 =

{
s = (s0, s1, . . .) : s1 ≥ s2 ≥ . . . ,

∞∑

i=0

si = 1

}
.

The coordinate s0 plays a special role in this sequence and this is why
monotonicity is only required starting at i = 1 in this definition. An
element of S0 may be viewed as a tiling of (0,1), where the sizes of the
tiles are precisely equal to s0, s1, . . . the ordering of the tiles is irrelevant
for now, but for the sake of simplicity we will order them from left to
right: the first tile is J0 = (0, s0), the second is J1 = (s0, s0 + s1), etc. Let
s ∈ S0, and let U1, U2, . . . be i.i.d. uniform random variables on (0, 1). For
0 < u < 1 let I(u) ∈ {0, 1, . . .} denote the index of the component (tile) of
s which contains u. That is,

I(u) = inf

{
n :

n∑

i=0

si > u

}
.

Let Π be the random partition defined by saying i ∼ j if and only if
I(Ui) = I(Uj) > 0 or i = j (see Figure 1.1). Note that in this construction,
if Ui falls into the 0th part of s, then i is guaranteed to form a singleton in

12 Chapter 1. Random exchangeable partitions

the partition Π. On the other hand, if I(Ui) ≥ 1, then almost surely, the
block containing i has infinitely many members, and in fact, by the law
of large numbers, the frequency of this block is well defined and strictly
positive. For this reason, the part s0 of s is referred to as the dust of s.
We will say that Π has no dust if s0 = 0, i.e., if Π has no singleton.

The partition Π described by the above construction gives us an ex-
changeable partition, as the law of (U1, . . . , Un) is the same as that of
(Uσ(1), . . . , Uσ(n)) for each n ≥ 1 and for each permutation σ with support
in [n].

Definition 1.2. Π is the paintbox partition derived from s.

The name paintbox refers to the fact that each part of s defines a colour,
and we paint i with the colour in which Ui falls. If Ui falls in s0, then we
paint i with a unique, new, colour. The partition Π is then obtained from
identifying integers with the same colour.

Note that this construction still gives an exchangeable random partition
if s is a random element of S0, provided that the sequence Ui is chosen
independently from s. Kingman’s theorem states that this is the most
general form of exchangeable random partition. For s ∈ S0, let ρs denote
the law on P of a paintbox partition derived from s.

Theorem 1.1. (Kingman [107]) Let Π be any exchangeable random par-
tition. Then there exists a probability distribution µ(ds) on S0 such that

P(Π ∈ ·) =
∫

s∈S0

µ(ds)ρs(·).

Sketch of proof. We briefly sketch Aldous’ proof of this result [2], which
relies on De Finetti’s theorem on exchangeable sequences of random vari-
ables. This theorem states the following: if (X1, . . .) is an infinite ex-
changeable sequence of real-valued random variables (i.e., its law is invari-
ant under the permutation of finitely many indices), then there exists a
random probability measure µ such that, conditionally given µ, the Xi’s
are i.i.d. with law µ. Now, let Π be an exchangeable partition. Define
a random map ϕ : N → N as follows: if i ∈ N, then ϕ(i) is the smallest
integer in the same block as i. Thus the blocks of the partition Π may
be regarded as the sets of points which share a common value under the
map ϕ. In parallel, take an independent sequence of i.i.d. uniform ran-
dom variables (U1, . . .) on [0, 1], and define Xi = Uϕ(i). It is immediate
that (X1, . . .) are exchangeable, and so De Finetti’s theorem applies. Thus
there exists µ such that, conditionally given µ, (X1, . . .) is i.i.d. with law
µ. Note that i and j are in the same block of Π if and only if Xi = Xj .
We now work conditionally given µ. Note that (X1, . . .) has the same law
as (q(V1), . . .), where (V1, . . .) are i.i.d. uniform on [0, 1], and for x ∈ R,
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Connection to De Finetti’s Theorem:

26
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Kingman’s correspondence

N. Berestycki 13

q(x) = inf{y ∈ R : F (y) > x} and F (x) denotes the cumulative distri-
bution function of µ. Thus we deduce that Π has the same law as the
paintbox ρs(·), where s = (s0, s1, . . .) ∈ S0 is such that (s1, . . .) gives the
ordered list of atoms of µ and s0 = 1 −

∑∞
i=1 si.

We note that Kingman’s original proof relies on a martingale argument,
which is in line with the modern proofs of De Finetti’s theorem (see, e.g.,
Durrett [65], (6.6) in Chapter 4). The interested reader is referred to [2]
and [133], both of which contain a wealth of information about the subject.

This theorem has several interesting and immediate consequences: if Π
is any exchangeable random partition, then the only finite blocks of Π are
the singletons, almost surely. Indeed if a block is not a singleton, then
it is infinite and has in fact positive, well-defined asymptotic frequency
(or mass), by the law of large numbers. The (random) vector s ∈ S0

can be entirely recovered from Π: if Π has any singleton at all, then a
positive proportion of integers are singletons, that proportion is equal to
s0. Moreover, (s1, . . .) is the ordered sequence of nondecreasing block
masses. In particular, if Π = (B1, . . . , ) then

|B1| + |B2| + . . . = 1 − s0, a.s.

There is thus a complete correspondence between the random exchange-
able partition Π and the sequence s ∈ S0:

Π ∈ P ←→ s ∈ S0.

Corollary 1.1. This correspondence is a 1-1 map between the law of ex-
changeable random partitions Π and distributions µ on S0. This map is
Kingman’s correspondence.

Furthermore, this correspondence is continuous when S0 is equipped
with the appropriate topology: this is the topology associated with point-
wise convergence of the “non-dust” entries: that is, sε → s as ε → 0 if and
only if, sε

1 → s1, . . . , sε
k → sk, for all k ≥ 1 (but not necessarily for k = 0).

Theorem 1.2. Convergence in distribution of the random partitions
(Πε)ε>0, is equivalent to the convergence in distributions of their ranked
frequencies (sε

1, s
ε
2, . . .)ε>0.

The proof is easy and can be found for instance in Pitman [133], Theorem
2.3. It is easy to see that the correspondence can not be continuous with
respect to the restriction of the #1 metric to S0 (think about a state with
many blocks of small but positive frequencies and no dust: this is “close”
to the pure dust state from the point of view of pointwise convergence, and
hence from the point of view of sampling, but not at all from the point of
view of the #1 metric).
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hence from the point of view of sampling, but not at all from the point of
view of the #1 metric).

Measure-theoretic details to deal with dust: intuition is that 
dust cannot be characterized by a pdf, so judging convergence 
by pdf is not useful.
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• Mostly technical, but a few intuition-building results
– Picking an arbitrary block is not well-defined
– Introduce r.v. X, mass of block containing first individual
– Exchangeability doesn’t quite mean block containing 

first individual is typical, since larger blocks are more 
likely to contain any individual

• Results with the following flavor:

Size-biased picking
N. Berestycki 15

Thus, from this it follows that the nth moment of X is related to the
sum of the (n + 1)th moments of all frequencies:

E
(

∑

i

Pn+1
i

)
= E(Xn). (1.4)

In particular, for n = 1 we have:

E(X) = E
(

∑

i

P 2
i

)
.

This identity is obvious when one realises that both sides of this equation
can be interpreted as the probability that two randomly chosen points fall
in the same component. This of course also applies to (1.4), which is the
probability that n+1 randomly chosen points are in the same component.
The following identity is a useful application of Theorem 1.3:

Theorem 1.4. Let Π be a random exchangeable partition, and let N be
the number of blocks of Π. Then we have the formula:

E(N) = E(1/X).

To explain the result, note that if we see that the block containing 1
has frequency ε > 0 small, then we can expect roughly 1/ε blocks in total
(since that would be the answer if all blocks had frequency exactly ε).

Proof. To see this, note that the result is obvious if Π has some dust with
positive probability, as both sides are then infinite. So assume that Π has
no dust almost surely, and let Nn be the number of blocks of Π restricted
to [n]. Then by Theorem 1.3:

E(Nn) =
∑

i

P(part i is chosen among the first n picks)

=
∑

i

E (1 − (1 − Pi)n)

= E(fn(X)),

say, where

fn(x) =
1 − (1 − x)n

x
.

Letting n → ∞, since X > 0 almost surely because there is no dust,
fn(X) → 1/X almost surely. This convergence is also monotone, so we
conclude

E(N) = E(1/X)

as required.
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Asymptotics

26 Chapter 1. Random exchangeable partitions

1.5 Tauberian theory of random partitions

1.5.1 Some general theory

Let Π be an exchangeable random partition with ranked frequencies
(P1, . . .), which we assume has no dust almost surely. In applications
to population genetics, we will often be interested in exact asymptotics of
the following quantities:

1. Kn, which is the number of blocks of Πn (the restriction of Π to [n]).

2. Kn,r, which is the number of blocks of size r, 1 ≤ r ≤ n.

Obtaining asymptotics for Kn is usually easier than for Kn,r, for instance
due to monotonicity in n. But there is a very nice result which relates in
a surprisingly precise fashion the asymptotics of Kn,r (for any fixed r ≥ 1,
as n → ∞) to those of Kn. This may seem surprising at first, but we
stress that this property is of course a consequence of the exchangeability
of Π and Kingman’s representation. The asymptotic behaviour of these
two quantities is further tied to another quantity, which is that of the
asymptotic speed of decay of the frequencies towards 0. The right tool for
proving these results is a variation of Tauberian theorems, which take a
particularly elegant form in this context. The main result of this section
(Theorem 1.11) is taken from [91], which also contains several other very
nice results.

Theorem 1.11. Let 0 < α < 1. There is equivalence between the following
properties:

(i) Pj ∼ Zj−α almost surely as j → ∞, for some Z > 0.

(ii) Kn ∼ Dnα almost surely as n → ∞, for some D > 0.

Furthermore, when this happens, Z and D are related through

Z =
(

D

Γ(1 − α)

)1/α

,

and we have:
(iii) For any r ≥ 1, Kn,r ∼ α(1−α)...(r−1−α)

r! Dnα as n → ∞.

The result of [91] is actually more general, and is valid if one replaces D
by a slowly varying sequence "n. Recall that a function f is slowly varying
near ∞ if for every λ > 0,

lim
x→∞

f(λx)
f(x)

= 1. (1.16)
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Asymptotics
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1.5.2 Example

As a prototypical example of a partition Π which verifies the assumptions
of Theorem 1.11, we have the Poisson-Dirichlet(α, 0) partition.

Theorem 1.12. Let Π be a PD(α, 0) random partition. Then there exists
a random variable S such that

Kn

nα
−→ S

almost surely. Moreover S has the Mittag-Leffer distribution:

P(S ∈ dx) =
1

πα

∞∑

k=1

(−1)k+1

k!
Γ(αk + 1)sk−1 sin(παk).

Proof. We start by showing that nα is the right order of magnitude for
Kn. First, we remark that the expectation un = E(Kn) satisfies, by the
Chinese restaurant process construction of Π, that

un+1 − un = E
(

Knα

n

)
=

αun

n
.

This implies, using the formula Γ(x + 1) = xΓ(x) (for x > 0):

un+1 = un(1 +
α

n
)

= (1 +
α

n
)(1 +

α

n − 1
) . . . (1 +

α

1
)u1

=
Γ(n + 1 + α)

Γ(n + 1)Γ(1 + α)
.

Thus, using the asymptotics Γ(x + a) ∼ xaΓ(x),

un =
Γ(n + α)

Γ(n)Γ(1 + α)
∼ nα

Γ(1 + α)
.

(This appears on p.69 of [133], but using a more combinatorial approach).
This tells us the order of magnitude for Kn. To conclude to the al-

most sure behaviour, a martingale argument is needed (note that we may
not apply Lemma 1.1 as this result is only conditional on the frequencies
(Pj)j≥1 of Π.) This is outlined in Theorem 3.8 of [133].

Later (see, e.g., Theorem 4.2), we will see other applications of this
Tauberian theory to a concrete example arising in population genetics.

The Pitman-Yor distribution verifies the assumptions of the theorem, 
hence:
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Power law for cluster sizes!
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Kingman’s n-Coalescent
 A process     with values in the 

space of partitions [n]={1, …, n} defined 
by:
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Kingman’s n-Coalescent
 Consistency: If we restrict Πn to 

partitions of {1,…, m} where m < n, then 
Πm,n is an m-coalescent.

+ 
Kolmogorov’s extension theorem 

= 
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98 5 Coagulation and fragmentation processes

5.3. Representations of infinite partitions This section reviews some ba-
sic facts and terminology related to different representations of infinite
partitions which are useful in the study of processes of coagulation and
fragmentation.

5.4. Coagulation and subordination The basic coagulation operator
p -coag has a natural interpretation in terms of subordination (compo-
sition ) of increasing processes with exchangeable increments. In partic-
ular, taking p to be the Poisson-Dirichlet distribution with parameters
(α, 0), and substituting α = e−t, yields the semigroup of the Bolthausen-
Sznitman coalescent [72].

5.5. Coagulation – fragmentation duality The semigroup property of the
Bolthausen-Sznitman coalescent is related to a more general duality for-
mula involving coagulation and fragmentation kernels associated with the
two-parameter Poisson-Dirichlet family. Another instance of this duality
involves the asymptotic features of the combinatorial structure of random
mappings.

5.1. Coalescents

The first paragraph introduces Kingman’s coalescent. The following paragraphs
recall how this process has been generalized to construct various other partition-
valued coalescent processes.

Kingman’s coalescent Motivated by applications in the theory of genetic di-
versity, concerning the evolution over time of the distribution of different genetic
types in a large population, Kingman [253] discovered the remarkable PN-valued
process described by the following theorem. As shown by Kingman, this process
arises naturally as a limit process governing lines of descent, viewed backwards
in time, from numerous natural models of population genetics, with the first n
integers labelling the first n individuals sampled from a large population.

Theorem 5.1. Kingman [253] There exists a uniquely distributed PN-valued
process (Π∞(t), t ≥ 0), called Kingman’s coalescent, with the following proper-
ties:

• Π∞(0) is the partition of N into singletons;
• for each n the restriction (Πn(t), t ≥ 0) of (Π∞(t), t ≥ 0) to [n] is a

Markov chain with càdlàg paths with following transition rates: from state
Π = {A1, . . . , Ak} ∈ P[n] , the only possible transitions are to one of the(k
2

)
partitions Πi,j obtained by merging blocks Ai and Aj to form Ai ∪Aj,

and leaving all other blocks unchanged, for some 1 ≤ i < j ≤ k, with

Π → Πi,j at rate 1 (5.1)

Proof. This follows easily from the consistency of the descriptions for different
values of n, and Kolmogorov’s extension theorem. Or see Exercise 5.1.1 . !

Càdlàg (continuous from right, limits from 
left) paths suggests Skorokhod topology, can 

“wiggle space and time a bit”
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What do the trees look like?

(n = 6)

(n = 32)
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What do the trees look like?
 Let T(k) be scaled time until a coalescent 

event, when k lineages exist.  

 Over half the expected time occurs for 
 E[T(2)] = 1 (the last pair to coalesce)!

The variance in total tree height is also 
dominated by T(2).
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Properties
• Bifurcating tree
• Branch lengths are exponentially 
distributed
–Exponential distribution is memoryless
    Pr(T > s + t | T > s) = Pr(T > t) for all s,t ≥ 0
–Allows all lineages to equal probability of 
coalescence at any time point.
–Allows the partitions to remain exchangeable.

Magnus Nordborg 5

derlying genealogy is only of interest because it contains information about the
evolutionary process that gave rise to it. In statistical terms, almost all infer-
ence problems that arise from polymorphism data can be seen as “missing data”
problems.

It is crucial to understand this, because no matter how many individuals
we sample, there is still only a single underlying genealogy to estimate. It
could of course be that this single genealogy contains a lot of information about
the interesting aspect of the evolutionary process, but if it does not, then our
inferences will be as good as one would normally expect from a sample of size
one!

Another consequence of the above is that it is usually possible to understand
how model parameters a↵ect polymorphism data by understanding how they
a↵ect genealogies. For this reason, I will focus on the genealogical process and
only discuss the neutral mutation process briefly towards the end of the chapter.

The coalescent approximation

The previous subsection described the conceptual insights behind the coalescent
approach. The sample genealogies central to this approach can be conveniently
modeled using a continuous-time Markov process known as the coalescent (or
Kingman’s coalescent, or sometimes“the n-coalescent” to emphasize the depen-
dence on the sample size). We will now describe the coalescent and show how
it arises naturally as a large-population approximation to the Wright-Fisher
model. Its relationship to other models will be discussed later.

Figure 2 is needlessly complicated be-

1 32

T(2)

T(3)
{{1},{2},{3}}

{{1,2},{3}}

{{1,2,3}}
time

Figure 3: The genealogy of a sam-
ple can be described in terms of
its topology and branch lengths.
The topology can be represented us-
ing equivalence classes for ancestors.
The branch lengths are given by the
waiting times between successive co-
alescence events.

cause the identity (i. e., the horizontal
position) of all ancestors is maintained.
In order to superimpose mutations, all we
need to know is which lineage coalesces
with which, and when. In other words,
we need to know the topology, and the
branch lengths. The topology is easy to
model: Because of neutrality, individu-
als are equally likely to reproduce; there-
fore all lineages must be equally likely
to coalesce. It is convenient to repre-
sent the topology as a sequence of coa-
lescing equivalence classes: two members
of the original sample are equivalent at a
certain point in time if and only if they
have a common ancestor at that time (see
Figure 3). But what about the branch
lengths, i. e., the coalescence times?

Follow two lineages back in time. We
have seen that o↵spring pick their par-
ents randomly from the previous genera-
tion, and that, under the Wright-Fisher
model, they do so independently of each
other. Thus, the probability that the two
lineages pick the same parent and coalesce is 1/N , and the probability that they
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Constructions
• Kolmogorov’s Extension Theorem
• Pure death process on partitions labeled by least 

element
• Large-population limits of biological models
–Wright-Fisher
–Moran
–Cannings

• Aldous’ construction
• Cutting a rooted random segment
• . . . diversity of constructions suggests universality
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Aldous’ construction
N. Berestycki 35

1

t

Figure 2.1: Aldous’ construction. The vertical sticks are located at uniform
random points on (0, 1). The stick at Uj has height τj . These define a
tiling of (0, 1) as shown in the picture. The tiles coalesce as t increases
from 0 to ∞.

The right-hand side of the above inequality is independent of n, and can
be made as small as desired provided M is chosen large enough. Thus
(2.4) follows.

2.1.3 Aldous’ construction

We now provide two different constructions of Kingman’s coalescent which
have some interesting consequences. The first one is due to Aldous (section
4.2 in [5]). Let (Uj)∞j=1 be a collection of i.i.d. uniform random variables on
(0, 1). Let Ej be a collection of independent exponential random variables
with rate j(j − 1)/2, and let

τj =
∞∑

k=j+1

Ek < ∞.

Define a function f : (0, 1) → R by saying f(Uj) = τj for all j ≥ 1, and
f(u) = 0 if u is not one of the Uj ’s. Define a tiling S(t) of (0, 1) by looking
at the open connected components of {u ∈ (0, 1) : f(u) > t}. See figure
2.1.3 for an illustration.

Theorem 2.2. (S(t), t ≥ 0) has the distribution of the asymptotic fre-
quencies of Kingman’s coalescent.

Stick locations uniform 
random

N. Berestycki 35
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t

Figure 2.1: Aldous’ construction. The vertical sticks are located at uniform
random points on (0, 1). The stick at Uj has height τj . These define a
tiling of (0, 1) as shown in the picture. The tiles coalesce as t increases
from 0 to ∞.

The right-hand side of the above inequality is independent of n, and can
be made as small as desired provided M is chosen large enough. Thus
(2.4) follows.

2.1.3 Aldous’ construction

We now provide two different constructions of Kingman’s coalescent which
have some interesting consequences. The first one is due to Aldous (section
4.2 in [5]). Let (Uj)∞j=1 be a collection of i.i.d. uniform random variables on
(0, 1). Let Ej be a collection of independent exponential random variables
with rate j(j − 1)/2, and let

τj =
∞∑

k=j+1

Ek < ∞.

Define a function f : (0, 1) → R by saying f(Uj) = τj for all j ≥ 1, and
f(u) = 0 if u is not one of the Uj ’s. Define a tiling S(t) of (0, 1) by looking
at the open connected components of {u ∈ (0, 1) : f(u) > t}. See figure
2.1.3 for an illustration.

Theorem 2.2. (S(t), t ≥ 0) has the distribution of the asymptotic fre-
quencies of Kingman’s coalescent.
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Figure 2.1: Aldous’ construction. The vertical sticks are located at uniform
random points on (0, 1). The stick at Uj has height τj . These define a
tiling of (0, 1) as shown in the picture. The tiles coalesce as t increases
from 0 to ∞.

The right-hand side of the above inequality is independent of n, and can
be made as small as desired provided M is chosen large enough. Thus
(2.4) follows.

2.1.3 Aldous’ construction

We now provide two different constructions of Kingman’s coalescent which
have some interesting consequences. The first one is due to Aldous (section
4.2 in [5]). Let (Uj)∞j=1 be a collection of i.i.d. uniform random variables on
(0, 1). Let Ej be a collection of independent exponential random variables
with rate j(j − 1)/2, and let

τj =
∞∑

k=j+1

Ek < ∞.

Define a function f : (0, 1) → R by saying f(Uj) = τj for all j ≥ 1, and
f(u) = 0 if u is not one of the Uj ’s. Define a tiling S(t) of (0, 1) by looking
at the open connected components of {u ∈ (0, 1) : f(u) > t}. See figure
2.1.3 for an illustration.

Theorem 2.2. (S(t), t ≥ 0) has the distribution of the asymptotic fre-
quencies of Kingman’s coalescent.

Ej exponential with rate 
j(j-1)/2
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Cutting a random rooted segment

N. Berestycki 37

of Rn,n, has the same structure as Πn
n (as both these are singletons almost

surely). Now, let k ≤ n and let Ξ be a randomly chosen element of Rn,k,
and let Ξ′ be obtained from Ξ by merging a random pair of clusters and
choosing one of the two orders for the merged linear segment at random.
Then we claim that Ξ′ is uniform on Rn,k−1. Indeed, if ξ " ξ′ denotes the
relation that ξ′ can be obtained from ξ by merging two parts, we get:

P(Ξ′ = ξ′) =
∑

ξ∈Rn,k:ξ$ξ′

P(Ξ = ξ)P(Ξ′ = ξ′|Ξ = ξ)

=
∑

ξ∈Rn,k:ξ$ξ′

1
|Rn,k|

1
2

2
k(k − 1)

=
1

|Rn,k|
1

k(k − 1)
|{ξ ∈ Rn,k : ξ " ξ′}|.

The point is that, given ξ′ ∈ Rn,k−1, there are exactly n − k + 1 ways to
cut a link from it and obtained a ξ ∈ Rn,k such that ξ " ξ′. Note that
there can be no repeat in this construction, and hence, |{ξ ∈ Rn,k : ξ "
ξ′}| = n − k + 1, which does not depend on ξ′. In particular,

P(Ξ′ = ξ′) =
n − k + 1

k(k − 1)|Rn,k|
(2.5)

and thus Ξ′ is uniform on Rn,k−1.

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

Figure 2.2: Cutting a rooted random segment.

The lemma has the following consequence. It is easy to see that a random
element of Rn,k may be obtained by choosing a random rooted segment
on [n], and breaking it at k − 1 uniformly chosen links. Rescaling the
interval [0, n] to the interval (0, 1) and letting n → ∞, it follows from this
argument that Πk, which is the infinite partition of Kingman’s coalescent

36 Chapter 2. Kingman’s coalescent

Proof. We offer two different proofs, which are both instructive in their
own ways. The first one is straightforward: in a first step, note that the
transitions of S(t) are correct: when S(t) has n fragments, one has to
wait an exponential amount of time with rate n(n − 1)/2 before the next
coalescence occurs, and when it does, given S(t), the pair of blocks which
coalesces is uniformly chosen. (This follows from the fact that, given S(t),
their linear order is uniform). Once this has been observed, the second
step is to argue that the asymptotic frequencies of Kingman’s coalescent
forms a Feller process with an entrance law given by the “pure dust” state
S(0) = (1, 0, . . .) ∈ S0. (Naturally, this Feller property is meant in the
sense of the usual topology on S0, i.e., not the restriction of the !1 metric,
but that determined by pointwise convergence of the non-dust entries.)
This argumentation can be found for instance in [5, Appendix 10.5]. Since
it is obvious that S(t) → (1, 0, . . .) in that topology as t → 0, we obtain
the claim that S(t) has the distribution of the asymptotic frequencies of
Kingman’s coalescent.

The second proof if quite different, and less straightforward, but more
instructive. Start with the observation that, for the finite n-coalescent,
the set of successive states visited by the process, say (Πn,Πn−1, . . . ,Π1)
(where for each 1 ≤ i ≤ n, Πi has exactly i blocks), is independent from the
holding times (Hn,Hn−1, . . . ,H2) (this is, of course, not true of a general
Markov chain, but holds here because the holding time Hk is an exponen-
tial random variable with rate k(k − 1)/2 independent from Πk.) Letting
n → ∞ and considering these two processes backward in time, we obtain
that for Kingman’s coalescent the reverse chain (Π1,Π2, . . .) is indepen-
dent from the holding times (H2,H3, . . .). It is obvious in the construction
of S(t) that the holding times (H2, . . .) have the correct distribution, hence
it suffices to show that (Π1, . . . , ) has the correct distribution, where Πk is
the random partition generated from S(Tk) by sampling at uniform ran-
dom variables (Uj) independent of the time k ≥ 1 (here Tk is a time at
which S(t) has k blocks).

To this end, we introduce the notion of rooted segments. A rooted seg-
ment on k points i1, . . . , ik is one of the possible k! linear orderings of these
k points. We think of them as being oriented from left to right, the left-
most point being the root of the segment. If n ≥ 1 and 1 ≤ k ≤ n, consider
the set Rn,k of all rooted segments on {1, . . . , n} with exactly k distinct
connected components (the order of these k segments is irrelevant). We
call such an element a broken rooted segment.

Lemma 2.1. The random partition associated with a uniform element
of Rn,k has the same distribution as Πn

k , where (Πn
k )n≥k≥1 is the set of

successive states visited by Kingman’s n-coalescent.

Proof. The proof is modeled after [24], but goes back to at least Kingman
[107]. It is obvious that the partition associated with Ξn, a random element

N. Berestycki 37

of Rn,n, has the same structure as Πn
n (as both these are singletons almost

surely). Now, let k ≤ n and let Ξ be a randomly chosen element of Rn,k,
and let Ξ′ be obtained from Ξ by merging a random pair of clusters and
choosing one of the two orders for the merged linear segment at random.
Then we claim that Ξ′ is uniform on Rn,k−1. Indeed, if ξ " ξ′ denotes the
relation that ξ′ can be obtained from ξ by merging two parts, we get:

P(Ξ′ = ξ′) =
∑

ξ∈Rn,k:ξ$ξ′

P(Ξ = ξ)P(Ξ′ = ξ′|Ξ = ξ)

=
∑

ξ∈Rn,k:ξ$ξ′

1
|Rn,k|

1
2

2
k(k − 1)

=
1

|Rn,k|
1

k(k − 1)
|{ξ ∈ Rn,k : ξ " ξ′}|.

The point is that, given ξ′ ∈ Rn,k−1, there are exactly n − k + 1 ways to
cut a link from it and obtained a ξ ∈ Rn,k such that ξ " ξ′. Note that
there can be no repeat in this construction, and hence, |{ξ ∈ Rn,k : ξ "
ξ′}| = n − k + 1, which does not depend on ξ′. In particular,

P(Ξ′ = ξ′) =
n − k + 1

k(k − 1)|Rn,k|
(2.5)

and thus Ξ′ is uniform on Rn,k−1.
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Figure 2.2: Cutting a rooted random segment.

The lemma has the following consequence. It is easy to see that a random
element of Rn,k may be obtained by choosing a random rooted segment
on [n], and breaking it at k − 1 uniformly chosen links. Rescaling the
interval [0, n] to the interval (0, 1) and letting n → ∞, it follows from this
argument that Πk, which is the infinite partition of Kingman’s coalescent
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when it has k blocks, has the same distribution as the unit interval cut at
k − 1 uniform random points. This finishes the proof of Theorem 2.2.

This theorem, and the discrete argument given in the second proof, have
a number of useful consequences, which we now detail.

Corollary 2.1. Let Tk be the first time that Kingman’s coalescent has
k blocks, and let S(Tk) denote the asymptotic frequencies at this time,
ranked in nonincreasing order. Then S(Tk) is distributed uniformly over
the (k − 1)-dimensional simplex:

∆k =

{
x1 ≥ . . . ≥ xk ≥ 0 :

k∑

i=1

xi = 1

}
.

We also emphasize that the discrete argument given in the second proof
of Theorem 2.2, has the following nontrivial consequence for the time-
reversal of Kingman’s n-coalescent: it can be constructed as a Markov
chain with “nice”, i.e., explicit, transitions. Let (Ξ1, . . . ,Ξn) be a process
such that Ξk ∈ Rn,k for all 1 ≤ k ≤ n, and defined as follows: Ξ1 is a
uniform rooted segment on [n]. Given Ξi with 1 ≤ i ≤ n − 1, define Ξi+1

by cutting a randomly chosen link from Ξi. (See Figure 2.2).

Corollary 2.2. The time-reversal of Ξ, that is, (Ξn,Ξn−1, . . . ,Ξ1), has
the same distribution as Kingman’s n-coalescent in discrete time.

As a further consequence of this link, we get an interesting formula for
the probability distribution of Kingman’s coalescent:

Corollary 2.3. Let 1 ≤ k ≤ n. Then for any partition of [n] with exactly
k blocks, say π = (B1, B2, . . . , Bk), we have:

P(Πn
k = π) =

(n − k)!k!(k − 1)!
n!(n − 1)!

k∏

i=1

|Bi|! (2.6)

Proof. The number of elements in Rn,k is easily seen to be

|Rn,k| =
(

n − 1
k − 1

)
n!
k!

. (2.7)

Indeed it suffices to choose k − 1 links to break out of n − 1, after hav-
ing chosen one of n! rooted segments on [n]. Ignoring the order of the
clusters gives us (2.7). Since the same partition is obtained by permuting
the elements in a cluster of the broken rooted segment, we obtain imme-
diately (2.6).

Special payoff is a conditional version of 
Ewens’ Sampling Formula:
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Wright-Fisher limit theorem
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at time t ∈ Z is made up of individuals x1, . . . , xN . The population at
time t + 1 may be defined as y1, . . . , yN , where for each 1 ≤ i ≤ N , the
parent of yi is randomly chosen among x1, . . . , xN . Again, the model may
be constructed for all t ∈ Z. As above, all three conditions are intuitively
satisfied, so we expect to get Kingman’s coalescent as an approximation
of the genealogy of a sample.

Theorem 2.4. Fix n ≥ 1, and let ΠN,n
t denote the ancestral partition at

time t of n randomly chosen individuals from the population at time t = 0.
That is, i ∼ j if and only if xi and xj share the same ancestor at time −t.
Then as N → ∞, and keeping n fixed, speeding up time by a factor N :

(ΠN,n
Nt , t ≥ 0) −→d (Πn

t , t ≥ 0)

where −→d indicates convergence in distribution under the Skorokhod topol-
ogy of D([0,∞),Pn), and (Πn

t , t ≥ 0) is Kingman’s n-coalescent.

Proof. (sketch) Consider two randomly chosen individuals x, y. Then the
time it takes for them to coalesce is Geometric with success probability
p = 1/N : indeed, at each new generation, the probability that the two
genes go back to the same ancestor is 1/N since every gene chooses its
parent uniformly at random and independently of one another. Let TN be
a geometric random variable with parameter 1/N . Since

1
N

TN −→d E,

an exponential random variable with parameter 1, we see that the pair
(x, y) coalesces at rate approximately 1 once time is speed up by N . This
is true for every pair, hence we get Kingman’s n-coalescent.

We briefly comment that this is the general structure of limiting theo-
rems on the genealogy of populations: n is fixed but arbitrary, N is going
to infinity, and after speeding up time by a suitable factor, we get conver-
gence towards the restriction of a nice coalescing process on n particles.

Despite their simplicity, the Wright-Fisher or the Moran model have
proved extremely useful to understand some theoretical properties of King-
man’s coalescent, such as the duality relation which will be discussed in
the subsequent sections of this chapter. However, before that, we will dis-
cuss an important result, due to Möhle, which gives convergence towards
Kingman’s coalescent in the above sense, for a wide class of population
models known as Cannings models and may thus be viewed as a result of
universality.

2.2.3 Möhle’s lemma

We now describe the general class of population models which is the frame-
work of Möhle’s lemma, and which are known as Cannings models (after
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with replacement from the current generation. The number of o↵spring con-
tributed by a particular individual is thus binomially distributed with parame-
ters N (the number of trials) and 1/N (the probability of being chosen), and the
joint distribution of the numbers of o↵spring produced by all N individuals is
symmetrically multinomial. Now consider the random genealogical relationships
(i. e., “who begat whom”) that result from reproduction in this setting. These
can be represented graphically, as shown in Figure 1. Going forward in time,
lineages branch whenever an individual produces two or more o↵spring, and end
when there is no o↵spring. Going backward in time, lineages coalesce whenever
two or more individuals were produced by the same parent. They never end. If
we trace the ancestry of a group of individuals back through time, the number
of distinct lineages will decrease and eventually reach one, when the most recent
common ancestor (MRCA) of the individuals in question is encountered. None
of this is a↵ected by neutral genetic di↵erences between the individuals.

mutation

time

Figure 1: The neutral mutation process can be separated from the genealogical
process. The genealogical relationships in a particular 10-generation realization
of the neutral Wright-Fisher model (with population size N = 10) are shown on
the left. On the right, allelic states of have been superimposed (so-called “gene
dropping”).

As a consequence, the evolutionary dynamics of neutral allelic variants can
be modeled through so-called “gene dropping” (“mutation dropping” would be
more accurate): given a realization of the genealogical process, allelic states are
assigned to the original generation in a suitable manner, and the lines of descent
then simply followed forward in time, using the rule that o↵spring inherit the
allelic state of their parent unless there is a mutation (which occurs with some
probability each generation). In particular, the allelic states of any group of
individuals (for instance, all the members of a given generation) can be generated
by assigning an allelic state to their MRCA and then “dropping” mutations
along the branches of the genealogical tree that leads to them. Most of the
genealogical history of the population is then irrelevant (cf. Figures 1 and 2).

The second insight is that it is possible to model the genealogy of a group of
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symmetrically multinomial. Now consider the random genealogical relationships
(i. e., “who begat whom”) that result from reproduction in this setting. These
can be represented graphically, as shown in Figure 1. Going forward in time,
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when there is no o↵spring. Going backward in time, lineages coalesce whenever
two or more individuals were produced by the same parent. They never end. If
we trace the ancestry of a group of individuals back through time, the number
of distinct lineages will decrease and eventually reach one, when the most recent
common ancestor (MRCA) of the individuals in question is encountered. None
of this is a↵ected by neutral genetic di↵erences between the individuals.

mutation

time

Figure 1: The neutral mutation process can be separated from the genealogical
process. The genealogical relationships in a particular 10-generation realization
of the neutral Wright-Fisher model (with population size N = 10) are shown on
the left. On the right, allelic states of have been superimposed (so-called “gene
dropping”).

As a consequence, the evolutionary dynamics of neutral allelic variants can
be modeled through so-called “gene dropping” (“mutation dropping” would be
more accurate): given a realization of the genealogical process, allelic states are
assigned to the original generation in a suitable manner, and the lines of descent
then simply followed forward in time, using the rule that o↵spring inherit the
allelic state of their parent unless there is a mutation (which occurs with some
probability each generation). In particular, the allelic states of any group of
individuals (for instance, all the members of a given generation) can be generated
by assigning an allelic state to their MRCA and then “dropping” mutations
along the branches of the genealogical tree that leads to them. Most of the
genealogical history of the population is then irrelevant (cf. Figures 1 and 2).

The second insight is that it is possible to model the genealogy of a group of

N →∞
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lineage. Thus from our point of view, there won’t be any difference between
haploid and diploid populations, except that the population size is in effect
doubled. From now on, we will thus make no distinction between a gene
and an individual.

2.2.2 The Moran and the Wright-Fisher models

The Moran model is perhaps the simplest model which satisfies assump-
tion (1), (2) and (3). In it, there are a constant number of individuals
in the population, N . Time is continuous, and every individual lives an
exponential amount of time with rate 1. When an individual dies, it is
simultaneously replaced by an offspring of another individual in the pop-
ulation, which is uniformly chosen from the population. This keeps the
population size constant equal to N . This model is defined for all t ∈ R.
See the accompanying Figure 2.3 for an illustration. Note that all three
assumptions are satisfied here, so it is no surprise that we have:

Theorem 2.3. Let n ≥ 1 be fixed, and let x1, . . . , xn be n individuals
sampled without replacement from the population at time t = 0. For every
N ≥ n, let ΠN,n

t be the ancestral partition obtained by declaring i ∼ j if
and only if xi and xj have a common ancestor at time −t. Then, speeding
up time by (N − 1)/2, we find:

(ΠN,n
(N−1)t/2, t ≥ 0) is an n-coalescent.

Proof. The model may for instance be constructed by considering N inde-
pendent stationary Poisson processes with rate 1 (Zt(i),−∞ < t < ∞)N

i=1.
Each time Zt(i) rings, we declare that the ith individual in the population
dies, and is replaced by an offspring from a randomly chosen individual in
the rest of the population. Since the time-reversal of a stationary Poisson
process is still a stationary Poisson process, we see that while there are
k ≤ n lineages that have not coalesced by time −t, each of them experiences
what was a death-and-substitution in the opposite direction of time, with
rate 1. At any such event, the corresponding lineage jumps to a randomly
chosen other individual. With probability (k− 1)/(N − 1), this individual
is one of the other k−1 lineages, in which case there is a coalescence. Thus
the total rate at which there is a coalescence is k(k − 1)/(N − 1). Hence
speeding time by (N − 1)/2 gives us a total coalescence rate of k(k− 1)/2,
as it should be for an n-coalescent with k blocks.

In the Wright-Fisher model, the situation is similar, but the model is
slightly different. The main difference is that generations are discrete
and non-overlapping (as opposed to the Moran model, where different
generations overlap). To describe this model, assume that the population
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Down from Infinity
Let Nt be the number of blocks of Π(t).

That is – all the “dust” has coagulated!

Proof relies on 
showing for all ε > 
0, there exists 
M>0 such that:
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have positive asymptotic frequency (in particular, there is no dust almost
surely anymore, as otherwise the singletons would contribute an infinite
number of blocks). Thus, let Nt denote the number of blocks of Π(t).

Theorem 2.1. Let E be the event that for all t > 0, Nt < ∞. Then
P(E) = 1.

In words, coalescence is so strong that all dust has coagulated into a finite
number of solid blocks. We say that Kingman’s coalescent comes down
from infinity. This is a big–bang–like event, which is indeed reminiscent
of models in astrophysics.

Proof. The proof of this result is quite easy, but we prefer to first give an
intuitive explanation for why the result holds true. Note that the time it
takes to go from n blocks to n − 1 blocks is just an exponential random
variable with rate n(n − 1)/2. When n is large, this is approximately
n2/2, so we can expect the number of blocks to approximately solve the
differential equation: 




u′(t) = −u(t)2

2
u(0) = +∞.

(2.2)

(2.2) has a well-defined solution u(t) = 2/t, which is finite for all t > 0
but infinite for t = 0. This explains why Nt is finite almost surely for all
t > 0. in fact, one guesses from the ODE approximation:

Nt ∼
2
t
, t → 0 (2.3)

almost surely. This statement is correct indeed, but unfortunately it is
tedious to make the ODE approximation rigorous. Instead, to show Theo-
rem 2.1, we use the following simple argument. It is enough to show that,
for every ε > 0, there exists M > 0 such that P(Nt > M) ≤ ε. For this, it
suffices to look at the restrictions Πn of Π to [n], and show that

lim sup
n→∞

P(Nn
t > M) ≤ ε. (2.4)

Here we used the notation Nn
t for the number of blocks of Πn

t . For every
n ≥ 1, let En be an exponential random variable with rate n(n − 1)/2.
Then note that, by Markov’s inequality:

P(Nn
t > M) = P

(
n∑

k=M

Ek > t

)

≤ 1
t
E

(
n∑

k=M

Ek

)

≤ 1
t

∞∑

k=M

2
k(k − 1)

.
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k(k − 1)

.

Solving:
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How does it all fit together?

Thursday, November 10, 11



Wright-Fisher meets Kingsman

Thursday, November 10, 11



Back to alleles
 We want to analyze the allelic partition 

of Kingman’s coalescent.

Mutation Event

Assume mutations occur 
on coalescent tree as 
Poisson process with 
intensity per unit length 
θ/2.
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Ewens Sampling (original)

Thursday, November 10, 11



Ewen Sampling (allelic)
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the number of blocks Kn is

P(Πn = π|Kn = k) = cn,k

k∏

i=1

ni! (2.21)

where cn,k =
∑

!

∏k
i=1 ni! where the sum is over all partitions with k

blocks. Equivalently, since
∑n

j=1 aj = k,

p(a1, . . . , an|k) = c′n,k

n∏

j=1

(1/j)aj

aj !
(2.22)

for a different normalizing constant c′n,k. The striking feature of (2.21)
and (2.22) is that both right-hand sides do not depend on θ. In particular,
we can not learn anything about θ beyond what we can tell from simply
looking at the number of blocks. In statistical terms, Kn is a sufficient
statistics for θ. This raises the question: how to estimate θ from the
number of blocks?

Theorem 2.10. let Π be a PD(θ) random partition, and let Πn be its
restriction to [n], with Kn blocks. Then

Kn

log n
−→ θ, a.s. (2.23)

as n → ∞. Moreover,

Kn − θ log n√
θ log n

−→d N (0, 1). (2.24)

Proof. (2.23) is an easy consequence of the Chinese Restaurant Process
construction of a PD(θ) random partition. Indeed, let Ii be the indicator
random variable that customer i opens a new block. Then Kn =

∑n
i=1 Ii

and the random variables Ii are independent, with

P(Ii = 1) =
θ

θ + i − 1
.

Thus E(Kn) ∼ θ log n,, and var(Kn) ≤ E(Kn). Find a subsequence nk

such that k2 ≤ E(Knk) < (k + 1)2. (Thus if θ = 1, nk = e2k works.) By
Chebyshev’s inequality:

P
(∣∣∣∣

Knk

log(nk)
− θ

∣∣∣∣ > ε

)
≤ var(Knk)

ε2(log nk)2
≤ 2θ

ε2k2

for every ε > 0. By the Borel-Cantelli lemma, there is almost sure conver-
gence along the subsequence nk. Now, using monotonicity of Kn and the
sandwich theorem, we see that for n such that nk ≤ n < nk+1, we get

Knk

log(nk+1)
≤ Kn

log n
≤

Knk+1

log(nk)
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p-coagulation kernel, as follows: for π ∈ PN let p -coag(π, · ) be the distribution
of the Π-coagulation of π for Π with distribution p.

Think of Π as describing a coagulation of singleton subsets into the blocks
B1, B2, . . .. Then the Π-coagulation of π describes a corresponding coagulation
of blocks of π.

Let Ππ
∞ be a PN-valued coalescent process with Ππ

∞(0) = π for some π with
|π| = n ∈ N ∪ {∞}. Then it is easily seen that

Ππ
∞(t) = the Πn(t)-coagulation of π for t ≥ 0 (5.6)

for some uniquely defined P[n]-valued coalescent process Πn with initial state
1n, the partition of [n] into singletons.

Theorem 5.7. [357, Theorem 6] A coalescent process Ππ
∞ starting at π with

|π| = n for some 1 ≤ n ≤ ∞ is a Λ-coalescent if and only if Πn defined by (5.6)
is distributed as the restriction to [n] of a Λ-coalescent. The semigroup of the
Λ-coalescent on PN is thus given by

PΛ,π(Π∞(t) ∈ ·) = pΛ
t -coag(π, · ) (5.7)

where pΛ
t ( · ) := PΛ,1∞

(Π∞(t) ∈ ·) is the distribution of an exchangeable random
partition of N with the EPPF pΛ

t (n1, . . . , nk) which is uniquely determined by
Kolmogorov equations for the finite state chains Πn for n = 2, 3, . . ..

Recall from Section 2.2 that the EPPF (exchangeable partition probability
function) is a symmetric function of (n1, . . . , nk) giving the probability of each
particular partition of an n element set into k subsets of sizes (n1, . . . , nk).
Unfortunately, it seems possible to describe the EPPF pΛ

t (n1, . . . , nk) explicitly
only in very special cases, most notably the Kingman and Bolthausen-Sznitman
coalescents. See [357] for further discussion.

Note from Definition 5.6 that no matter what the distribution p on PN, each
of the kernels K = p -coag acts locally on PN, meaning that if Ππ denotes a
random partition of N with distribution K(π, · ), and Rn denotes the opera-
tion of restriction of a partition of N to [n], then for each n the distribution of
RnΠπ depends on π only through Rnπ. It follows that any PN-valued Markov
process Π∞, each of whose transition kernels is of the form p -coag for some
p, is such that the Pn-valued process RnΠ∞ is a Markov chain. Such a coales-
cent process Π∞ with càdlàg paths can therefore be constructed more generally
from a consistent family of Markov chains with more complex transition rules,
allowing not just multiple collisions in which several blocks merge to form one
block, but simultaneous multiple collisions, in which several new blocks might
be formed, each from the merger of two or more smaller blocks. The descrip-
tion of all possible semigroups of such coagulation operators is then provided
by the larger class of coalescents with simultaneous collisions described in the
next paragraph. Note that there is a composition rule for coagulation kernels
associated with exchangeable distributions pi on PN which induces a semigroup
operation on these distributions: (p1 -coag)(p2 -coag) = p3 -coag where p3 is
determined explicitly by [357, Lemma 34].

Coalescent and coagulation?

Recall fragmentation/coagulation from Wood et al. (2009). 
Pitman (2006) claims coalescents are governed by coagulation 
operators, but the details are murky . . .
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