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Introduction - Belief networks

Belief Networks = Directed
Graphical models.

Generative model of data.

Various models covered in
class have been belief nets,
with fixed known structure.

This paper aims to learn the
structure™ in addition to
inferring latent variables.



Belief networks - Notation
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Single Layer networks

* A visible layer and just one hidden
layer.

e No intra layer connections are
allowed.
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Introduce additional layers — Deep
belief networks



Natural Modeling Questions Arise!

1) How many units per layer?
2) How many connections between layers?

3) How many layers?

e Paper addresses these questions.



Single layer belief network




Infinite Hidden Units -Indian Buffet
Process

“dishes” = hidden units

Parameters:
a and B
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e First customer tries Poisson(a) dishes

e N customer tries:

- Previously-tasted dish k with probability nk /(B + n-1)
- Poisson(aB / (B + n - 1)) completely new dishes




Multi Layered Belief Network

Use one IBP for each layer.

Could fix the number of layers, but how about a infinite
number of layers?

Cascading Indian Buffet Process — Infinite sequence of
binary matrices.

Unbounded number of layers each with unbounded
number of hidden units.



Infinite belief network
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Cascading Indian Buffet Process

 Extends the IBP

- Each dish in the restaurant of layer 'm' 1s a customer in
the restaurant of layer 'm+1".

 Interestingly, the authors prove that eventually the
recursion terminates.

- Eventually, there 1s a layer with no units.



Cascading Indian Buffet Process

Depth m

(a) Example traces with K% = 50



CIBP - Properties

e For a unit in layer m+1
e Expected # of parents = [&

e Expected # of children = ¢SS 51:1 +;—1

 \alpha controls the width of a layer and \beta the number
of edges.

* Each layer has it's own \alpha and \beta parameters.



Samples from the CIBP prior
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Big Picture

D)% DDT, Kingman's Coalescent CIBP

Figures courtesy : Erik Sudderth,
Radford Neal



Inference

« MCMC

e Conditioned on the structure (Z0, Z1, ...) inference is identical to
finite belief networks.

e Updating structure.

» Edges added/deleted using MH.



Results — Image Reconstruction

AR




Digit Reconstruction
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Conclusion

* Deep belief networks + Bayesian nonparametrics.

 Introduces a prior over a recursive sequence of
binary matrices.

e Allows for unbounded number of units and
unbounded number of layers in belief networks.
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