Coalescent Theory and its applications to Population Genetics

Based on:
Recent progress in coalescent theory - Nathanael Berestycki
Coalescent Theory - Magnus Nordborg
The Coalescent - John Wakeley
Combinatorial Stochastic Processes - Jim Pitman

November 10, 2011

Presented by:
Daniel Klein and Layla Oesper

Super Fast Biology Primer

- DNA can be thought of as a string containing only A,C,G,T.
- The letter present at a particular location is the string is often referred to as an allele.

Genome:
ACCTGGTACGGCGCGTTA

C allele at position 3

Super Fast Biology Primer

- Humans are diploid - meaning they have two copies of every chromosome.
- A haploid organism (e.g., bacteria) has a single copy of a chromosome.

Diploid Genome:
ACCTGGTACGGCGCGTTA
ACGATGTAGGGCGCGTAA
CG genotype at position 3

Genetic Drift

A basic mechanism underlying evolution. Refers to the change in frequency of alleles in a population due to random sampling.

Various Theories

- Wright-Fisher Model
-Generations do not overlap
- Cannings Model
-Generations do not overlap
-More control over number of offspring
- Moran Model
-Assumes generations overlap

Various Theories

- Wright-Fisher Model
-Generations do not overlap
- Cannings Model
-Generations do not overlap
-More control over number of offspring
- Moran Model
-Assumes generations overlap

Various Theories

- Wright-Fisher Model
-Generations do not overlap
- Moran Model
-Assumes generations overlap

WARNING: For the purposes of this presentation, we will ignore the fact that people are diploid (have 2 copies of each chromosome).

Wright-Fisher Model

Generation: t Pop Size: N

Generation: t + 1 Pop Size: N

Generation: $\mathrm{t}+\mathrm{n}$ Pop Size: N

Wright-Fisher Model

Wright-Fisher Alleles

- Assume only two possible alleles (A or a) at any location in the genome.
-i copies of A in generation t, having frequency $\mathrm{p}=\mathrm{i} / \mathrm{N}$
$-\mathrm{N}-\mathrm{i}$ copies of a in generation $\mathrm{t}+1$, having frequency 1-p
- Probability of j copies of A in generation $\mathrm{t}+1$:

$$
P_{i j}=\binom{N}{j} p^{j}(1-p)^{N-j} \quad 0 \leq j \leq N,
$$

Wright-Fisher Model

Coalescent Models

($\mathrm{N} \gg \mathrm{n}$)

Ancestral Partitions

Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$ be the current generation. The ancestral partition at generation t is just the partition where $\mathrm{i} \sim \mathrm{j}$ if and only if x_{i} and x_{j} have a common ancestor in generation t.

Ancestral Partitions

Generation: t Pop Size: N

Generation: t + 1 Pop Size: N

Ancestral Partitions

Generation: t Pop Size: N

Generation: $\mathrm{t}+1$

Wright-Fisher Model

Generation: t Pop Size: N

Generation: t + n - 1 Pop Size: N

Generation: t + n Pop Size: N

Wright-Fisher Model

Generation: t Pop Size: N

Generation: $\mathrm{t}+1$ Pop Size: N

Wright-Fisher Model

Generation: t Pop Size: N

$$
1-1 / N
$$

Generation: t + 1 Pop Size: N

Wright-Fisher Model

Generation: t Pop Size: N

$$
(1-1 / N)^{n}
$$

Generation: $\mathrm{t}+\mathrm{n}$ Pop Size: N

Wright-Fisher Model

- Expected amount of time for 2 lineages to join or coalesce is just N generations.
- Rescale time: 1 unit $=\mathrm{N}$ generations

Probability lineages stay distinct for x units of rescaled time:

$$
(1-1 / N)^{N x}->e^{-x}
$$

Assumptions

1.Population of constant size, and individuals typically have few offspring.
2.Population is well-mixed. Everybody is liable to interact with anybody.
3.No selection acts on the population.

Assumptions

- We are assuming neutrality.
-Different alleles do not have an affect upon survival.
-This allows any generation to be viewed as an exchangeable partition.
- The biology is a lot more complicated than what we are presenting.
-Recombination
-Diploid genomes

Preliminaries

- The coalescent is a stochastic process that takes values on exchangeable random partitions, so it is helpful to understand exchangeable random partitions.

```
Definition 1.1. An exchangeable random partition \Pi is a random element
of \mathcal{P}}\mathrm{ whose law is invariant under the action of any permutation }\sigma\mathrm{ of }\mathbb{N
with finite support: that is, \Pi and 嗐 have the same distribution for all }\sigma\mathrm{ .
```

- Observation: Given a tiling of the unit interval, there is always a neat way to generate an exchangeable random partition associated with the tiling.
-Stated formally as Kingman's correspondence

Tilings and Partitions

$\left.\Pi\right|_{[8]}=(\{1,4\},\{2\},\{3,7\},\{5\},\{6\},\{8\})$

Tilings and Partitions

$\left.\Pi\right|_{[8]}=(\{1,4\},\{2\},\{3,7\},\{5\},\{6\},\{8\})$

$$
\mathcal{S}_{0}=\left\{s=\left(s_{0}, s_{1}, \ldots\right): s_{1} \geq s_{2} \geq \ldots, \sum_{i=0}^{\infty} s_{i}=1\right\}
$$

Definition 1.2. Π is the paintbox partition derived from s.

Connection to De Finetti's Theorem:
Theorem 1.1. (Kingman [107]) Let Π be any exchangeable random partition. Then there exists a probability distribution $\mu(d s)$ on \mathcal{S}_{0} such that

$$
\mathbb{P}(\Pi \in \cdot)=\int_{s \in \mathcal{S}_{0}} \mu(d s) \rho_{s}(\cdot)
$$

Kingman's correspondence

Measure-theoretic details to deal with dust: intuition is that dust cannot be characterized by a pdf, so judging convergence by pdf is not useful.

$$
\Pi \in \mathcal{P} \longleftrightarrow s \in \mathcal{S}_{0}
$$

Corollary 1.1. This correspondence is a 1-1 map between the law of exchangeable random partitions Π and distributions μ on \mathcal{S}_{0}. This map is Kingman's correspondence.

Theorem 1.2. Convergence in distribution of the random partitions $\left(\Pi_{\varepsilon}\right)_{\varepsilon>0}$, is equivalent to the convergence in distributions of their ranked frequencies $\left(s_{1}^{\varepsilon}, s_{2}^{\varepsilon}, \ldots\right)_{\varepsilon>0}$.

Size-biased picking

- Mostly technical, but a few intuition-building results
- Picking an arbitrary block is not well-defined
- Introduce r.v. X, mass of block containing first individual
- Exchangeability doesn't quite mean block containing first individual is typical, since larger blocks are more likely to contain any individual
- Results with the following flavor:

Theorem 1.4. Let Π be a random exchangeable partition, and let N be the number of blocks of Π. Then we have the formula:

$$
\mathbb{E}(N)=\mathbb{E}(1 / X) .
$$

Asymptotics

Definitions:
K_{n}, which is the number of blocks of Π_{n} (the restriction of Π to $[n]$).
$K_{n, r}$, which is the number of blocks of size $r, 1 \leq r \leq n$.

Theorem 1.11. Let $0<\alpha<1$. There is equivalence between the following properties:
(i) $P_{j} \sim Z j^{-\alpha}$ almost surely as $j \rightarrow \infty$, for some $Z>0$.
(ii) $K_{n} \sim D n^{\alpha}$ almost surely as $n \rightarrow \infty$, for some $D>0$.

Furthermore, when this happens, Z and D are related through

$$
Z=\left(\frac{D}{\Gamma(1-\alpha)}\right)^{1 / \alpha},
$$

and we have:
(iii) For any $r \geq 1, K_{n, r} \sim \frac{\alpha(1-\alpha) \ldots(r-1-\alpha)}{r!} D n^{\alpha}$ as $n \rightarrow \infty$.

Asymptotics

The Pitman-Yor distribution verifies the assumptions of the theorem, hence:

Theorem 1.12. Let Π be a $P D(\alpha, 0)$ random partition. Then there exists a random variable S such that

$$
\frac{K_{n}}{n^{\alpha}} \longrightarrow S \quad \text { Power law for cluster sizes! }
$$

almost surely. Moreover S has the Mittag-Leffer distribution:

$$
\mathbb{P}(S \in d x)=\frac{1}{\pi \alpha} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!} \Gamma(\alpha k+1) s^{k-1} \sin (\pi \alpha k) .
$$

Kingman's n-Coalescent

A process ($\left(\Pi_{t}^{n}, t \geq 0\right)$ with values in the space of partitions $[\mathrm{n}]=\{1, \ldots, \mathrm{n}\}$ defined by:

1. Initially Π_{0}^{n} is the trivial partition in singletons.
2. Π^{n} is a strong Markov process in continuous time, where the transition rates $a\left(\pi . \pi^{\prime}\right)$ are as follow: thev are positive if and onlv if π^{\prime} is obtained from merging two blocks of π, in which case $q\left(\pi, \pi^{\prime}\right)=1$

Kingman's n-Coalescent

Kingman's n-Coalescent

Consistency: If we restrict Π^{n} to partitions of $\{1, \ldots, \mathrm{~m}\}$ where $\mathrm{m}<\mathrm{n}$, then $\Pi^{\mathrm{m}, \mathrm{n}}$ is an m-coalescent.

Kolmogorov's extension theorem
$=$

Proposition 2.1. There exists a unique in law process $\left(\Pi_{t}, t \geq 0\right)$ with values in \mathcal{P}, such that the restriction of Π to \mathcal{P}_{n} is an n-coalescent. $\left(\Pi_{t}, t \geq 0\right)$ is called Kingman's coalescent.

Kingman's coalescent

Theorem 5.1. Kingman [253] There exists a uniquely distributed $\mathcal{P}_{\mathbb{N}}$-valued process $\left(\Pi_{\infty}(t), t \geq 0\right)$, called Kingman's coalescent, with the following properties:

- $\Pi_{\infty}(0)$ is the partition of \mathbb{N} into singletons;
- for each n the restriction $\left(\Pi_{n}(t), t \geq 0\right)$ of $\left(\Pi_{\infty}(t), t \geq 0\right)$ to $[n]$ is a Markov chain with càdlàg paths with following transition rates: from state $\Pi=\left\{A_{1}, \ldots, A_{k}\right\} \in \mathcal{P}_{[n]}$, the only possible transitions are to one of the $\binom{k}{2}$ partitions $\Pi_{i, j}$ obtained by merging blocks A_{i} and A_{j} to form $A_{i} \cup A_{j}$, and leaving all other blocks unchanged, for some $1 \leq i<j \leq k$, with

$$
\begin{equation*}
\Pi \rightarrow \Pi_{i, j} \text { at rate } 1 \tag{5.1}
\end{equation*}
$$

Càdlàg (continuous from right, limits from left) paths suggests Skorokhod topology, can "wiggle space and time a bit"

What do the trees look like?

What do the trees look like?

Let $\mathrm{T}(\mathrm{k})$ be scaled time until a coalescent event, when k lineages exist.

$$
E\left[\sum_{k=2}^{n} T(k)\right]=\sum_{k=2}^{n} E[T(k)]=\sum_{k=2}^{n} \frac{2}{k(k-1)}=2\left(1-\frac{1}{n}\right),
$$

Over half the expected time occurs for $\mathrm{E}[\mathrm{T}(2)]=1$ (the last pair to coalesce)! The variance in total tree height is also dominated by $\mathrm{T}(2)$.

Properties

- Bifurcating tree
- Branch lengths are exponentially distributed
-Exponential distribution is memoryless

$$
\operatorname{Pr}(T>s+t \mid T>s)=\operatorname{Pr}(T>t) \text { for all } s, t \geq 0
$$

-Allows all lineages to equal probability of coalescence at any time point.
-Allows the partitions to remain exchangeable.

Constructions

- Kolmogorov's Extension Theorem
- Pure death process on partitions labeled by least element
- Large-population limits of biological models
-Wright-Fisher
- Moran
- Cannings
- Aldous' construction
- Cutting a rooted random segment
- . . . diversity of constructions suggests universality

Aldous' construction

Stick locations uniform random
E_{j} exponential with rate $\mathrm{j}(\mathrm{j}-1) / 2$

$$
\tau_{j}=\sum_{k=j+1}^{\infty} E_{k}<\infty
$$

Theorem 2.2. $(S(t), t \geq 0)$ has the distribution of the asymptotic frequencies of Kingman's coalescent.

Cutting a random rooted segment

$$
\mathbb{P}\left(\Xi^{\prime}=\xi^{\prime}\right)=\frac{n-k+1}{k(k-1)\left|\mathcal{R}_{n, k}\right|}
$$

Lemma 2.1. The random partition associated with a uniform element of $\mathcal{R}_{n, k}$ has the same distribution as Π_{k}^{n}, where $\left(\Pi_{k}^{n}\right)_{n \geq k \geq 1}$ is the set of successive states visited by Kingman's n-coalescent.

Cutting a random rooted segment

Special payoff is a conditional version of Ewens' Sampling Formula:

Corollary 2.3. Let $1 \leq k \leq n$. Then for any partition of $[n]$ with exactly k blocks, say $\pi=\left(B_{1}, B_{2}, \ldots, B_{k}\right)$, we have:

$$
\begin{equation*}
\mathbb{P}\left(\Pi_{k}^{n}=\pi\right)=\frac{(n-k)!k!(k-1)!}{n!(n-1)!} \prod_{i=1}^{k}\left|B_{i}\right|! \tag{2.6}
\end{equation*}
$$

Wright-Fisher limit theorem

Theorem 2.4. Fix $n \geq 1$, and let $\Pi_{t}^{N, n}$ denote the ancestral partition at time t of n randomly chosen individuals from the population at time $t=0$. That is, $i \sim j$ if and only if x_{i} and x_{j} share the same ancestor at time $-t$. Then as $N \rightarrow \infty$, and keeping n fixed, speeding up time by a factor N :

$$
\left(\Pi_{N t}^{N, n}, t \geq 0\right) \longrightarrow_{d}\left(\Pi_{t}^{n}, t \geq 0\right)
$$

where $\longrightarrow{ }_{d}$ indicates convergence in distribution under the Skorokhod topology of $\mathbb{D}\left([0, \infty), \mathcal{P}_{n}\right)$, and $\left(\Pi_{t}^{n}, t \geq 0\right)$ is Kingman's n-coalescent.

Moran limit theorem

Theorem 2.3. Let $n \geq 1$ be fixed, and let x_{1}, \ldots, x_{n} be n individuals sampled without replacement from the population at time $t=0$. For every $N \geq n$, let $\Pi_{t}^{N, n}$ be the ancestral partition obtained by declaring $i \sim j$ if and only if x_{i} and x_{j} have a common ancestor at time $-t$. Then, speeding up time by $(N-1) / 2$, we find:

$$
\left(\Pi_{(N-1) t / 2}^{N, n}, t \geq 0\right) \text { is an } n \text {-coalescent. }
$$

Down from Infinity

Let N_{t} be the number of blocks of $\Pi(t)$.

Theorem 2.1. Let E be the event that for all $t>0, N_{t}<\infty$. Then $\mathbb{P}(E)=1$.

That is - all the "dust" has coagulated!

Proof relies on

showing for all $\varepsilon>$

Down from infinity

Intuitively, pass to continuum and model with differential equation:

$$
\begin{cases}u^{\prime}(t) & =-\frac{u(t)^{2}}{2} \\ u(0) & =+\infty\end{cases}
$$

Solving:

$$
N_{t} \sim \frac{2}{t}, \quad t \rightarrow 0
$$

How does it all fit together?

Wright-Fisher meets Kingsman

Theorem 2.7. Let \mathbb{E}^{\rightarrow} and $\mathbb{E} \leftarrow$ denote respectively the laws of a WrightFisher diffusion and of Kingman's coalescent. Then, for all $0<p<1$, and for all $n \geq 1$, we have:

$$
\begin{equation*}
\mathbb{E}_{p}^{\rightarrow}\left(\left(X_{t}\right)^{n}\right)=\mathbb{E}_{n}^{\leftarrow}\left(p^{\left|\Pi_{t}\right|}\right) \tag{2.13}
\end{equation*}
$$

where $\left|\Pi_{t}\right|$ denotes the number of blocks of the random partition Π_{t}.

Back to alleles

We want to analyze the allelic partition of Kingman’s coalescent.

Ewens Sampling (original)

Theorem 1.6. Let π be any given partition of $[n]$, whose block size are n_{1}, \ldots, n_{k}.

$$
\mathbb{P}\left(\Pi_{n}=\pi\right)=\frac{\theta^{k}}{(\theta) \ldots(\theta+n-1)} \prod_{i=1}^{k}\left(n_{i}-1\right)!
$$

Ewen Sampling (allelic)

Theorem 2.9. Let Π be the allelic partition obtained from Kingman's coalescent and the infinite alleles model with mutation rate $\theta / 2$. Then Π has the law of a Poisson-Dirichlet random partition with parameter θ. In particular, the probability that $A_{1}=a_{1}, A_{2}=a_{2}, \ldots, A_{n}=a_{n}$, is given by:

$$
\begin{equation*}
p\left(a_{1}, \ldots, a_{n}\right)=\frac{n!}{\theta(\theta+1) \ldots(\theta+n-1)} \prod_{j=1}^{n} \frac{(\theta / j)^{a_{j}}}{a_{j}!} . \tag{2.19}
\end{equation*}
$$

Inference?

Theorem 2.10. let Π be a $P D(\theta)$ random partition, and let Π_{n} be its restriction to $[n]$, with K_{n} blocks. Then

$$
\begin{equation*}
\frac{K_{n}}{\log n} \longrightarrow \theta, \quad \text { a.s. } \tag{2.23}
\end{equation*}
$$

as $n \rightarrow \infty$. Moreover,

$$
\begin{equation*}
\frac{K_{n}-\theta \log n}{\sqrt{\theta \log n}} \longrightarrow_{d} \mathcal{N}(0,1) \tag{2.24}
\end{equation*}
$$

Coalescent and coagulation?

Recall fragmentation/coagulation from Wood et al. (2009). Pitman (2006) claims coalescents are governed by coagulation operators, but the details are murky ...

Theorem 5.7. [357, Theorem 6] A coalescent process Π_{∞}^{π} starting at π with $|\pi|=n$ for some $1 \leq n \leq \infty$ is a Λ-coalescent if and only if Π_{n} defined by (5.6) is distributed as the restriction to $[n]$ of a Λ-coalescent. The semigroup of the Λ-coalescent on $\mathcal{P}_{\mathbb{N}}$ is thus given by

$$
\begin{equation*}
\mathbb{P}^{\Lambda, \pi}\left(\Pi_{\infty}(t) \in \cdot\right)=p_{t}^{\Lambda}-\operatorname{COAG}(\pi, \cdot) \tag{5.7}
\end{equation*}
$$

where $p_{t}^{\Lambda}(\cdot):=\mathbb{P}^{\Lambda, 1^{\infty}}\left(\Pi_{\infty}(t) \in \cdot\right)$ is the distribution of an exchangeable random partition of \mathbb{N} with the EPPF $p_{t}^{\Lambda}\left(n_{1}, \ldots, n_{k}\right)$ which is uniquely determined by Kolmogorov equations for the finite state chains Π_{n} for $n=2,3, \ldots$.

Questions?

