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Motivation

• HMMs allow us to use latent variables to 
describe the emissions of data at discrete 
steps, but the latent variable can only describe 
one hidden state

• It might be that multiple hidden states are 
combining to create your data in a more 
complicated fashion



Graphical Model



Finite Model

• S = Binary Matrix with T rows (data points) 
and M columns (features)

• = # transitions from state i to j in chain m 
ij
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Infinite Limit

• Just taking the limit as M ->∞ we get a probability 
of zero, need to use lof-equivalence classes

• Ht= Harmonic # t

• M+= # active Markov chains



A Modified Indian Buffet Process

• First Customer takes Poisson(α) dishes starting 
from left.

• The t’th customer looks at dish m

– If t-1’th customer took dish m, t’th takes with 
prob

– If not, t’th takes with prob

• He then takes Poisson(α/t) new dishes



Stick Breaking Representation

• While theoretically convenient, the previous 
models are not practical for inference.  
Instead, stick breaking will be more tractable.



The Infinite Factorial HMM

• To use the mIBP as a probabilistic model, we 
need to add feature properties through 

• Need to define conditional probability over 
observations given latent features 

• In order to be valid in the infinite limit, we 
require the probability to be invariant to 
permutations of features, and independent of 
θm if stm = 0.



iFHMM Graphical Model



Independent Component Analysis

• Assume that M signals are represented as 
vectors xm and X = [x1x2…xM].

• Signals are combined using mixing matrix W to 
generate Y=XW

– Also assume IID Normal(0,    ) ϵ s.t. Y=XW+ϵ

• There exist fast algorithms to extract X from Y 
(e.g. ICA) but they depend on the number of 
signals being known in advance.
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ICA iFHMM Generative Model

• S ~ mIBP

• Xij ~ Laplace(0, 1) i.i.d.

• Wij ~ Normal(0,    ) i.i.d

• ϵ ~ Normal(0,    ) 

• Y = (S    X)W + ϵ
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Inference Plan

• Nonparametric models are typically inferred 
using Gibbs sampling with augmented 
Metropolis Hastings steps.

• Gibbs sampling is known to be bad in time 
series though due to string coupling in 
successive steps.

• Can avoid this using a dynamic programming 
solution with stick breaking.



Auxiliary Slice variable

• The slice variables force all columns of S 
where am < μ to be 0, allowing us to resample 
a finite number of columns in S



Inference Algorithm

• Start with an initial S and sample a and b.  
Then sample an initial X and W.  Then iterate

1. Sample the auxiliary variable μ

2. Sample S, X, and W for all represented features

3. Resample the hyperparameters.

4. Remove all unused features.



Sampling methods

• There are multiple ways that S, X, and W can 
be sampled in step 2

– A naïve Gibbs sampler performs badly as expected

– A blocked sampler that fixes all but one column of 
S and runs a forwards-backwards algorithm.

– A third sampler runs dynamic programming on 
multiple chains with the possibility to merge 
features, but you can’t integrate out X and W.



Results



Questions?


