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Motivation

* HMMs allow us to use latent variables to
describe the emissions of data at discrete
steps, but the latent variable can only describe
one hidden state

* [t might be that multiple hidden states are
combining to create your data in a more
complicated fashion



Graphical Model
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Figure 1: The Hidden Markov Model
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Figure 2: The Factorial Hidden Markov Model



Finite Model

e S =Binary Matrix with T rows (data points)
and M columns (features)

-Crirj] = # transitions from state i to j in chain m

Wi = ( i:?;: {;:: ) Wi{jmj = p(Ste1.m = JlStm = 1)
vm e {1,2,--- .M} : a,, ~ Beta (% l) , b, ~ Beta(v.4d).
Som =0 . St ~ Bernoulli(a ?ln Stolmpii—lm )
M
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Infinite Limit

e Just taking the limit as M ->oo we get a probability
of zero, need to use lof-equivalence classes
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H.= Harmomc #t
M, = # active Markov chains



A Modified Indian Buffet Process

* First Customer takes Poisson(a) dishes starting
from left.

e The t'th customer looks at dish m

— If t-1"th customer took dish m, t’th takes with
prob (¢! +6)/(y+ 6+ ¢l + cl})

— If not, t’th takes with prob /(¢ +cp)

* He then takes Poisson(oa/t) new dishes
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M_ ~ Poisson(aHr)



Stick Breaking Representation

* While theoretically convenient, the previous
models are not practical for inference.
Instead, stick breaking will be more tractable.

a)y o< Beta(a, 1),
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b(m) ~ Beta(v,9)



The Infinite Factorial HMM

* To use the mIBP as a probabilistic model, we
need to add feature properties through 4,. ~ #

* Need to define conditional probability over
observations given latent features F(x:6. s:..)

* |n order to be valid in the infinite limit, we
require the probability to be invariant to
permutations of features, and independent of
6, ifs,,=0.

m



IFHMM Graphical Model



Independent Component Analysis

* Assume that M signals are represented as
vectors x_ and X = [X;X;...Xp].

* Signals are combined using mixing matrix W to
generate Y=XW
— Also assume IID Normal(0,0v) € s.t. Y=XW+€

* There exist fast algorithms to extract X from 'Y

(e.g. ICA) but they depend on the number of
signals being known in advance.



ICA iIFHMM Generative Model

S~ mIBP

X; ~ Laplace(0, 1) i.i.d.
W; ~ Normal(0,0ow) i.i.d
e ~ Normal(0,°)
Y=(Sa X)W + €



Inference Plan

 Nonparametric models are typically inferred
using Gibbs sampling with augmented
Metropolis Hastings steps.

* Gibbs sampling is known to be bad in time
series though due to string coupling in
successive steps.

e Can avoid this using a dynamic programming
solution with stick breaking.



Auxiliary Slice variable

p~ Uniform(0, min a.,).

3t 8em =1

plp.a.b. S) = plula, S)pla, b, S).
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e The slice variables force all columns of S
where a,, < p to be 0, allowing us to resample
a finite number of columns in S



Inference Algorithm

e Start with an initial S and sample a and b.
Then sample an initial X and W. Then iterate

W

Sample the auxiliary variable u

Sample S, X, and W for all represented features
Resample the hyperparameters.

Remove all unused features.



Sampling methods

 There are multiple ways that S, X, and W can
be sampled in step 2
— A naive Gibbs sampler performs badly as expected

— A blocked sampler that fixes all but one column of
S and runs a forwards-backwards algorithm.

— A third sampler runs dynamic programming on
multiple chains with the possibility to merge
features, but you can’t integrate out X and W.



Results
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(a) Ground Truth  (b) ICA 1FHMM (c) 1ICA (d} ICA 1FHMM (e) 1ICA



Questions?



