

Applied Bayesian Nonparametrics Special Topics in Machine Learning Brown University CSCI 2950-P, Fall 2011

Variational Inference for the Indian Buffet Process

 Finale Doshi-Velez*
 Kurt T. Miller*
 Jurgen Van Gael*

 Engineering Department
 Computer Science Division
 Engineering Department

 Cambridge University
 University of California, Berkeley
 Cambridge University
 Van Gael*

 Cambridge, UK
 Berkeley, CA
 Cambridge, UK

Yee Whye Teh Gatsby Unit University College London London, UK

Soravit Beer Changpinyo

November 15, 2011

Main Contributions

- Deterministic alternative to samplers for inference in the Indian Buffet Process (IBP)
- Theoretical bounds on the truncation error

Overview

Backgrounds

- The IBP and its stick-breaking construction
- Latent feature model
- Variational methods

Variational Inference for the IBP

- Finite variational approach
- Infinite variational approach
- Truncation error
- Experiments

Indian Buffet Process

Features

Griffiths and Ghahramani (2005)

The 1st customer tries Poisson(α) number of dishes

The ith customer

- takes dishes previously sampled with probability m_k/i
- tries Poisson(α/i) number of new dishes

A binary matrix generated by the Indian buffet process with $\alpha = 10$

 m_k = the number of customers who previously tried dish k

Infinite Exchangeability :

the ordering of customers does not impact distribution

Indian Buffet Process

Griffiths and Ghahramani (2005)

Distribution on equivalence classes of binary matrices

$$p([Z]) = \frac{\alpha^K}{\prod_{h \in \{0,1\}^N \setminus \mathbf{0}} K_h!} \exp\{-\alpha H_N\} \prod_{k=1}^K \frac{(N - m_k)!(m_k - 1)!}{N!}$$

N = the number of rows

- K = the number of nonzero columns
- K_h = the number of history h among columns
- m_k = the number of 1's in column k
- H_N = the Nth harmonic number

α controls

the number of features per object AND the total number of features

Indian Buffet Process

Griffiths and Ghahramani (2005)

Define equivalence class by the left-ordered form

Indian Buffet Process: Stick-breaking construction

Teh et al. (2007)

$$v_1, v_2, \cdots \stackrel{\text{i.i.d.}}{\sim} \text{Beta}(\alpha, 1)$$
$$\pi_1 = v_1$$
$$\pi_k = v_k \pi_{k-1} = \prod_{i=1}^k v_i$$

Stick lengths

$$\begin{vmatrix} & & \\ v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 & v_8 & v_9 & \dots \end{vmatrix} \Rightarrow \ \begin{vmatrix} & & & \\ \pi_1 & \pi_2 & \pi_3 & \pi_4 & \pi_5 & \pi_6 & \pi_7 & \pi_8 & \pi_9 & \dots \end{vmatrix}$$

Figure from slides of Doshi-Velez et al.

Figure from slides of Doshi-Velez et al.

This representation will show up in the infinite variational approach

Latent Feature Model

One example

Observed

Latent

Latent Feature Model

Assume Z and A are independent

The posterior distribution of Z and A:

 $p(Z, A|X) \propto p(X|Z, A)p(Z)p(A)$

Depend on applications

Latent Feature Model

Assume Z and A are independent

The posterior distribution of Z and A:

 $p(Z, A|X) \propto p(X|Z, A)p(Z)p(A)$

Depend on applications

IBP

Latent Feature Model: Linear-Gaussian likelihood model

$p(Z, A|X) \propto p(X|Z, A)p(Z)p(A)$

$$\begin{split} p(X|Z,A) &\sim \mathcal{N}(ZA,\sigma_n^2 I) \\ p(A) &\sim \mathcal{N}(0,\sigma_A^2 I) \\ p(Z) &\sim \mathrm{IBP}(\alpha) \end{split}$$

Figure from slides of Doshi-Velez et al.

Latent Feature Model:

Infinite Independent Component Analysis

Knowles and Ghahramani (2007)

Latent Feature Model:

Infinite Independent Component Analysis

Knowles and Ghahramani (2007)

Latent Feature Model: Linear-Gaussian likelihood model

- This will be our main focus
- Will discuss the infinite ICA briefly

Goal: compute Z and A given X $p(Z,A|X) \propto p(X|Z,A)p(Z)p(A)$

$$\begin{aligned} p(X|Z,A) &\sim \mathcal{N}(ZA,\sigma_n^2 I) \\ p(A) &\sim \mathcal{N}(0,\sigma_A^2 I) \\ p(Z) &\sim \mathrm{IBP}(\alpha) \end{aligned}$$

Figure from slides of Doshi-Velez et al.

Latent Feature Model: Why intractable?

Figure from slides of Doshi-Velez et al.

Variational Methods: Big Picture

- Approximate the true posterior with a variational distribution q from tractable family of distributions
- The variational distribution indexed by a set of variational parameters
- Adjust the parameters to get the *tightest* lower bound possible

Variational Inference: KL-divergence

 $W = \{ \pi, Z, A \}$ $\theta = \{ \alpha, \sigma_A^2, \sigma_N^2 \}$ $\vartheta = a \text{ vector of variational parameters}$

$$\begin{split} \log p(\mathbf{x}|\theta) &\geq & \mathbb{E}_q \left[\log p(\mathbf{W}, \mathbf{x}|\theta) \right] - \mathbb{E}_q \left[\log q(\mathbf{W}) \right] &= & \mathcal{L}(q) \\ & KL \left[q(\mathbf{w}|\vartheta) \parallel p(\mathbf{w}|\mathbf{x}, \theta) \right] &= & \log p(\mathbf{x}|\theta) - \mathcal{L}(q) \\ & \arg \max_q \mathcal{L}(q) \Leftrightarrow \arg \min_q KL \left[q(\mathbf{w}|\vartheta) \parallel p(\mathbf{w}|\mathbf{x}, \theta) \right] \end{split}$$

Variational Inference: Choosing Variational Distribution

How to choose the variational distribution q₀(w) such that the optimization of the bound is computationally tractable?

Typically, we break some dependencies between latent variables

Mean field variational approximations

Assume "fully factorized" variational distributions

$$\mathbf{q}_{\vartheta}(\mathbf{w}) = \prod_{m=1}^{M} q_{\vartheta_m}(\mathbf{w}_m)$$
where $\vartheta = (\vartheta_1, \vartheta_2, \dots, \vartheta_M)$

Mean Field Variational Inference: Finite and Infinite Variational Approaches

 $q(\boldsymbol{W}) = q_{\boldsymbol{\tau}}(\boldsymbol{\pi})q_{\boldsymbol{\phi}}(\boldsymbol{A})q_{\boldsymbol{\nu}}(\boldsymbol{Z})$

Two approaches : Finite variational approach
Infinite variational approach

Mean Field Variational Inference:

Finite and Infinite Variational Approaches

 $\arg\min_{q} KL\left[q(\mathbf{w}|\vartheta) \parallel p(\mathbf{w}|\mathbf{x},\theta)\right]$

True posterior p

Finite

Finite approximation p_K
 beta-Bernoulli model

Griffiths and Ghahramani (2005)

Variational distribution q

 $q(\boldsymbol{W}) = q_{\boldsymbol{\tau}}(\boldsymbol{\pi})q_{\boldsymbol{\phi}}(\boldsymbol{A})q_{\boldsymbol{\nu}}(\boldsymbol{Z})$

Changes according to p
Straightforward computation of lower bound and parameter updates

Infinite • Stay the same • Use stick-breaking representation Truncated stick-breaking construction
 Deal with the distribution of v insteac of π

Blei and Jordan (2004)

Mean Field Variational Inference: Finite Variational Approach

Beta-Bernoulli model – K finite (but large) truncation level

$$\begin{split} \pi_k &\sim \mathsf{Beta}(\alpha/K, 1) & \text{for } k \in \{1 \dots K\}, \\ z_{nk} &\sim \mathsf{Bernoulli}(\pi_k) & \text{for } k \in \{1 \dots K\}, n \in \{1 \dots N\}, \\ \mathbf{A}_{k\cdot} &\sim \mathsf{Normal}(0, \sigma_A^2 I) & \text{for } k \in \{1 \dots K\}, \\ \mathbf{X}_{n\cdot} &\sim \mathsf{Normal}(\mathbf{Z}_{n\cdot}\mathbf{A}, \sigma_n^2 I) & \text{for } n \in \{1 \dots N\}, \end{split}$$

This is the model before we take K to ∞

$$p_K(\boldsymbol{W}, \boldsymbol{X} | \boldsymbol{\theta}) = \prod_{k=1}^K \left(p(\pi_k | \alpha) p(\boldsymbol{A}_{k \cdot} | \sigma_A^2 I) \prod_{n=1}^N p(z_{nk} | \pi_k) \right) \prod_{n=1}^N p(\boldsymbol{X}_{n \cdot} | \boldsymbol{Z}_{n \cdot}, \boldsymbol{A}, \sigma_n^2 I)$$

Finite but still intractable

Mean Field Variational Inference: Finite Variational Approach

Beta-Bernoulli model – K finite (but large) truncation level

 $\begin{aligned} \pi_k &\sim \mathsf{Beta}(\alpha/K, 1) & \text{for } k \in \{1 \dots K\}, \\ z_{nk} &\sim \mathsf{Bernoulli}(\pi_k) & \text{for } k \in \{1 \dots K\}, n \in \{1 \dots N\}, \\ \mathbf{A}_{k} &\sim \mathsf{Normal}(0, \sigma_A^2 I) & \text{for } k \in \{1 \dots K\}, \\ \mathbf{X}_{n} &\sim \mathsf{Normal}(\mathbf{Z}_n \cdot \mathbf{A}, \sigma_n^2 I) & \text{for } n \in \{1 \dots N\}, \end{aligned}$

• Variational distribution $\ q(m{W}) = q_{m{ au}}(m{\pi}) q_{m{\phi}}(m{A}) q_{m{
u}}(m{Z})$

$$\begin{split} q_{\boldsymbol{\tau}_{k}}(\pi_{k}) &= \mathsf{Beta}(\pi_{k};\tau_{k1},\tau_{k2}), \\ q_{\boldsymbol{\phi}_{k}}(\boldsymbol{A}_{k\cdot}) &= \mathsf{Normal}(\boldsymbol{A}_{k\cdot};\bar{\boldsymbol{\phi}}_{k},\boldsymbol{\Phi}_{k}), \\ q_{\nu_{nk}}(z_{nk}) &= \mathsf{Bernoulli}(z_{nk};\nu_{nk}). \end{split}$$

Mean Field Variational Inference: Finite Variational Approach

- Variational distribution $\ q(m{W}) = q_{m{ au}}(m{\pi}) q_{m{\phi}}(m{A}) q_{m{
u}}(m{Z})$

 $q_{\boldsymbol{\tau}_{k}}(\pi_{k}) = \mathsf{Beta}(\pi_{k}; \tau_{k1}, \tau_{k2}),$ $q_{\boldsymbol{\phi}_{k}}(\boldsymbol{A}_{k\cdot}) = \mathsf{Normal}(\boldsymbol{A}_{k\cdot}; \bar{\boldsymbol{\phi}}_{k}, \boldsymbol{\Phi}_{k}),$ $q_{\boldsymbol{\nu}_{nk}}(z_{nk}) = \mathsf{Bernoulli}(z_{nk}; \nu_{nk}).$

• When the conditional distribution $p(w_i | \mathbf{w}_{-i}, \mathbf{x}, \theta)$ and variational distribution are both in exponential families, each step in coordinate ascent has a closed form solution (Beal, 2003; Wainwright and Jordan, 2008)

Mean Field Variational Inference: Infinite Variational Approach

Consider the stick-breaking construction for the IBP

$$\begin{split} v_k &\sim \mathsf{Beta}(\alpha, 1) & \text{for } k \in \{1, \dots, \infty\}, \\ \pi_k &= \prod_{i=1}^k v_i & \text{for } k \in \{1 \dots \infty\}, \\ z_{nk} &\sim \mathsf{Bernoulli}(\pi_k) & \text{for } k \in \{1 \dots \infty\}, n \in \{1 \dots N\}, \\ \mathbf{A}_{k\cdot} &\sim \mathsf{Normal}(0, \sigma_A^2 I) & \text{for } k \in \{1 \dots \infty\}, \\ \mathbf{X}_{n\cdot} &\sim \mathsf{Normal}(\mathbf{Z}_{n\cdot} \mathbf{A}, \sigma_n^2 I) & \text{for } n \in \{1 \dots N\}. \end{split}$$

Mean Field Variational Inference: Infinite Variational Approach

- Consider the stick-breaking construction for the IBP
- Work on the distribution of v instead of π because v₁, v₂, ... are independent while π_1 , π_2 , ... are not

 $q(\boldsymbol{W}) = q_{\boldsymbol{\tau}}(\boldsymbol{v})q_{\boldsymbol{\phi}}(\boldsymbol{A})q_{\boldsymbol{\nu}}(\boldsymbol{Z})$

Mean Field Variational Inference: Infinite Variational Approach

True distribution

Variational distribution

$$\begin{split} v_k &\sim \mathsf{Beta}(\alpha, 1) & \text{for } k \in \{1, \dots, \infty\}, \\ \pi_k &= \prod_{i=1}^k v_i & \text{for } k \in \{1 \dots \infty\}, \\ z_{nk} &\sim \mathsf{Bernoulli}(\pi_k) & \text{for } k \in \{1 \dots \infty\}, n \in \{1 \dots N\}, \\ \mathbf{A}_{k\cdot} &\sim \mathsf{Normal}(0, \sigma_A^2 I) & \text{for } k \in \{1 \dots \infty\}, \\ \mathbf{X}_{n\cdot} &\sim \mathsf{Norn} & \text{for } n \in \{1 \dots N\}. \end{split}$$

 $\begin{aligned} q(\boldsymbol{W}) &= q_{\boldsymbol{\tau}}(\boldsymbol{v})q_{\boldsymbol{\phi}}(\boldsymbol{A})q_{\boldsymbol{\nu}}(\boldsymbol{Z}) \\ q_{\boldsymbol{\tau}_{k}}(v_{k}) &= \mathsf{Beta}(v_{k};\tau_{k1},\tau_{k2}), \\ q_{\boldsymbol{\phi}_{k}}(\boldsymbol{A}_{k\cdot}) &= \mathsf{Normal}(\boldsymbol{A}_{k\cdot};\bar{\boldsymbol{\phi}}_{k},\Phi_{k}), \\ q_{\nu_{nk}}(z_{nk}) &= \mathsf{Bernoulli}(Z_{nk};\nu_{nk}). \end{aligned}$

Mean Field Variational Inference: Infinite Variational Approach:

Variational Lower Bound

 α

 $\frac{\log p(\mathbf{x}|\theta)}{\log p(\mathbf{x}|\theta)} \geq \mathbb{E}_{q} \left[\log p(\mathbf{W}, \mathbf{x}|\theta)\right] - \mathbb{E}_{q} \left[\log q(\mathbf{W})\right]$ $\frac{\sigma_{A}}{\sqrt{v}}$ $\frac{\sigma_{R}}{\sqrt{v}}$ $\frac{\sigma_{R}}{\sqrt{v}}$ $\frac{\sigma_{R}}{\sqrt{v}}$ $\frac{\sigma_{R}}{\sqrt{v}}$ $\frac{\sigma_{R}}{\sqrt{v}}$ $\frac{\sigma_{R}}{\sqrt{v}}$

Mean Field Variational Inference: Infinite Variational Approach: Variational Lower Bound

$$\mathbb{E}_{\boldsymbol{v},\boldsymbol{Z}}\left[\log p(z_{nk}|\boldsymbol{v})\right] = \mathbb{E}_{\boldsymbol{v},\boldsymbol{Z}}\left[\log p(z_{nk}=1|\boldsymbol{v})^{z_{nk}}p(z_{nk}=0|\boldsymbol{v})^{1-z_{nk}}\right]$$
$$= \mathbb{E}_{\boldsymbol{Z}}\left[z_{nk}\right]\mathbb{E}_{\boldsymbol{v}}\left[\log\prod_{m=1}^{k}v_{m}\right] + \mathbb{E}_{\boldsymbol{Z}}\left[1-z_{nk}\right]\mathbb{E}_{\boldsymbol{v}}\left[\log\left(1-\prod_{m=1}^{k}v_{m}\right)\right]$$
$$= \nu_{nk}\left(\sum_{m=1}^{k}\psi(\tau_{k2}) - \psi(\tau_{k1}+\tau_{k2})\right) + (1-\nu_{nk})\mathbb{E}_{\boldsymbol{v}}\left[\log\left(1-\prod_{m=1}^{k}v_{m}\right)\right]$$

Second line: definition of v

• Third line:

$$E(\log X) = \psi(\alpha) - \psi(\alpha + \beta)$$
$$X \sim Beta(\alpha, \beta)$$

Mean Field Variational Inference: Infinite Variational Approach:

Multinomial Lower Bound

$$\mathbb{E}_{\boldsymbol{v}}\left[\log\left(1-\prod_{m=1}^{k}v_{m}\right)\right] = \mathbb{E}_{\boldsymbol{v}}\left[\log\left(\sum_{y=1}^{k}(1-v_{y})\prod_{m=1}^{y-1}v_{m}\right)\right]$$
$$= \mathbb{E}_{\boldsymbol{v}}\left[\log\left(\sum_{y=1}^{k}q_{k}(y)\frac{(1-v_{y})\prod_{m=1}^{y-1}v_{m}}{q_{k}(y)}\right)\right]$$
$$\geq \mathbb{E}_{\boldsymbol{y}}\mathbb{E}_{\boldsymbol{v}}\left[\log(1-v_{y})+\sum_{m=1}^{y-1}\log v_{m}\right]+H[q_{k}]$$
$$= \mathbb{E}_{\boldsymbol{y}}\left[\psi\left(\tau_{y2}\right)+\left(\sum_{m=1}^{y-1}\psi(\tau_{m1})\right)-\left(\sum_{m=1}^{y}\psi(\tau_{m1}+\tau_{m2})\right)\right]+H[q_{k}].$$

- Third line: Jensen's inequality
- Last line:

If $X \sim \text{Beta}(a, b)$ then $1 - X \sim \text{Beta}(b, a)$

 $E(\log X) = \psi(\alpha) - \psi(\alpha + \beta)$ if $X \sim Beta(\alpha, \beta)$

Mean Field Variational Inference: Infinite Variational Approach:

Multinomial Lower Bound

$$\mathbb{E}_{\boldsymbol{v}}\left[\log\left(1-\prod_{m=1}^{k} v_{m}\right)\right] = \mathbb{E}_{\boldsymbol{v}}\left[\log\left(\sum_{y=1}^{k}(1-v_{y})\prod_{m=1}^{y-1}v_{m}\right)\right]$$
$$= \mathbb{E}_{\boldsymbol{v}}\left[\log\left(\sum_{y=1}^{k}q_{k}(y)\frac{(1-v_{y})\prod_{m=1}^{y-1}v_{m}}{q_{k}(y)}\right)\right]$$
$$\geq \mathbb{E}_{y}\mathbb{E}_{\boldsymbol{v}}\left[\log(1-v_{y})+\sum_{m=1}^{y-1}\log v_{m}\right]+H[q_{k}]$$
$$= \mathbb{E}_{y}\left[\psi\left(\tau_{y2}\right)+\left(\sum_{m=1}^{y-1}\psi(\tau_{m1})\right)-\left(\sum_{m=1}^{y}\psi(\tau_{m1}+\tau_{m2})\right)\right]+H[q_{k}].$$

Find q that maximizes this bound

$$q_{ki} \propto \exp\left(\psi(\tau_{i2}) + \sum_{m=1}^{i-1} \psi(\tau_{m1}) - \sum_{m=1}^{i} \psi(\tau_{m1} + \tau_{m2})\right)$$

- This bound gives closed form parameter updates for v
- Alternatively, we can use a Taylor series expansion of ln(1 x), which gives a tighter bound but we will no longer have closed form updates

Mean Field Variational Inference: Infinite ICA

• Same techniques:

Finite and infinite variational approaches

- Need to add variational updates for the signal matrix S
 - Use a Laplace approximation

Truncation Error

- For infinite variational approach
- Compare marginal distributions of the true IBP model and the truncated model
- Use Theorem 2 from Ishiwaran and James (2001)

$$\frac{1}{4} \int |m_{K}(\boldsymbol{X}) - m_{\infty}(\boldsymbol{X})| d\boldsymbol{X} \leq \Pr(\exists k > K, n \text{ with } z_{nk} = 1)$$

$$= 1 - \Pr(\text{all } z_{ik} = 0, i \in \{1, \dots, N\}, k > K)$$

$$= 1 - \mathbb{E}\left[\left(\prod_{i=K+1}^{\infty} (1 - \pi_{i})\right)^{N}\right]$$

$$\leq 1 - \left(\mathbb{E}\left[\prod_{i=K+1}^{\infty} (1 - \pi_{i})\right]\right)^{N}.$$

The Beta Process construction of the IBP (Thibaux and Jordan, 2007)

Model π_1 , π_2 , ... as a Poisson process on (0,1) with rate $\mu(x)dx = \alpha x^{-1}dx$ Model π_{k+1} , π_{k+2} , ... as a Poisson process on (0, π_k) with the same rate

Apply the Levy-Khintchine formula:

the moment generating function of a Poisson process X with rate μ can be written as

$$\mathbb{E}[\exp(tf(X))] = \exp\left(\int \left(\exp(tf(y)) - 1\right)\mu(y)dy\right).$$

Truncation Error

Apply the Levy-Khintchine formula:

$$\mathbb{E}\left[\left(\prod_{i=K+1}^{\infty} (1-\pi_i)\right)\right] = \mathbb{E}\left[\exp\left(\sum_{i=K+1}^{\infty} \log(1-\pi_i)\right)\right]$$
$$\left[\exp\left(\sum_{i=K+1}^{\infty} \log(1-\pi_i)\right)\right] = \mathbb{E}_{\pi_K}\left[\exp\left(\int_0^{\pi_K} (\exp(\log(1-x)) - 1)\,\mu(x)dx\right)\right]$$
$$= \mathbb{E}_{\pi_K}[\exp(-\alpha\pi_K)].$$

Apply Jensen's Inequality:

$$\mathbb{E}_{\pi_{K}}[\exp\left(-\alpha\pi_{K}\right)] \geq \exp\left(\mathbb{E}_{\pi_{k}}[-\alpha\pi_{K}]\right)$$
$$= \exp\left(-\alpha\left(\frac{\alpha}{1+\alpha}\right)^{K}\right)$$

Æ

Truncation Error: Final bound

$$\frac{1}{4}\int |m_K(X) - m_\infty(X)| dX \le 1 - \exp\left(-N\alpha \left(\frac{\alpha}{1+\alpha}\right)^K\right)$$

Grows linearly with N Decreases exponentially with K

Truncation Error

Truncation Error:

Heuristic bound using Taylor expansions

$$1 - \exp\left(-2N(\alpha+1)\left(\frac{\alpha}{\alpha+1}\right)^{K+1}\right)$$

Before:

$$1 - \exp\left(-N\alpha \left(\frac{\alpha}{1+\alpha}\right)^K\right)$$

Test log-likelihoods on synthetic data

30-minute interval, N = 500, D = 500, K = 20, 5 initializations

Truncation level vs. Time

Finite Variational
 Infinite Variational
 Uncollapsed Gibbs, Finite
 Oncollapsed Gibbs, Infinite
 Collapsed Gibbs, Infinite
 Particle Filter

Robustness to increasing dimension

D = 10, 50, 100, 500, 1000 (top to bottom), K = 20

The Effect of Dimensionality

Table 1: Running times in seconds and test loglikelihoods for the Yale Faces dataset.

Table 2: Running times in seconds and test loglikelihoods for the speech dataset.

Algorithm	K	Time	Test Likelih	Log- ood
			(×10°)	
Finite Gibbs	5	464.19	-2.250	
	25	940.47	-2.240	
Finite Variational	20	163.24	-2.247	
	10	767.1	-0.908	
	25	10072	-0.746	
Infinite Variational	5	176.62	-1.051	
	10	632.53	-0.914	
	25	19061	-0.750	

K	Time	Test Log-	
		Likelihood	
2	56	-0.7444	
5	120	-0.4220	
9	201	-0.4205	
na	186	-0.4257	
2	2477	-0.8455	
5	8129	-0.5082	
9	8539	-0.4551	
2	2702	-0.8810	
5	6065	-0.5000	
9	8491	-0.5486	
	K 2 5 9 na 2 5 9 2 5 9 2 5 9	K Time 2 56 5 120 9 201 na 186 2 2477 5 8129 9 8539 2 2702 5 6065 9 8491	

References

• For a more detailed version of the paper, see this technical report http://mlg.eng.cam.ac.uk/pub/pdf/DosMilVanTeh09b.pdf