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Introduction

* Indian Buffet Process (IBP)

— A distribution over binary matrices consisting of N rows
(objects) and an unbounded number of columns (features)

— 1 and 0 in entry (i, k) indicates feature k present and absent
from object i, respectively
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Introduction

* Indian Buffet Process (IBP)

— A distribution over binary matrices consisting of N rows
(objects) and an unbounded number of columns (features)

— 1 and 0 in entry (i, k) indicates feature k present and absent
from object i, respectively
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IBP vs. CRP

* Each object belongs to only one of infinitely many latent

classes
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 Each object can possess potentially any combination of
infinitely many latent features.
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Indian Buffet Process (IBP)

Restaurant Construction

Qg s s e s s
I - 0 0 0 0 0 0
N o By B
5 0 o B
Z: arandom binary NxK matrix
U, : prior probability that feature k presents in an object

ux~Beta(* /i, 1) 6, ~H
Zix | e ~Bernoulli(uy,) xi~F(z;.,6.)

For the first customer, the distribution over the number of

features it has is: (the number of dishes he tried)
Binomial (“/K , K)

when K—oo

Poisson(a)



Indian Buffet Process (IBP)

Restaurant Construction

Qg s s e s s
I - 0 0 0 0 0 0
N o By B

Z: arandom binary NxK matrix

U, : prior probability that feature k presents in an object

ux~Beta(* /i, 1) 6, ~H
Zix | e ~Bernoulli(uy,) xi~F(z;.,6.)

The i-th customer takes portions from previously sampled

dishes with probability:
Mgk

[

He can also tries POiSSOTL(“/l-) new dishes.



Posterior Inference in IBP

* Gibbs Sampling:

— Imagine that the object we are sampling as the last customer to the buffet.

* lterate through i=1,..,,N, for each object |,

— Update the feature occurrences for the currently used features K*

p(Zik = 1|Z_(i’k),xi,91:K+) X p(Zik = 1|Z—(i,k)101;1{+)p(xi |Z, 81:K+)

m-ik
N

0.4

P(xi|Zi -k, Zi = 1,01.+)
— Add L;new features
p(Lilzi,l:K""xi' 01:K+)
a
X Poisson(Li,N)x fp(xi|zi,1:K+,Z°i'1:Li =1, 91:K+’901:Li) dh(eomi)
A, -=
() e™n

L

X Jp(xilzi,1;1<+: Zoi,l:Li =1, 81:K+' Hol:Li) dh(gol:Li)



Conjugacy on the IBP

 When new features being introduced:
p(Lilzi,1:K+rxi»91:K+)
x Poisson(Li,%)X jp(xi|Zi,1;K+,Z°i,1;Li = 1,0, x+ 6°1.,) dh(6°:.,,)

What if h is not the conjugate prior for the data likelihood p(x|Z, 6) ?
The Integrals in equation will not be tractable.

Alternative representation of the IBP:
 the feature probabilities are not integrated out



Indian Buffet Process (IBP)

Stick-breaking Construction

A decreasing ordering of U1.x = Uy, o g}

Hay = He) = 2 Hao
where each w~Beta(%/,,1) .

K—oo, the H(k) 's obey the following law:
k

va~Betala, 1) bgy = Vaole-1) = HV(D

=1
Metaphorical representation:

H)
H2)
H(3)
H(4a)
H(s)




Derivation

Start from Hm = hax, where each 1 is Beta( 4, 1) and has density:

plur) = }—};1,1}%_11[(0 <pu <1
Fel
cdf for Hu F(u) = / AR IO <t < 1) dt

= ,u,”%]I(O <y < 1)+ I(1 <)
_ . a n . A\ K
cdf for H(1)  F(uy) = (ﬂ.(q)ﬂ(o < D +I(L < gy < x))

= pu(pl0 < py = 1) + (1 < py) )

Differentiate  p(j1(1)) = apf 10 < gy < 1)



Derivation

e Considering HK(k)s-

Ly

Hay = He) = 2 W)

>

Hie+1) = Hik+2) = > W)

foreachl € L, f < min

k' <

e CDF for

k

K(k) = (k)

where each yi; is Beta( 7, 1) and has density:

o
K 1

plur) = zepys 1O < <1)

7 o
Jo ' stxThdt

F(u|par) = fB
0

(k) o]
%tK dt

=pgy 110 < i < pwy) + Lpwy < )



Derivation

St atx—tat
CDF fOr Al (/»Ll|p’(1 k)) = foﬂ(k) oy g—1 gy

=ty # 10 < < pgy) + Ly < )

CDF for H(k+1) = MaXjeL; Hi
F(#(k+1) |M(1 k)) (13)

Kk Kk:

=“(_l‘c) “(k+1) H(O S Br+1) S ﬂ(k)) + H(,U(k) < M(k+1))
—’Nﬁgﬂ(ml)ﬂ(o < k1) < pery) + 1) < pe+1))

Differentiate the density of K(k+1)
P(K(k+1) l(1:k))
—a,u(k) N(k+1)][(0 < Hkt1) S .U(k))

Pk [1k-1)) = av(jo 10 < vy < 1)



Relation To Dirichlet Process (DP)

 Stick-breaking for IBP:

k
vao~Betala, 1) Hao = Vaoka-1 = HVU)
1=1
“’(1) ...................................
U2 n(z) ..... ()
KS; ............................. TU3)
W(s) H—peeee TT4) Ty = Hek-1) — Hek)
:]:R(S) — oy
He® TT6) = Hk-1) (K HEK-1)
— (1 - V(k)),u(k 1)
* Stick-breaking for DP: = (=va) | Jvo

W) = 1-— V(k) W(k) ~Beta(1, CZ) TTky = W) 1_[(1 — W(l))



Relation To Dirichlet Process (DP)

* Different properties:
— DPs: stick lengths sum to a length of 1, and not

decreasing
— IBPs: stick lengths need not sum to 1, but
decreasing )
(1) e s e 'u(k) — v(k)nu'(k—l) = l_Iv(l)
) e ) 1 I=1
S\ NS V————— T2)
354; ............................. TU3) TTky = W) 1_[(1 — W(l))
u(s)j_ ....... T0@) To1
W) .&.‘:.(.6.)3'6(5)

The correspondence to stick-breaking in DPs implies that a range of
techniques for DP can be adapted for the IBP. E.g. Pitman-Yor of the
IBP, truncated stick-breaking construction



Adapt truncated stick-breaking
for the DP to the IBP

Let K* be the truncation level.
Set p, = 0 for each k > K* while the joint density

Of Wy i+
( ) (M(LK *) HP M(k)|#(k 1))
k=1

The conditional distribution of Z given ;. «:
N K~*

p(Z|p1:x+y) HH“(k) 1 — pugy) 7k

i=1 k=1

Gibbs sampling in the truncated stick-breaking
construction is simple to implement, however...



Slice Sampler

* The truncated stick-breaking construction
— Predetermined truncation level
— Approximation scheme

* Proposing a non-approximate scheme based
on SLICE Sampling.

— Choosing the truncation level adaptively at each
iteration



Slice Sampler

Suppose we wish to sample a new value for the variable of interest z from
some distribution p(z)

The key concept is to introduce an auxiliary variable s does not change the
underlying distribution, i.e.

J p (s,z)ds = p(2)
Alternatively sample z and s,
— Given z, sample s uniformly from the range 0 <s < p(z2)

— Given s, sample a new value for the variables of interest z, considering only z
such that p(z) > s

p(z)




Slice Sampler for IBP

* Draw s

S|Z,/.L(1:x) ~ Uniform[O, /.L*] ©* = min {1, y afi{lgﬁzl N(k)}

p*: last active (used feature)

* Given s, the distribution of Z:

p(Z|X, Sy /'L(l:oo)) X p(lea /-L(lzoo)) p(S|Z, /J'(lzoo))

X p(lea /-L(l:oo)) #H(OS S Sﬂ’*)

We need only consider updating those features k,
where L, > s.
" z,,=0 where p,<s



Slice Sampler for IBP

* Draw s (updating s)

S|Z,/.L(1:x) ~ Uniform[O, /.L*] ©* = min {1, y afi{lgﬁzl N(k)}

p*: last active (used feature)
. . . —— Active (used) features (dishes)
¢ I n I B P Stl C k_ b re a kl n g . Inactive (unused) features (dishes)

Hay = He) = > U

(€Y
€
K@)
O
Kes) : : .
He) | K*: maximal feature index with where . > s.

che 3 Only consider updating those features k < K*,
s " 7, =0 fork>K*,i.e. y<s




Slice Sampler for IBP

* Draw s (updating s)

S|Z,/.L(1:x) ~ Uniform[O, /.L*] ©* = min {1, y afi{lgﬁzl N(k)}

p*: last active (used feature)
. . . —— Active (used) features (dishes)
¢ I n I B P Stl C k_ b re a kl n g . Inactive (unused) features (dishes)

Hay = He) = > U

H(1)
H(2)
H(3)
Kt Hw

Z(S) K*: an index such that all used features have index k < K*
6

— If the new value of s makes K* > K*, i.e. s <y, .-
S

K#= 5



K+

K+

Slice Sampler for IBP

Draw s (updating s)

p*: last active (used feature)
. . . —— Active (used) features (dishes)
I n I B P Stl C k_ b re a kl n g . Inactive (unused) features (dishes)

Hay = He) = > U

M)
H(2)
H(3)
H(a)
H(5) s
Hey

Introducing new features!

S

K#= 5



K+

K+

Slice Sampler for IBP

Draw s (updating s)

8|Z, pi(1:00) ~ Uniform|[0, p”] p©* = min {1, min 1'u(k)}

k: Eii,z.ikz

p*: last active (used feature)

In IBP stick-breaking: == face oo festures tanes

Hay = He) = > U

H(1)
H(2)
H(3)
H(a)
H(s)
He)

S

K*=5

What'’s the stick lengths 1, for the new features k?
PR | (e—1), 2,5k = 0) < exp(a Yoie; (1 — pewy)?)
il (1= ne) VIO < pgy < pip-1))

Use ARS to draw samples from the distribution.
Columns z,,=0 and parameters 6, ~ H



Slice Sampler for IBP

Updating Z

* Given s, we only update z, for each i
and k < K*

k
p(zix = 1|rest) %f(xﬂzi,ﬂka zik = 1,01.1)

K*: last active (used feature)
Updating 6,
 for k=1,...K*

N
p(Ox|rest) oc h(Ok) | | £(wilzi1:x1, 0k, Ok)

1=1



Slice Sampler for IBP

Updating p
o for k=1,...,K+-1 (Active features )

]\7—777,.;C

P(p(ry Irest) ocpy ™ (1= i)
]I(/,L(k+1) Sﬂ(k) S,U(k—l))

M. = Zf\;l “ik

e For k=K* (Inactive features )
P(N(k)|ﬂ(k—1), 2>k = 0) o exp(a Zﬁvﬂ %(1 - M(k))i)

a—1

Hor (1 - N(k))NH(O < (k) < ,U(k—l))



Change of Representations

IBP —ignoring the ordering on features;
Stick-breaking IBP — enforcing an ordering with decreasing
weights.

Stick-breaking IBP to IBP:
— Drop the stick lengths and the inactive features,
— leaving only the K* active feature columns along with the
corresponding parameters.

IBP to stick-breaking IBP:
— Draw both the stick lengths and order the features in decreasing

stick lengths,
— Introducing inactive features K° into the representation



IBP to stick-breaking IBP

 We have K* active features in the IBP,
— Feature occurrence matrix: Zy. ;.4
— Suppose we have K >> K* features
— For the active features, the posterior for the lengths are

pi 1z ~ Beta(m. ., 1+ N —m. 1)

— For the rest of the K-K* inactive features

* Consider only those inactive features with stick lengths larger than
min, (£,

— Reorder (¥ .4y, I (1 In decreasing order

Ko K2y » = Kk Hie+1) = Hik+2) = > W)




Semi-ordered Stick-breaking

\F on active features are unordered and draw from the following

distribution:
/,1‘2_|,:<:.]‘. ~ Beta(m. p, 1+ N —m. )

The stick length on inactive feature is similar to the stick-breaking

IBP: , N o
P(H iy 1 (k—1ys 758 = 0) o exp(Riy (1 — p1(y)%))

(1)L = p ) VIO < gy < pgiyy) 3D

The auxiliary variable s determines how many inactive features

need to add B . [ . n

s ~ Uniform[0, £*] p* = min { 1, min g (32)
1<k<K+ "

Drop from the list of active features any that become inactive and

add to the list any inactive feature that became active

New list of active features are drawn from

i Lk ~ Beta(m., 1+ N = m. )



Results

Use the conjugate linear-Gaussian binary
latent feature model for comparing the
performance of the different samplers.

e | & i
> 10° | | |
£ E I
X [ | l
£ 1' 1 l |
105— I |
|

Stick—-Breaking Semi-Ordered Gibbs Sampling



Demonstration

* Apply semi-ordered slice sampler to 1000
examples of handwritten images of 3’s in the
MNIST dataset.
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Figure 3: Top-left: the log likelihood trace plot. The sam-
pler quickly finds a high likelihood region. Top-right: his-
togram of the number of active features over the 10000 iter-
ations. Bottom-left: number of images sharing each feature
during the last MCMC iteration. Bottom-right: histogram
of the number of active features used by each input image.
Note that about half of the features are used by only a few
data points, and cach data point is represented by a small
subset of the active features.
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Conclusions

* Derived novel stick-breaking representations
of the IBP

* New MCMC samplers are proposed based on
the new representations.

 The new samplers show as efficient as Gibbs
without using conjugacy.



