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DP vs. BP

Dirichlet Process

G ∼ DP(αB0):

G =
∞∑

i=1

πiδψi
,

∞∑

i=1

πi = 1

CRP - marginalize out πi

Clustering framework

Beta Process

G ∼ BP(θ, γB0):

G =
∞∑

i=1

qiδψi
, qi ∈ (0, 1)

IBP - marginalize out qi

Featural framework
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Poisson Point Process (PPP)

PPP: A counting measure N such that
∀A ∈ S,N(A) ∼ Pois(µ(A))

Figure: PPP realizations with different rate measure µ

PPP is a completely random measure because for all disjoint
subsets A1, ...,An ∈ S, N(A1), ...,N(An) are independent.

Note: DP is not a c.r.m..
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Beta Process: B ∼ BP(θ, γB0)

BP is defined by a PPP that lives on Ψ× [0, 1]

Rate measure: ν(dψ, du) = θ(ψ)u−1(1− u)θ(ψ)−1duγB0(dψ)

To draw B ∼ BP(θ, γB0)

=⇒ Π = {(ψi ,Ui )}i
=⇒ B =

∑∞
i=1 Uiδψi

Beta process B ∼ BP(α, B0)

νBP(dθ, du) = αu−1(1 − u)α−1 du B0(dθ), θ ∈ Θ, u ∈ [0, 1]

Aside: Poisson processes

0

0
.5

1

ΘΘ

Π = {(θi, Ui)}i⇒ ⇒ B =

∞�

i=1

Uiδθi

(Hjort, 1990; Thibaux, Jordan, 2007)
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Bernoulli process & Binary feature matrix

Y ∼ BeP(B): Y =
∑∞

i=1 biδψi
, where bi ∼ Bern(Ui )

Draw Y1, ...,YN ∼ BeP(B)
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Figure 2: Upper left: A draw B from the beta process. Lower left: 50 draws
from the Bernoulli process BeP (B). The vertical axis indexes the draw number
among the 50 exchangeable draws. A point indicates a one at the corresponding
location on the horizontal axis, ψ ∈ Ψ. Right: We can form a matrix from the
lower left plot by including only those ψ values with a non-zero number of
Bernoulli successes among the 50 draws from the Bernoulli process. Then, the
number of columns K is the number of such ψ, and the number of rows N is
the number of draws made. A black square indicates a one at the corresponding
matrix position; a white square indicates a zero.
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lof

Figure 2: Binary matrices and the left-ordered form. The binary ma-
trix on the left is transformed into the left-ordered binary matrix on the right
by the function lof(·). This left-ordered matrix was generated from the ex-
changeable Indian buffet process with α = 10. Empty columns are omitted
from both matrices.

lof(·) is a many-to-one function: many binary matrices reduce to the same left-
ordered form, and there is a unique left-ordered form for every binary matrix. We
can thus use lof(·) to define a set of equivalence classes. Any two binary matrices
Y and Z are lof-equivalent if lof(Y) = lof(Z), that is, if Y and Z map to the same
left-ordered form. The lof-equivalence class of a binary matrix Z, denoted [Z],
is the set of binary matrices that are lof-equivalent to Z. lof-equivalence classes
are preserved through permutation of either the rows or the columns of a matrix,
provided the same permutations are applied to the other members of the equivalence
class. Performing inference at the level of lof-equivalence classes is appropriate in
models where feature order is not identifiable, with p(X|F) being unaffected by the
order of the columns of F. Any model in which the probability of X is specified in
terms of a linear function of F, such as PCA or CVQ, has this property.

We need to evaluate the cardinality of [Z], being the number of matrices that map
to the same left-ordered form. The columns of a binary matrix are not guaranteed
to be unique: since an object can possess multiple features, it is possible for two
features to be possessed by exactly the same set of objects. The number of matrices
in [Z] is reduced if Z contains identical columns, since some re-orderings of the
columns of Z result in exactly the same matrix. Taking this into account, the
cardinality of [Z] is

„

K
K0 . . . K2N −1

«

=
K!

Q2N −1
h=0 Kh!

, (9)

where Kh is the count of the number of columns with full history h.
The binary matrix Z can be thought of as a generalization of class matrices

used in defining mixture models; since each object can only belong to one class,
class matrices have the constraint

P

k zik = 1, whereas the binary matrices in latent
feature models do not have this constraint (Griffiths and Ghahramani, 2005).

3.3. Taking the infinite limit

Under the distribution defined by Equation 7, the probability of a particular lof-
equivalence class of binary matrices, [Z], is

P ([Z]) =
X

Z∈[Z]

P (Z) =
K!

Q2N −1
h=0 Kh!

K
Y

k=1

α
K

Γ(mk + α
K

)Γ(N − mk + 1)

Γ(N + 1 + α
K

)
. (10)

[Ghahramani et al ’06]
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Stick-breaking construction of BP

In the clustering framework, we considered N draws from a process that put
exactly one mass of size one on some value in Ψ and mass zero elsewhere. In
the featural framework we consider N draws from a process that places some
non-negative integer number of masses, each of size one, on an almost surely
finite set of values in Ψ and mass zero elsewhere. As Ni was the sum of masses
at a point labeled ψi ∈ Ψ in the clustering framework, so do we now let Ni be
the sum of masses at a point labeled ψi ∈ Ψ. We use the same notation as in
Section 4.1, but now we note that the counts Ni no longer sum to N in general.

In the case of featural models, we can still talk about Type I and II power
laws, both of which have the same interpretation as in the case of clustering
models. In the featural case, however, it is also possible to consider a third type
of power law. If we let kn denote the number of features present in the nth
draw, we say that kn shows power law behavior if

P(kn > M) ∼ cM−a

for positive constants c and a. We call this last type of power law Type III.

5 Stick-breaking for the beta process

The weights {qi} for the beta process can be derived by a variety of procedures,
including size-biased sampling [Thibaux and Jordan, 2007] and inverse Lévy
measure [Wolpert and Ickstadt, 2004, Teh et al., 2007]. The procedures that are
closest in spirit to the stick-breaking representation for the Dirichlet process are
those due to Paisley et al. [2010] and Teh et al. [2007]. Our point of departure
is the former, which has the following form:

B =

∞∑

i=1

Ci∑

j=1

V
(i)
i,j

i−1∏

l=1

(1 − V
(l)
i,j )δψi,j

Ci
iid∼ Pois(γ)

V
(l)
i,j

iid∼ Beta(1, θ)

ψi,j
iid∼ 1

γ
B0. (13)

This representation is analogous to the stick-breaking representation of the
Dirichlet process in that it represents a draw from the beta process as a sum
over independently drawn atoms, with the weights obtained by a recursive pro-

cedure. However, it is worth noting that for every (i, j) tuple subscript for V
(l)
i,j ,

a different stick exists and is broken across the superscript l. Thus, there are no
special additive properties across weights in the sum in Eq. (13); by contrast,
the weights in Eq. (12) sum to one almost surely.

The generalization of the one-parameter Dirichlet process to the two-parameter
Pitman-Yor process suggests that we might consider generalizing the stick-

11

(Paisley et al 2010):

B =
C1∑

j=1

V
(1)
1,j δψ1,j +

C2∑

j=1

V
(2)
2,j (1− V

(1)
ij )δψ2,j +

C3∑

j=1

V
(3)
3,j (1− V

(2,)
3,j )(1− V

(1)
3,j )δψ3,j + ...

Think of each i as a “round”

It is “a multiple of stick-breaking DP”
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Three parameter generalization

3 parameter stick-breaking (“a multiple of Pitman-Yor”)
breaking representation of the beta process in Eq. (13) as follows:

B =

∞∑

i=1

Ci∑

j=1

V
(i)
i,j

i−1∏

l=1

(1 − V
(l)
i,j )δψi,j

Ci
iid∼ Pois(γ)

V
(l)
i,j

indep∼ Beta(1 − α, θ + iα)

ψi,j
iid∼ 1

γ
B0. (14)

In Section 6 we will show that introducing the additional parameter α indeed
yields Type I and II power law behavior (but not Type III).

In the remainder of this section we present a proof that these stick-breaking
representations arise from the beta process. In contradistinction to the proof
of Eq. (13) by Paisley et al. [2010], which used a limiting process defined on
sequences of finite binary matrices, our approach makes a direct connection to
the Poisson process characterization of the beta process. Our proof has several
virtues: (1) it relies on no asymptotic arguments and instead comes entirely from
the Poisson process representation; (2) it is, as a result, simpler and shorter;
and (3) it demonstrates clearly the ease of incorporating a third parameter
analogous to the discount parameter of the Pitman-Yor process and thereby
provides a strong motivation for the extended stick-breaking representation in
Eq. (14).

Aiming toward the general stick-breaking representation in Eq. (14), we
begin by defining a three-parameter generalization of the beta process.3 We say
that B ∼ BP(θ, α, B0), where we call α a discount parameter, if, for ψ ∈ Ψ, u ∈
[0, 1]), we have

νBP(dψ, du) =
Γ(1 + θ)

Γ(1 − α)Γ(θ + α)
u−1−α(1 − u)θ+α−1 du B0(dψ). (15)

It is straightforward to show that this three-parameter density has similar
properties to that of the two-parameter beta process. For instance, choosing
α ∈ (0, 1) and θ > −α is necessary for the beta process to have finite total mass
almost surely; in this case,

∫

Ψ×R+

u νBP(dψ, du) =
Γ(1 − α)Γ(θ + α)

Γ(1 + θ)
< ∞. (16)

We now turn to the main result of this section.

Proposition 1. B can be represented according to the process described in
Eq. (14) if and only if B ∼ BP(θ, α, B0).

3See also Teh and Görür [2009] or Kim and Lee [2001], with θ(t) ≡ 1 − α, β(t) ≡ θ + α,
where the left-hand sides are in the notation of Kim and Lee [2001].

12

3 parameter BP(θ, α,B0). Rate measure:

νBP(dψ, du) =Bo(dψ)× µBP(du)

=Bo(dψ)× Γ(1 + θ)

Γ(1− α)Γ(θ + α)
u−1−α(1− u)θ+α−1du
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Equivalence – An elegant proof

Proposition 1

B presented in the stick-breaking construction is equivalent to
B ∼ BP(θ, α,B0)

Idea of proof:

The stick-breaking representation is also a PPP, and induces
rate measure ν

Therefore only need to show that ν = νBP
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Power law behavior:

Power laws in clustering models:

KN,j =
∑∞

i=1 I (Ni = j)

KN =
∑∞

i=1 I (Ni > 0)

Type 1: KN ∼ cNa,N →∞
Type 2: KN,j ∼ aΓ(j−a)

j!Γ(1−a)cN
a,N →∞

Power laws in featural models:

Type 3: P(kn > M) ∼ cM−a
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Power law derivations: Type 1 and 2
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Power law derivations: Poissonization

K (t) will be the number of such Poisson processes with points in
the interval [0, t]

K (t) =
∑

i I |Πi
⋂

[0, t]| > 0

Kj(t) will be the number of such Poisson processes with j points in
the interval [0, t]

Kj(t) =
∑

i I |Πi
⋂

[0, t]| = j
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Power law derivations
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Power law derivations: Type 1 and 2
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Power law derivations: Type 3
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Simulation

α = 0 (classic), α = 0.3 and α = 0.6; γ = 3, θ = 1.

Generate 2000 random variables Ci and
∑2000

i=1 Ci feature
probabilities.

With these probabilities, we generated N = 1000 data points,
i.e., 1000 vectors of (2000) independent Bernoulli random
variables.
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Simulation: Type 1 & 2
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Simulation: Type 3
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Experimental results

Beta process coupled with a discrete factor analysis model.

Handwritten digit: 28x28 pixels projected into 50 dimensions
with PCA.
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Conclusions

(BP, stick-breaking, IBP) – (DP, stick-breaking, CRP)

Three-parameter generalization of BP – Pitman-Yor
generalization of DP

Type 1 & 2 power laws follow from the three-parameter
model.

Type 3: an open problem to discover new class of stochastic
process.
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