Beta processes, stick-breaking, and power laws

T. Broderick, M. Jordan, J. Pitman

Presented by Jixiong Wang \& J. Li

November 17, 2011

- Dirichlet Process
- Beta Process
- Dirichlet Process
- $G \sim D P\left(\alpha B_{0}\right)$:
- Beta Process
- $G \sim B P\left(\theta, \gamma B_{0}\right)$:

$$
G=\sum_{i=1}^{\infty} \pi_{i} \delta_{\psi_{i}}, \quad \sum_{i=1}^{\infty} \pi_{i}=1
$$

$$
G=\sum_{i=1}^{\infty} q_{i} \delta_{\psi_{i}}, \quad q_{i} \in(0,1)
$$

DP vs. $B P$

- Dirichlet Process
- $G \sim D P\left(\alpha B_{0}\right)$:

$$
G=\sum_{i=1}^{\infty} \pi_{i} \delta_{\psi_{i}}, \quad \sum_{i=1}^{\infty} \pi_{i}=1
$$

- CRP - marginalize out π_{i}
- Beta Process
- $G \sim B P\left(\theta, \gamma B_{0}\right)$:

$$
G=\sum_{i=1}^{\infty} q_{i} \delta_{\psi_{i}}, \quad q_{i} \in(0,1)
$$

- IBP - marginalize out q_{i}

DP vs. $B P$

- Dirichlet Process
- $G \sim D P\left(\alpha B_{0}\right)$:

$$
G=\sum_{i=1}^{\infty} \pi_{i} \delta_{\psi_{i}}, \quad \sum_{i=1}^{\infty} \pi_{i}=1
$$

- CRP - marginalize out π_{i}
- Clustering framework
- Beta Process
- $G \sim B P\left(\theta, \gamma B_{0}\right)$:

$$
G=\sum_{i=1}^{\infty} q_{i} \delta_{\psi_{i}}, \quad q_{i} \in(0,1)
$$

- IBP - marginalize out q_{i}
- Featural framework

Poisson Point Process (PPP)

- PPP: A counting measure N such that $\forall A \in \mathcal{S}, N(A) \sim \operatorname{Pois}(\mu(A))$

Poisson Point Process (PPP)

- PPP: A counting measure N such that $\forall A \in \mathcal{S}, N(A) \sim \operatorname{Pois}(\mu(A))$

Figure: PPP realizations with different rate measure μ

Poisson Point Process (PPP)

- PPP: A counting measure N such that $\forall A \in \mathcal{S}, N(A) \sim \operatorname{Pois}(\mu(A))$

Figure: PPP realizations with different rate measure μ

- PPP is a completely random measure because for all disjoint subsets $A_{1}, \ldots, A_{n} \in \mathcal{S}, N\left(A_{1}\right), \ldots, N\left(A_{n}\right)$ are independent.
- Note: DP is not a c.r.m..

Beta Process: $B \sim B P\left(\theta, \gamma B_{0}\right)$

BP is defined by a PPP that lives on $\Psi \times[0,1]$

- Rate measure: $\nu(d \psi, d u)=\theta(\psi) u^{-1}(1-u)^{\theta(\psi)-1} d u \gamma B_{0}(d \psi)$

Beta Process: $B \sim B P\left(\theta, \gamma B_{0}\right)$

BP is defined by a PPP that lives on $\Psi \times[0,1]$

- Rate measure: $\nu(d \psi, d u)=\theta(\psi) u^{-1}(1-u)^{\theta(\psi)-1} d u \gamma B_{0}(d \psi)$
- To draw $B \sim B P\left(\theta, \gamma B_{0}\right)$

$$
\begin{aligned}
& \bullet \Longrightarrow \Pi=\left\{\left(\psi_{i}, U_{i}\right)\right\}_{i} \\
& \bullet \Longrightarrow B=\sum_{i=1}^{\infty} U_{i} \delta_{\psi_{i}}
\end{aligned}
$$

Beta Process: $B \sim B P\left(\theta, \gamma B_{0}\right)$

BP is defined by a PPP that lives on $\Psi \times[0,1]$

- Rate measure: $\nu(d \psi, d u)=\theta(\psi) u^{-1}(1-u)^{\theta(\psi)-1} d u \gamma B_{0}(d \psi)$
- To draw $B \sim B P\left(\theta, \gamma B_{0}\right)$

$$
\begin{aligned}
& \bullet \Longrightarrow \Pi=\left\{\left(\psi_{i}, U_{i}\right)\right\}_{i} \\
& \bullet \Longrightarrow B=\sum_{i=1}^{\infty} U_{i} \delta_{\psi_{i}}
\end{aligned}
$$

Θ

Bernoulli process \& Binary feature matrix

- $Y \sim \operatorname{Be} P(B): Y=\sum_{i=1}^{\infty} b_{i} \delta_{\psi_{i}}$, where $b_{i} \sim \operatorname{Bern}\left(U_{i}\right)$
- Draw $Y_{1}, \ldots, Y_{N} \sim \operatorname{Be} P(B)$

Bernoulli process \& Binary feature matrix

- $Y \sim \operatorname{Be} P(B): Y=\sum_{i=1}^{\infty} b_{i} \delta_{\psi_{i}}$, where $b_{i} \sim \operatorname{Bern}\left(U_{i}\right)$

Bernoulli process \& Binary feature matrix

- $Y \sim \operatorname{Be} P(B): Y=\sum_{i=1}^{\infty} b_{i} \delta_{\psi_{i}}$, where $b_{i} \sim \operatorname{Bern}\left(U_{i}\right)$
- Draw $Y_{1}, \ldots, Y_{N} \sim \operatorname{BeP}(B)$

K

Bernoulli process \& Binary feature matrix

- $Y \sim \operatorname{Be} P(B): Y=\sum_{i=1}^{\infty} b_{i} \delta_{\psi_{i}}$, where $b_{i} \sim \operatorname{Bern}\left(U_{i}\right)$
- Draw $Y_{1}, \ldots, Y_{N} \sim B e P(B)$

Ψ

Ψ

K

- Form binary feature matrix $Z \sim \operatorname{BP}-\operatorname{BeP}(N, \gamma, \theta)$

[Ghahramani et al '06]

Stick-breaking construction of BP

$$
\begin{aligned}
B & =\sum_{i=1}^{\infty} \sum_{j=1}^{C_{i}} V_{i, j}^{(i)} \prod_{l=1}^{i-1}\left(1-V_{i, j}^{(l)}\right) \delta_{\psi_{i, j}} \\
C_{i} & \stackrel{i i d}{\sim} \operatorname{Pois}(\gamma) \\
V_{i, j}^{(l)} & \stackrel{i i d}{\sim} \\
\psi_{i, j} & \stackrel{i i d}{\sim} \\
& \frac{1}{\gamma} B_{0}
\end{aligned}
$$

Stick-breaking construction of BP

(Paisley et al 2010):

$$
\begin{array}{rlr}
B=\sum_{i=1}^{\infty} \sum_{j=1}^{C_{i}} V_{i, j}^{(i)} \prod_{l=1}^{i-1}\left(1-V_{i, j}^{(l)}\right) \delta_{\psi_{i, j}} & B= & \sum_{j=1}^{C_{1}} V_{1, j}^{(1)} \delta_{\psi_{1, j}}+ \\
C_{i} \stackrel{i i d}{\sim} \operatorname{Pois}(\gamma) & & \sum_{j=1}^{C_{2}} V_{2, j}^{(2)}\left(1-V_{i j}^{(1)}\right) \delta_{\psi_{2, j}}+ \\
V_{i, j}^{(l)} \stackrel{i i d}{\sim} \operatorname{Beta}(1, \theta) & & \sum_{j=1}^{C_{3}} V_{3, j}^{(3)}\left(1-V_{3, j}^{(2,)}\right)\left(1-V_{3, j}^{(1)}\right) \delta_{\psi_{3, j}}+\ldots \\
\psi_{i, j} \stackrel{i i d}{\sim} \frac{1}{\gamma} B_{0} . &
\end{array}
$$

Stick-breaking construction of BP

(Paisley et al 2010):

$$
\begin{array}{rlr}
B=\sum_{i=1}^{\infty} \sum_{j=1}^{C_{i}} V_{i, j}^{(i)} \prod_{l=1}^{i-1}\left(1-V_{i, j}^{(l)}\right) \delta_{\psi_{i, j}} & B= & \sum_{j=1}^{C_{1}} V_{1, j}^{(1)} \delta_{\psi_{1, j}}+ \\
C_{i} \stackrel{i i d}{\sim} \operatorname{Pois}(\gamma) & & \sum_{j=1}^{C_{2}} V_{2, j}^{(2)}\left(1-V_{i j}^{(1)}\right) \delta_{\psi_{2, j}}+ \\
V_{i, j}^{(l)} \stackrel{i i d}{\sim} \operatorname{Beta}(1, \theta) & & \sum_{j=1}^{C_{3}} V_{3, j}^{(3)}\left(1-V_{3, j}^{(2,)}\right)\left(1-V_{3, j}^{(1)}\right) \delta_{\psi_{3, j}}+\ldots \\
\psi_{i, j} \stackrel{i i d}{\sim} \frac{1}{\gamma} B_{0} . &
\end{array}
$$

- Think of each i as a "round"
- It is "a multiple of stick-breaking DP"
- 3 parameter stick-breaking ("a multiple of Pitman-Yor")

$$
\begin{aligned}
B & =\sum_{i=1}^{\infty} \sum_{j=1}^{C_{i}} V_{i, j}^{(i)} \prod_{l=1}^{i-1}\left(1-V_{i, j}^{(l)}\right) \delta_{\psi_{i, j}} \\
C_{i} & \stackrel{i i d}{\sim} \\
V_{i, j}^{(l)} & \stackrel{i n d e i s}{ }(\gamma) \\
\psi_{i, j} & \stackrel{i i d}{\sim} \\
\sim & \operatorname{Beta}(1-\alpha, \theta+i \alpha) \\
& \frac{1}{\gamma} B_{0} .
\end{aligned}
$$

- 3 parameter stick-breaking ("a multiple of Pitman-Yor")

$$
\begin{aligned}
B & =\sum_{i=1}^{\infty} \sum_{j=1}^{C_{i}} V_{i, j}^{(i)} \prod_{l=1}^{i-1}\left(1-V_{i, j}^{(l)}\right) \delta_{\psi_{i, j}} \\
C_{i} & \stackrel{i i d}{\sim} \\
V_{i, j}^{(l)} & \stackrel{i n d e i s}{ }(\gamma) \\
\psi_{i, j} & \stackrel{i i d}{\sim} \\
\sim & \operatorname{Beta}(1-\alpha, \theta+i \alpha) \\
& \frac{1}{\gamma} B_{0} .
\end{aligned}
$$

- 3 parameter $B P\left(\theta, \alpha, B_{0}\right)$. Rate measure:

$$
\begin{aligned}
\nu_{B P}(d \psi, d u) & =B_{o}(d \psi) \times \mu_{B P}(d u) \\
& =B_{o}(d \psi) \times \frac{\Gamma(1+\theta)}{\Gamma(1-\alpha) \Gamma(\theta+\alpha)} u^{-1-\alpha}(1-u)^{\theta+\alpha-1} d u
\end{aligned}
$$

Equivalence - An elegant proof

Proposition 1

B presented in the stick-breaking construction is equivalent to $B \sim B P\left(\theta, \alpha, B_{0}\right)$

Equivalence - An elegant proof

Proposition 1

B presented in the stick-breaking construction is equivalent to $B \sim B P\left(\theta, \alpha, B_{0}\right)$

Idea of proof:

- The stick-breaking representation is also a PPP, and induces rate measure ν

Equivalence - An elegant proof

Proposition 1

B presented in the stick-breaking construction is equivalent to $B \sim B P\left(\theta, \alpha, B_{0}\right)$

Idea of proof:

- The stick-breaking representation is also a PPP, and induces rate measure ν
- Therefore only need to show that $\nu=\nu_{B P}$

Power law behavior:

Power laws in clustering models:

- $K_{N, j}=\sum_{i=1}^{\infty} I\left(N_{i}=j\right)$
- $K_{N}=\sum_{i=1}^{\infty} I\left(N_{i}>0\right)$
- Type 1: $K_{N} \sim c N^{a}, N \rightarrow \infty$
- Type 2: $K_{N, j} \sim \frac{a \Gamma(j-a)}{j!\Gamma(1-a)} c N^{a}, N \rightarrow \infty$

Power laws in featural models:

- Type 3: $P\left(k_{n}>M\right) \sim c M^{-a}$

Power law derivations: Type 1 and 2

Poissonization

Mean feature counts

Proposition 3

$$
\begin{array}{cc}
K(t), K_{j}(t) & \Phi(t)=E[K(t)], \Phi_{j}(t)=E\left[K_{j}(t)\right] \\
K(N), K_{j}(N) & \Phi(N), \Phi_{j}(N) \\
K_{N}, \underbrace{K_{N, j}}_{\text {Lemma 4 }} & \Phi_{N}=E\left[K_{N}\right], \Phi_{N, j}=E\left[K_{N, j}\right] \\
\text { Proposition } 6 &
\end{array}
$$

Power law derivations: Poissonization

$K(t)$ will be the number of such Poisson processes with points in the interval $[0, t]$

- $K(t)=\sum_{i} I\left|\Pi_{i} \cap[0, t]\right|>0$
$K_{j}(t)$ will be the number of such Poisson processes with j points in the interval $[0, t]$
- $K_{j}(t)=\sum_{i} I\left|\Pi_{i} \cap[0, t]\right|=j$

Figure 4: The first five sets of points, starting from the top of the figure, illustrate Poisson processes on the positive half-line in the range $t \in(0,5)$ with respective rates q_{1}, \ldots, q_{5}. The bottom set of points illustrates the union of all points from the preceding Poisson point processes and is, therefore, itself a Poisson process with rate $\sum_{i} q_{i}$. In this example, we have for instance that $K(1)=2, K(4)=5$, and $K_{2}(4)=1$.

Power law derivations

Theorem 2 (Part of Campbell's Theorem). Let Π be a Poisson process on S with rate measure μ, and let $f: S \rightarrow \mathbb{R}$ be measurable. If $\int_{S} \min (|f(x)|, 1) \mu(d x)<$ ∞, then

$$
\begin{gather*}
\mathbb{E}\left[\sum_{X \in \Pi} f(X)\right]=\int_{S} f(x) \mu(d x) \tag{21}\\
\Phi(t)=\mathbb{E}\left[\sum_{i}\left(1-e^{-t q_{i}}\right)\right]=\int_{0}\left(1-e^{-t x}\right) \nu(d x) \\
\Phi_{N}=\mathbb{E}\left[\sum_{i}\left(1-\left(1-q_{i}\right)^{N}\right)\right]=\int_{0}^{1}\left(1-(1-x)^{N}\right) \nu(d x) \\
\Phi_{j}(t)=\mathbb{E}\left[\sum_{i} \frac{\left(t q_{i}\right)^{j}}{j!} e^{-t q_{i}}\right]=\frac{t^{j}}{j!} \int_{0}^{1} x^{j} e^{-t x} \nu(d x) \\
\Phi_{N, j}=\binom{N}{j} \mathbb{E}\left[\sum_{i} q_{i}^{j}\left(1-q_{i}\right)^{N-j}\right]=\binom{N}{j} \int_{0}^{1} x^{j}(1-x)^{N-j} \nu(d x) .
\end{gather*}
$$

Proposition 3. Asymptotic behavior of the integral of ν of the following form

$$
\begin{equation*}
\nu_{1}[0, x]:=\int_{0}^{x} u \nu(d u) \sim \frac{\alpha}{1-\alpha} x^{1-\alpha} l(1 / x), \quad x \rightarrow 0 \tag{27}
\end{equation*}
$$

where l is a regularly varying function and $\alpha \in(0,1)$ implies

$$
\begin{aligned}
\Phi(t) & \sim \Gamma(1-\alpha) t^{\alpha} l(t), \quad t \rightarrow \infty \\
\Phi_{j}(t) & \sim \frac{\alpha \Gamma(j-\alpha)}{j!} t^{\alpha} l(t), \quad t \rightarrow \infty \quad(j>1)
\end{aligned}
$$

Power law derivations

Lemma 4. Let ν be σ-finite with $\int_{0}^{\infty} \nu(d u)=\infty$ and $\int_{0}^{\infty} u \nu(d u)<\infty$. Then the number of represented features has unbounded growth almost surely. The expected number of represented features has unbounded growth, and the expected number of features has sublinear growth. That is,

$$
K(t) \uparrow \infty \text { a.s., } \quad \Phi(t) \uparrow \infty, \quad \Phi(t) \ll t
$$

Lemma 5. Suppose the $\left\{q_{i}\right\}$ are generated according to a Poisson process with rate measure as in Lemma 4. Then, for $N \rightarrow \infty$,

$$
\begin{gathered}
\left|\Phi_{N}-\Phi(N)\right|<\frac{2}{N} \Phi_{2}(N) \rightarrow 0 \\
\left|\Phi_{N, j}-\Phi_{j}(N)\right|<\frac{c_{j}}{N} \max \left\{\Phi_{j}(N), \Phi_{j+2}(N)\right\} \rightarrow 0
\end{gathered}
$$

for some constants c_{j}.

Proposition 6. Suppose the $\left\{q_{i}\right\}$ are generated from a Poisson process with rate measure as in Lemma 4. For $N \rightarrow \infty$,

$$
K_{N} \stackrel{a . s .}{\sim} \Phi_{N}, \quad \sum_{k<j} K_{N, k} \stackrel{a . s .}{\sim} \sum_{k<j} \Phi_{N, k} .
$$

Power law derivations: Type 1 and 2

Poissonization

Mean feature counts

Proposition 3

$$
\begin{array}{cc}
K(t), K_{j}(t) & \Phi(t)=E[K(t)], \Phi_{j}(t)=E\left[K_{j}(t)\right] \\
K(N), K_{j}(N) & \Phi(N), \Phi_{j}(N) \\
K_{N}, \underbrace{K_{N, j}}_{\text {Lemma 4 }} & \Phi_{N}=E\left[K_{N}\right], \Phi_{N, j}=E\left[K_{N, j}\right] \\
\text { Proposition } 6 &
\end{array}
$$

Power law derivations: Type 3

Let Z_{i} be a Bernoulli random variable with success probability q_{i} and such that all the Z_{i} are independent. Then $\mathbb{E}\left[\sum_{i} Z_{i}\right]=\sum_{i} q_{i}=: Q$. In this case, a Chernoff bound [Chernoff, 1952, Hagerup and Rub, 1990] tells us that, for any $\delta>0$, we have

$$
\mathbb{P}\left[\sum_{i} Z_{i} \geq(1+\delta) Q\right] \leq e^{\delta Q}(1+\delta)^{-(1+\delta) Q}
$$

When M is large enough such that $M>Q$, we can choose δ such that $(1+\delta) Q=$ M. Then this inequality becomes

$$
\begin{equation*}
\mathbb{P}\left[\sum_{i} Z_{i} \geq M\right] \leq e^{M-Q} Q^{M} M^{-M} \quad \text { for } M>Q \tag{31}
\end{equation*}
$$

We see from Eq. (31) that the number of features $\sum_{i} Z_{i}$ that are expressed for a data point exhibits super-exponential tail decay and therefore cannot have a power law probability distribution when the sum of feature probabilities $\sum_{i} q_{i}$ is finite. For comparison, let $Z \sim \operatorname{Pois}(Q)$. Then [Franceschetti et al., 2007]

$$
\mathbb{P}[Z \geq M] \leq e^{M-Q} Q^{M} M^{-M} \quad \text { for } M>Q
$$

T. Broderick, M. Jordan, J. Pitman Presented by Jixiong We Beta processes, stick-breaking, and power laws

- $\alpha=0$ (classic), $\alpha=0.3$ and $\alpha=0.6 ; \gamma=3, \theta=1$.
- Generate 2000 random variables C_{i} and $\sum_{i=1}^{2000} C_{i}$ feature probabilities.
- With these probabilities, we generated $N=1000$ data points, i.e., 1000 vectors of (2000) independent Bernoulli random variables.

Simulation: Type 1 \& 2

$$
\phi_{N}=\mathbb{E}\left[K_{N}\right]=\mathbb{E}\left[\sum_{n=1}^{N} \operatorname{Pois}\left(\gamma \frac{\theta}{n+\theta}\right)\right]=\sum_{n=1}^{N} \gamma \frac{\theta}{n+\theta} \sim \gamma \theta \log (N)
$$

$$
\Phi_{N, 1}=\mathbb{E}\left[K_{N, 1}\right]=\binom{N}{1} \int_{0}^{1} x^{1}(1-x)^{N-1} \cdot \theta x^{-1}(1-x)^{\theta-1} d x
$$

$$
=N \theta \cdot \frac{\Gamma(1) \Gamma(N-1+\theta)}{\Gamma(N+\theta)}=\theta \frac{N}{N-1+\theta} \sim \theta
$$

Simulation: Type 3

Experimental results

- Beta process coupled with a discrete factor analysis model.
- Handwritten digit: 28×28 pixels projected into 50 dimensions with PCA.

Two-parameter model

 Three-parameter model
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;"></tr>
</tbody>
</table>
<table-markdown style="display: none">| |
| :---: |</table-markdown></div>

Experimental results

T. Broderick, M. Jordan, J. Pitman Presented by Jixiong We Beta processes, stick-breaking, and power laws

Experimental results

T. Broderick, M. Jordan, J. Pitman Presented by Jixiong We Beta processes, stick-breaking, and power laws

Conclusions

- (BP, stick-breaking, IBP) - (DP, stick-breaking, CRP)
- Three-parameter generalization of BP - Pitman-Yor generalization of DP
- Type $1 \& 2$ power laws follow from the three-parameter model.
- Type 3: an open problem to discover new class of stochastic process.

