# Stick-breaking Construction for the Indian Buffet Process

Yee Whye Teh Dilan Görür Zoubin Ghahramani

Presented by Hsin-Ta Wu 2011/11/15

### **Outlines**

- Indian Buffet Process
- Indian Buffet Process with stick-breaking construction
  - Derivation
  - Related to DP
- Slice sampling
- Semi-ordered stick-breaking
- Experiments

#### Introduction

- Indian Buffet Process (IBP)
  - A distribution over binary matrices consisting of N rows (objects) and an unbounded number of columns (features)
  - 1 and 0 in entry (i,k) indicates feature k present and absent from object i, respectively

|            | Action | Comedy | Animatic | h Brad Pitt | History | ,.· | sr |
|------------|--------|--------|----------|-------------|---------|-----|----|
| Terminator | 1      | 0      | 0        | 0           | 0       | 0   | 0  |
| Shrek      | 0      | 1      | 1        | 0           | 0       | 1   | 0  |
| Troy       | 1      | 0      | 0        | 1           | 1       | 1   | 0  |
| Avata      | 1      | 0      | 1        | 0           | 0       | 1   | 0  |

#### Introduction

- Indian Buffet Process (IBP)
  - A distribution over binary matrices consisting of N rows (objects) and an unbounded number of columns (features)
  - 1 and 0 in entry (i,k) indicates feature k present and absent from object i, respectively

|       | 2)( | 2)( | 2)( | ) (C | 7/5 | 2)( | 7)( |
|-------|-----|-----|-----|------|-----|-----|-----|
| $\Re$ | 1   | 0   | 0   | 0    | 0   | 0   | 0   |
| $\Re$ | 0   | 1   | 1   | 0    | 0   | 1   | 0   |
| $\Re$ | 1   | 0   | 0   | 1    | 1   | 1   | 0   |
| $\Re$ | 1   | 0   | 1   | 0    | 0   | 1   | 0   |

#### IBP vs. CRP

 Each object belongs to only one of infinitely many latent classes



 Each object can possess potentially any combination of infinitely many latent features.

|       | 2)( |   | 2)( |   |   | 2)( |   |
|-------|-----|---|-----|---|---|-----|---|
| $\Re$ | 1   | 0 | 0   | 0 | 0 | 0   | 0 |
| $\Re$ | 0   | 1 | 1   | 0 | 0 | 1   | 0 |
| $\Re$ | 1   | 0 | 0   | 1 | 1 | 1   | 0 |
| $\Re$ | 1   | 0 | 1   | 0 | 0 | 1   | 0 |

### Indian Buffet Process (IBP)

#### **Restaurant Construction**



Z: a random binary NxK matrix

 $\mu_k$ : prior probability that feature k presents in an object

$$\mu_{k} \sim Beta(\alpha/K, 1) \qquad \theta_{k} \sim H$$

$$z_{ik} \mid \mu_{k} \sim Bernoulli(\mu_{k}) \qquad x_{i} \sim F(z_{i,:}, \theta_{:})$$

For the first customer, the distribution over the number of features it has is: (the number of dishes he tried)

$$Binomial(\alpha/K, K)$$

when  $K \rightarrow \infty$ 

$$Poisson(\alpha)$$

### Indian Buffet Process (IBP)

#### **Restaurant Construction**

|       |   | 2)( | 2)( | 2)( | )( | 5) (<br>k | 2)( | ) ( < |
|-------|---|-----|-----|-----|----|-----------|-----|-------|
| $\Re$ |   | 1   | 0   | 0   | 0  | 0         | 0   | 0     |
| $\Re$ |   | 0   | 1   | 1   | 0  | 0         | 1   | 0     |
| $\Re$ | i | 1   | 0   | 0   | 1  | $Z_{ik}$  | 1   | 0     |
| $\Re$ |   | 1   | 0   | 1   | 0  | 0         | 1   | 0     |

Z: a random binary NxK matrix

 $\mu_k$ : prior probability that feature k presents in an object

$$\mu_{k} \sim Beta(\alpha/K, 1) \qquad \theta_{k} \sim H$$

$$z_{ik} \mid \mu_{k} \sim Bernoulli(\mu_{k}) \qquad x_{i} \sim F(z_{i,:}, \theta_{:})$$

The *i*-th customer takes portions from previously sampled dishes with probability:

$$\frac{m_{\langle i | k}}{i}$$

He can also tries  $Poisson(\alpha/i)$  new dishes.

#### Posterior Inference in IBP

- Gibbs Sampling:
  - Imagine that the object we are sampling as the last customer to the buffet.
- Iterate through i=1,...,N, for each object i,
  - Update the feature occurrences for the currently used features K<sup>+</sup>

$$p(z_{ik} = 1 | z_{-(i,k)}, x_i, \theta_{1:K^+}) \propto p(z_{ik} = 1 | z_{-(i,k)}, \theta_{1:K^+}) p(x_i | Z, \theta_{1:K^+})$$

$$\propto \frac{m_{-i,k}}{N} p(x_i | z_{i,-k}, z_{ik} = 1, \theta_{1:K^+})$$

- Add  $L_i$  new features

$$\begin{split} p(L_{i}|z_{i,1:K^{+}},x_{i},\theta_{1:K^{+}}) \\ &\propto Poisson(L_{i},\frac{\alpha}{N}) \times \int p(x_{i}|z_{i,1:K^{+}},z^{\circ}_{i,1:L_{i}}=1,\theta_{1:K^{+}},\theta^{\circ}_{1:L_{i}}) \operatorname{dh}(\theta^{\circ}_{1:L_{i}}) \\ &\propto \frac{(\frac{\alpha}{N})^{L_{i}}e^{-\frac{\alpha}{N}}}{L_{i}!} \times \int p(x_{i}|z_{i,1:K^{+}},z^{\circ}_{i,1:L_{i}}=1,\theta_{1:K^{+}},\theta^{\circ}_{1:L_{i}}) \operatorname{dh}(\theta^{\circ}_{1:L_{i}}) \end{split}$$

### Conjugacy on the IBP

When new features being introduced:

$$p(L_i|z_{i,1:K^+}, x_i, \theta_{1:K^+})$$

$$\propto Poisson(L_i, \frac{\alpha}{N}) \times \int p(x_i|z_{i,1:K^+}, z^{\circ}_{i,1:L_i} = 1, \theta_{1:K^+}, \theta^{\circ}_{1:L_i}) \operatorname{dh}(\theta^{\circ}_{1:L_i})$$

What if h is not the conjugate prior for the data likelihood  $p(x|Z,\theta)$ ?

The Integrals in equation will not be tractable.

Alternative representation of the IBP:

the feature probabilities are not integrated out

### Indian Buffet Process (IBP)

#### Stick-breaking Construction

• A decreasing ordering of  $\mu_{1:K} = \{\mu_1, ..., \mu_K\}$  :

$$\mu_{(1)} > \mu_{(2)} > \cdots > \mu_{(K)}$$

where each  $\mu_l \sim Beta(\alpha/K, 1)$ .

•  $K \rightarrow \infty$ , the  $\mu_{(k)}$ 's obey the following law:

$$\nu_{(k)} \sim Beta(\alpha, 1)$$
  $\mu_{(k)} = \nu_{(k)} \mu_{(k-1)} = \prod_{l=1}^{n} \nu_{(l)}$ 

• Metaphorical representation:



#### Derivation

• Start from  $\mu_{(1)} = \max_{l=1,...,K} \mu_l$  where each  $\mu_l$  is  $\operatorname{Beta}(\frac{\alpha}{K},1)$  and has density:

$$p(\mu_l) = \frac{\alpha}{K} \mu_l^{\frac{\alpha}{K} - 1} \mathbb{I}(0 \le \mu_l \le 1)$$

• cdf for  $\mu_l$   $F(\mu_l) = \int_{-\infty}^{\mu_l} \frac{\alpha}{K} t^{\frac{\alpha}{K} - 1} \mathbb{I}(0 \le t \le 1) dt$  $= \mu_l^{\frac{\alpha}{K}} \mathbb{I}(0 \le \mu_l \le 1) + \mathbb{I}(1 < \mu_l)$ 

• cdf for 
$$\mu(1)$$
 
$$F(\mu_{(1)}) = \left(\mu_{(1)}^{\frac{\alpha}{K}} \mathbb{I}(0 \le \mu_{(1)} \le 1) + \mathbb{I}(1 < \mu_{(1)} < \infty)\right)^{K}$$
$$= \mu_{(1)}^{\alpha} \mathbb{I}(0 \le \mu_{(1)} \le 1) + \mathbb{I}(1 < \mu_{(1)}) \tag{9}$$

• Differentiate  $p(\mu_{(1)}) = \alpha \mu_{(1)}^{\alpha - 1} \mathbb{I}(0 \le \mu_{(1)} \le 1)$ 

#### Derivation

• Considering  $\mu_{(k)}$ 's.

$$\mu_{(1)} > \mu_{(2)} > \dots > \mu_{(k)} > \mu_{(k+1)} > \mu_{(k+2)} > \dots > \mu_{(K)}$$

for each 
$$l \in \mathbf{L}_k$$
  $\mu_l \leq \min_{k' \leq k} \mu_{(k')} = \mu_{(k)}$ 

• CDF for  $\mu_l$ 

$$F(\mu_l|\mu_{(1:k)}) = \frac{\int_0^{\mu_l} \frac{\alpha}{K} t^{\frac{\alpha}{K} - 1} dt}{\int_0^{\mu_{(k)}} \frac{\alpha}{K} t^{\frac{\alpha}{K} - 1} dt}$$

 $= \mu_{(k)}^{-\frac{\alpha}{K}} \mu_l^{\frac{\alpha}{K}} \mathbb{I}(0 \leq \mu_l \leq \mu_{(k)}) + \mathbb{I}(\mu_{(k)} < \mu_l)$ 

where each  $\mu_l$  is  $\operatorname{Beta}(\frac{\alpha}{K}, 1)$  and has density:

$$p(\mu_l) = \frac{\alpha}{K} \mu_l^{\frac{\alpha}{K} - 1} \mathbb{I}(0 \le \mu_l \le 1)$$

 $\mathbf{L}_{k}$ 

#### Derivation

• CDF for  $\mu_l$ 

$$F(\mu_{l}|\mu_{(1:k)}) = \frac{\int_{0}^{\mu_{l}} \frac{\alpha}{K} t^{\frac{\alpha}{K}-1} dt}{\int_{0}^{\mu_{(k)}} \frac{\alpha}{K} t^{\frac{\alpha}{K}-1} dt}$$
$$= \mu_{(k)}^{-\frac{\alpha}{K}} \mu_{l}^{\frac{\alpha}{K}} \mathbb{I}(0 \le \mu_{l} \le \mu_{(k)}) + \mathbb{I}(\mu_{(k)} < \mu_{l})$$

• CDF for  $\mu_{(k+1)} = \max_{l \in \mathbf{L}_k} \mu_l$ 

$$F(\mu_{(k+1)}|\mu_{(1:k)})$$

$$= \mu_{(k)}^{-\frac{K-k}{K}\alpha} \mu_{(k+1)}^{\frac{K-k}{K}\alpha} \mathbb{I}(0 \le \mu_{(k+1)} \le \mu_{(k)}) + \mathbb{I}(\mu_{(k)} < \mu_{(k+1)})$$

$$\to \mu_{(k)}^{-\alpha} \mu_{(k+1)}^{\alpha} \mathbb{I}(0 \le \mu_{(k+1)} \le \mu_{(k)}) + \mathbb{I}(\mu_{(k)} < \mu_{(k+1)})$$

$$(13)$$

• Differentiate the density of  $\mu_{(k+1)}$ 

$$\begin{split} & p(\mu_{(k+1)}|\mu_{(1:k)}) \\ = & \alpha \mu_{(k)}^{-\alpha} \mu_{(k+1)}^{\alpha-1} \mathbb{I}(0 \le \mu_{(k+1)} \le \mu_{(k)}) \\ & p(\nu_{(k)}|\mu_{(1:k-1)}) = \alpha \nu_{(k)}^{\alpha-1} \mathbb{I}(0 \le \nu_{(k)} \le 1) \end{split}$$

### Relation To Dirichlet Process (DP)

#### Stick-breaking for IBP:

$$v_{(k)} \sim Beta(\alpha, 1)$$
  $\mu_{(k)} = v_{(k)} \mu_{(k-1)} = \prod_{l=1}^{k} v_{(l)}$ 



Stick-breaking for DP:

$$w_{(k)} = 1 - v_{(k)}$$
  $w_{(k)} \sim Beta(1, \alpha)$   $\pi_{(k)} = w_{(k)} \prod_{l=1}^{k-1} (1 - w_{(l)})$ 

# Relation To Dirichlet Process (DP)

- Different properties:
  - DPs: stick lengths sum to a length of 1, and not decreasing
  - IBPs: stick lengths need not sum to 1, but decreasing



The correspondence to stick-breaking in DPs implies that a range of techniques for DP can be adapted for the IBP. E.g. Pitman-Yor of the IBP, truncated stick-breaking construction

# Adapt truncated stick-breaking for the DP to the IBP

- Let K\* be the truncation level.
- Set  $\mu_{(k)} = 0$  for each  $k > K^*$  while the joint density of  $\mu_{(1:K^*)}$ :  $p(\mu_{(1:K^*)}) = \prod_{k=0}^{K^*} p(\mu_{(k)}|\mu_{(k-1)})$
- The conditional distribution of Z given  $\mu_{(1:K^*)}$ :

$$p(Z|\mu_{(1:K^*)}) = \prod_{i=1}^{N} \prod_{k=1}^{K^*} \mu_{(k)}^{z_{ik}} (1 - \mu_{(k)})^{1 - z_{ik}}$$

 Gibbs sampling in the truncated stick-breaking construction is simple to implement, however...

### Slice Sampler

- The truncated stick-breaking construction
  - Predetermined truncation level
  - Approximation scheme

- Proposing a non-approximate scheme based on SLICE Sampling.
  - Choosing the truncation level adaptively at each iteration

### Slice Sampler

- Suppose we wish to sample a new value for the variable of interest z from some distribution p(z)
- The key concept is to introduce an auxiliary variable s does not change the underlying distribution, i.e.

$$\int_{S} p(s,z)ds = p(z)$$

- Alternatively sample z and s,
  - Given z, sample s uniformly from the range  $0 \le s \le p(z)$
  - Given s, sample a new value for the variables of interest z, considering only z such that p(z) > s



Draw s

$$s|Z,\mu_{(1:\infty)} \sim \mathrm{Uniform}[0,\mu^*] \qquad \mu^* = \min\left\{1, \min_{k:\; \exists i,z_{ik}=1} \mu_{(k)}\right\}$$

μ\*: last active (used feature)

Given s, the distribution of Z:

$$\begin{split} p(Z|\mathbf{x},s,\mu_{(1:\infty)}) &\propto p(Z|\mathbf{x},\mu_{(1:\infty)}) \, p(s|Z,\mu_{(1:\infty)}) \\ &\propto p(Z|\mathbf{x},\mu_{(1:\infty)}) \frac{1}{\mu^*} \mathbb{I}(0 \leq s \leq \mu^*) \end{split}$$

We need only consider updating those features k, where  $\mu_{(k)} > s$ .

•  $z_{ik} = 0$  where  $\mu_{(k)} < s$ 

Draw s (updating s)

$$s|Z, \mu_{(1:\infty)} \sim \text{Uniform}[0, \mu^*]$$

$$\mu^* = \min \left\{ 1, \min_{k: \exists i, z_{ik} = 1} \mu_{(k)} \right\}$$

μ\*: last active (used feature)

In IBP stick-breaking:



Draw s (updating s)

$$s|Z, \mu_{(1:\infty)} \sim \text{Uniform}[0, \mu^*]$$

$$\mu^* = \min \left\{ 1, \min_{k: \exists i, z_{ik} = 1} \mu_{(k)} \right\}$$

μ\*: last active (used feature)

• In IBP stick-breaking:



Draw s (updating s)

$$s|Z, \mu_{(1:\infty)} \sim \text{Uniform}[0, \mu^*]$$

$$s|Z,\mu_{(1:\infty)} \sim \mathrm{Uniform}[0,\mu^*] \qquad \mu^* = \min\left\{1,\min_{k:\;\exists i,z_{ik}=1}\mu_{(k)}\right\}$$

μ\*: last active (used feature)

In IBP stick-breaking:



Draw s (updating s)

$$s|Z, \mu_{(1:\infty)} \sim \text{Uniform}[0, \mu^*]$$

$$s|Z,\mu_{(1:\infty)} \sim \mathrm{Uniform}[0,\mu^*] \qquad \mu^* = \min\left\{1, \min_{k:\; \exists i,z_{ik}=1} \mu_{(k)}\right\}$$

μ\*: last active (used feature)

In IBP stick-breaking:



#### Updating **Z**

Given s, we only update z<sub>ik</sub> for each i
and k ≤ K\*

$$p(z_{ik} = 1 | \text{rest}) \propto \frac{\mu_{(k)}}{\mu^*} f(x_i | z_{i, \neg k}, z_{ik} = 1, \theta_{1:K^{\dagger}})$$

μ\*: last active (used feature)

#### Updating $\theta_{\mathbf{k}}$

• for *k*=1,...,K<sup>+</sup>

$$p(\theta_k|\mathrm{rest}) \propto h(\theta_k) \prod_{i=1}^N f(x_i|z_{i,1:K^\dagger}, \theta_{\lnot k}, \theta_k)$$

### Updating $\mu_{(k)}$

• for  $k=1,...,K^+-1$  (Active features)

$$p(\mu_{(k)}|\text{rest}) \propto \mu_{(k)}^{m_{\cdot k}-1} (1 - \mu_{(k)})^{N-m_{\cdot k}}$$
$$\mathbb{I}(\mu_{(k+1)} \leq \mu_{(k)} \leq \mu_{(k-1)})$$

$$m_{\cdot k} = \sum_{i=1}^{N} z_{ik}$$

• For k=K<sup>+</sup> (Inactive features)

$$p(\mu_{(k)}|\mu_{(k-1)}, z_{:,>k} = 0) \propto \exp(\alpha \sum_{i=1}^{N} \frac{1}{i} (1 - \mu_{(k)})^{i})$$
$$\mu_{(k)}^{\alpha - 1} (1 - \mu_{(k)})^{N} \mathbb{I}(0 \le \mu_{(k)} \le \mu_{(k-1)})$$

### Change of Representations

- IBP ignoring the ordering on features;
- Stick-breaking IBP enforcing an ordering with decreasing weights.
- Stick-breaking IBP to IBP:
  - Drop the stick lengths and the inactive features,
  - leaving only the K<sup>+</sup> active feature columns along with the corresponding parameters.
- IBP to stick-breaking IBP:
  - Draw both the stick lengths and order the features in decreasing stick lengths,
  - Introducing inactive features K° into the representation

### IBP to stick-breaking IBP

- We have K<sup>+</sup> active features in the IBP,
  - Feature occurrence matrix: Z<sub>1:N.1:K+</sub>
  - Suppose we have K >> K<sup>+</sup> features
  - For the active features, the posterior for the lengths are

$$\mu_k^+|z_{:,k} \sim \text{Beta}(m_{\cdot,k}, 1+N-m_{\cdot,k})$$

- For the rest of the K-K<sup>+</sup> inactive features
  - Consider only those inactive features with stick lengths larger than  $\min_{\mathbf{k}}\;\mu_{\,\mathbf{k}}^{\,+}$
- Reorder  $\mu^+_{(1:K+)}$ ,  $\mu^\circ_{(1:K^\circ)}$  in decreasing order

$$\mu_{(1)}\,,\mu_{(2)}\,,\ldots,\mu_{(k)}$$

$$\mu_{(k+1)} > \mu_{(k+2)} > \dots > \mu_{(K)}$$

# Semi-ordered Stick-breaking

•  $\mu_{k}$  on active features are **unordered** and draw from the following distribution:

$$\mu_k^+|z_{:,k} \sim \text{Beta}(m_{\cdot,k}, 1+N-m_{\cdot,k})$$

 The stick length on inactive feature is similar to the stick-breaking IBP:

$$p(\mu_{(k)}^{\circ}|\mu_{(k-1)}^{\circ}, z_{:,>k} = 0) \propto \exp(\sum_{i=1}^{N} \frac{1}{i} (1 - \mu_{(k)}^{\circ})^{i}))$$
$$(\mu_{(k)}^{\circ})^{\alpha - 1} (1 - \mu_{(k)}^{\circ})^{N} \mathbb{I}(0 \le \mu_{(k)}^{\circ} \le \mu_{(k-1)}^{\circ})$$
(31)

- The auxiliary variable s determines how many inactive features need to add  $s \sim \text{Uniform}[0, \mu^*] \quad \mu^* = \min \left\{ 1, \min_{1 < k < K^+} \mu_k^+ \right\} \quad (32)$
- Drop from the list of active features any that become inactive and add to the list any inactive feature that became active
- New list of active features are drawn from

$$\mu_k^+|z_{:,k} \sim \text{Beta}(m_{\cdot,k}, 1+N-m_{\cdot,k})$$

#### Results

 Use the conjugate linear-Gaussian binary latent feature model for comparing the performance of the different samplers.



#### Demonstration

 Apply semi-ordered slice sampler to 1000 examples of handwritten images of 3's in the MNIST dataset.







Figure 3: *Top-left*: the log likelihood trace plot. The sampler quickly finds a high likelihood region. *Top-right*: histogram of the number of active features over the 10000 iterations. *Bottom-left*: number of images sharing each feature during the last MCMC iteration. *Bottom-right*: histogram of the number of active features used by each input image. Note that about half of the features are used by only a few data points, and each data point is represented by a small subset of the active features.

#### Conclusions

Derived novel stick-breaking representations of the IBP

 New MCMC samplers are proposed based on the new representations.

The new samplers show as efficient as Gibbs without using conjugacy.