Learning the Structure of Deep, Sparse Graphical Models

Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghahramani

Presented by: Soumya Ghosh

Slides courtesy: Hanna Wallach

Introduction - Belief networks

- Belief Networks = Directed Graphical models.
- Generative model of data.
- Various models covered in class have been belief nets, with fixed known structure.
- This paper aims to learn the structure* in addition to inferring latent variables.

Belief networks - Notation

Single Layer networks

- A visible layer and just one hidden layer.
- No intra layer connections are allowed.

Single Layer networks

- A visible layer and just one hidden layer.
- No intra layer connections are allowed.
- Doesn't model relationships amongst latent variables

Single Layer networks

- A visible layer and just one hidden layer.
- No intra layer connections are allowed.
- Doesn't model relationships amongst latent variables
- Introduce additional layers *Deep belief networks*

Natural Modeling Questions Arise!

- 1) How many units per layer?
- 2) How many connections between layers?
- 3) How many layers?
- Paper addresses these questions.

Single layer belief network

Infinite Hidden Units -Indian Buffet Process

- First customer tries Poisson(α) dishes
- nth customer tries:
 - Previously-tasted dish k with probability n_k / (β + n 1)
 - Poisson($\alpha\beta$ / (β + n 1)) completely new dishes

Multi Layered Belief Network

- Use one IBP for each layer.
- Could fix the number of layers, but how about a infinite number of layers?
- Cascading Indian Buffet Process Infinite sequence of binary matrices.
- Unbounded number of layers each with unbounded number of hidden units.

Infinite belief network

Infinite belief network

Infinite belief network

Cascading Indian Buffet Process

- Extends the IBP
 - Each dish in the restaurant of layer 'm' is a customer in the restaurant of layer 'm+1'.
- Interestingly, the authors prove that eventually the recursion terminates.
 - Eventually, there is a layer with no units.

Cascading Indian Buffet Process

CIBP - Properties

- For a unit in layer m+1
 - Expected # of parents = α
 - Expected # of children = $K / \sum_{k=1}^{K} \frac{\beta}{\beta + k 1}$
- \alpha controls the width of a layer and \beta the number of edges.
- Each layer has it's own \alpha and \beta parameters.

Samples from the CIBP prior

DP

DDT, Kingman's Coalescent

CIBP

Figures courtesy : Erik Sudderth, Radford Neal

Inference

- MCMC
- Conditioned on the structure (Z0, Z1, ...) inference is identical to finite belief networks.
- Updating structure.
 - Edges added/deleted using MH.

Results – Image Reconstruction

De De	
30,30	
aller aller	
素室	
- <u>Se</u>	
(a)	(b)

Results – Digit Reconstruction

7	7		. ж.		51-	lip. S				1977) 1977) 1977)	, th ailte		11
8	0	. È			(8) 1,11	ang T	a _a 22	er.	1 19	· .	ф	*	<u>_</u>
2	2	29 8 1	4 1	3 3.	2017) 2017)	Σ.	1.10	8	ан 1		۶.	1	e ; -
2	-	ng ting s Refer	• 1	1 1 1 1	÷.,	e di la Gradita		1. C	< 0	9 ⁽¹⁾ -	à e	5 16	 ₩
Э	Э	ياني مديرية المقارر المريخ ا	∯	_7.5 j e −.	Ý (ø ⁷⁷	81 1997 - 1	in an	2 .	8	25	A.
0	0	-	\mathbf{z}_{i}^{2}							ав 1915 г.			
U	4				1. 1 - 0			-		*		(. 8	-
1	6	į Ϋ	¢		14 1	- 19 9 19 1 1		5755 96 X		•:	ana an Car Vigi	i je	1 20 1 1.5
0	9		₹	1. * .		 •		${\mathfrak G}_{{\mathbb Z}^{n+1}}^{\mathbb Z}$	a))	$\overset{(1)}{\overset{(2)}}}}{\overset{(2)}{\overset{(2)}{\overset{(2)}}}}}}}}}}}}}}}}}}}}}}}}$	à.	1	
/	de la		1. 1			ð	nitenti ∳enit	. 1 8		`- ₩ .	: .#		

Conclusion

- Deep belief networks + Bayesian nonparametrics.
- Introduces a prior over a recursive sequence of binary matrices.
- Allows for unbounded number of units and unbounded number of layers in belief networks.