


Motivation 

�  The problem… 

1)  Dirichlet Processes (DP) are commonly used in Bayesian nonparametrics, but 
assumes datapoints are infinitely exchangeable. 

2)  The Dependent Dirichlet Process (DDP) was first introduced by MacEachern 
(1999) to account for this by creating a dependent set of  random measures that were 
all marginally DP.  

Since then, a number of  DDP related publications have appeared. 

•  Time-sensitive DP (Zhu and Lafferty, 05) 
•  Hierarchical DP (Teh et. al, 06) 
•  Dynamic HDP (Ren et. al, 08) 
•  Generalized Polya Urn (Caron et. al, 07) 
•  Recurrent CRP (Ahmed and Xing, 08) 
•  πDDP (Griffin and Steel, 06) 
•  Local DP (Chung and Dunson, 09) 



Topics Covered 

Contribution: Formalizes the development of DDPs by providing a simple 
framework based on normalized gamma processes.  

This talk will focus on the following: 
 
1)  The construction of  the DDP via normalized gamma processes and some 

of  its theoretical foundations. 

2)  Its representation as a DP mixture model. 

3)  Experiments on synthetic data and NIPS corpus  

Most of  the discussion regarding learning and inference in this model will be skipped while interesting 
will be skipped over in the interest of  time. 



Gamma Processes 

Let (Θ,Ω) be a measure space on where 
we define a Gamma process ΓP. 

Define a Poisson process over a 
product space with mean measure: 

G =
1X

i=1

wi�✓i ⇠ �P (↵)

This results in an infinite set of  atoms 

{✓i, wi}1i=1

µ(d✓dw) = ↵(d✓)w�1e�wdw

A sample from a gamma process can be 
defined using these atoms, where α is a 
base measure on the (Θ,Ω) space and 
will be referred to as the base measure of  
our Gamma process. 
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Gamma Process à Dirichlet Process 

Question: How can we sample from a Dirichlet distribution ✓i ⇠ Dir(↵)?

Answer: Simply sample K independent gamma variables and normalize! 



Gamma Process à Dirichlet Process 

G(S) =
1X

i=1

wi1(✓i 2 S) 8 S ⇢ ⇥

Any measurable subset S is simply gamma distributed with shape parameter α(S), 
thus the term gamma process. 

To create the Dirichlet process, we simply take G and normalize it. 

D =
G

G(⇥)
⇠ DP (↵)

Here an atypical representation of  the DP is used. The equivalent representation 
would be a strength parameter α(Θ) and base distribution α/α(Θ).  



Properties of  the Gamma Process 

The gamma process is an example 
of  a completely random measure. 
(Kingman 1968) 

Assigns independent mass to 
nonintersecting subsets. 

Figure from Jordan, M. (2010) 

Other stochastic processes that are completely random measures are: 
1)  Beta Processes 
2)  Brownian Motion 
3)  Compound Poisson Processes 
 
The Dirichlet process is not an example of  a completely random measure!! 

ΘΘ 



Quick Aside: Beta Processes 
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1 

0 
Product Space 

⇥⌦ [0,1)

(✓i, wi)

B =
P

i wi�✓i

The rate function is obtained from a product measure called a Levy measure.

For the beta process, this measure lives on ⇥⌦ (0, 1) and is given as follows:

⌫(d✓, dw) = cw�1(1� w)c�1dwB0(d✓)



Properties of  the Gamma Process 

Two important consequences 

1) If S 2 ⌦ the restriction G0
(d✓) = G(d✓ \ S) onto S is a �P with base

measure ↵0
(d✓) = ↵(d✓ \ S)

2) If ⇥ = ⇥1⌦⇥2 is a two dimensional space, then the projection G00
(d✓1) =R

✓2
G(d✓1d✓2) onto ⇥1 is also a �P with base measure ↵00

(d✓1) =
R
✓2
↵(d✓1d✓2)

In other words, projections and restrictions from gamma processes are still gamma processes. 

⇥1 ⇥1

⇥2

Restriction 

Projection 



Spatial Normalized Gamma Processes 

Let (⇥,⌦) be a probability space and T an index space.

Desiderata: We want to construct a set of dependent random measures over

(⇥,⌦) with one Dt for each t 2 T so that each Dt is marginally DP.

Solution

1. Define a gamma process G over an extended space.

2. Let each Dt be a normalized restriction/projection of G. 3. Since restric-

tions/projections of gamma processes are still gamma processes, each Dt will

be DP distributed.

The General Strategy 



Spatial Normalized Gamma Processes 

Motivating Example 

µt(d✓) =
R
Yt

µ(d✓dy) = µ(d✓ ⌦ Yt)

Note that µt is a measure over ⇥ for each t 2 T

Let Y be an auxiliary space for each t 2 T, let Yt ⇢ Y be a measurable

set and have µ be an arbitrary measure over the product space ⇥ ⌦ Y. The

following restriction projection µt is:
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Spatial Normalized Gamma Processes 

We now let ↵ represent a base measure over the same product space ⇥⌦ Y
and consider a gamma process:

G ⇠ �P (↵)
We now perform a similar restricted projection for G so that Gt is a �P over

⇥ with base measure ↵t:

Gt(d✓) =
R
Yt

G(d✓dy) ⇠ �P (↵t)

Normalizing: Dt = Gt/Gt(⇥) ⇠ DP (↵t)

The resulting set of dependent DPs {Dt}t2T is now referred to as spatial

normalized gamma processes (SN�P ).
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More Examples  

Playing around with our base measure ↵(d✓dy) can allow us to tune the

dependency strength between Dt and Ds for s, t 2 T.

Let T = R,Y = R, Yt = [t � L, t + L] with L > 0. Furthermore, let H be a

base distribution over ⇥ and � > 0 be a concentration parameter. Defining the

base measure ↵(d✓dy) = �H(d✓)dy/2L, the restricted projection of this base

measure is then:

↵t(d✓dy) =
R t+L
t�L �H(d✓)dy/2L = �H(d✓)

The result is that each Dt ⇠ DP (�H) where each atom in the overall �P G
has a time stamp y and a time-spam of [y�L, y+L] so that it will only appear

in windows t 2 [y � L, y + L].



Mixtures of  DPs representation 

Define R as the smallest collection of disjoint regions of Y s.t each Ytj is a

union of subsets in R. For 1  j  m let Rj be the collection of regions in R
contained in Ytj , so that [R2Rj = Ytj

For each R 2 R define:

GR(d✓) = G(d✓ ⌦R) ⇠ �P (↵R)

DR = GR/GR(⇥) ⇠ DP (↵R)

Dtj (d✓) =
P

R2Rj

GR(⇥)P
R2Rj

GR0 (⇥)DR(d✓)Mixture of  DPs 

↵R(d✓) = ↵(d✓ ⌦R)

G1 

G2 

G3 

Window defined by ↵t(d✓dy)
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Mixtures of  DPs representation 

Each Dtj is a mixture where each component DR is drawn independently

from a DP. The mixing proportions are also Dirichlet distributed and indepen-

dent from the components by virtue of each GR(✓) being gamma distributed

and independent from DR.

DR ⇠ DP (↵R) gR ⇠ Gamma(↵R(⇥))

Dtj =
P

R2Rj
⇡jRDR

⇡jR = gRP
R02Rj

gR

DPs in this construction are all defined only over ⇥

References to the auxiliary space Y and base measure ↵ are only used to

define the individual base measures ↵R and shape parameters for gR



Mixtures of  DPs representation 

A visual representation of SN�P as a Dirichlet Process Mixture Model

Rao 2009 



Inference in SNΓP 

They derive both a Gibbs Sampling scheme and a Metropolis Hastings Update 
to improve the convergence of  the sampler. 

MH – Proposals 
 

1)  Utilize a split-merge move to split an existing cluster in a region into two new clusters in 
the same region or merge two existing clusters. 

2)  Move a picked cluster from one region to another. The new region is chosen from a 
region neighboring the current one. 

3)  Make larger moves by combining the first two steps. 

Gibbs Sampling 
 

1)  Integrate out region DPs and replace them with chinese restaurants. Iteratively resample 
latent variables associated with the model and use conjugate base distribution H to the 
mixture distributions. 



Experiments 

Synthetic Data & Performance: Dataset generated by sampling from a mixture of  10 
Gaussians with 60 generated datapoints across 5 time points. The data was modeled 
as a 5 DP mixture of  Gaussians with a SNΓP prior over the five dependent DPs.  

Evolution of  the timespan of  a cluster. From top to 
bottom: Gibbs+MH1+MH2+MH3, Gibbs+MH2 
and Gibbs+MH1 (pink), Gibbs+MH3 (black) and 
Gibbs (magenta). 

Log-likelihoods (the colored lines are ordered at 
iteration 80 like the legend) 



Experiments 

Inferred topics with their timespans (the horizontal lines). In parentheses are the number of  words assigned 
to each topic. On the right are the top ten most probable words in the topics. 

NIPS Dataset: The model utilized a combination of  a SNΓP prior on top of  an HDP 
model where each document was a DP sharing the same base distribution for a given 
year. Thus, there were a total of  13 base distributions associated with years 1987-1999 
which were shared using a SNΓP.  



Summary 

�  We discussed a new representation of  a dependent Dirichlet 
Process as a spatially normalized gamma process.  

�  This process starts as points from a Possion process on an 
outer product space, which also represents a realization of  a 
Gamma Process. Normalizing this we have a Dirichlet 
Process.  

�  Dependent DPs can be obtained by specifying a restriction/ 
projection of  a gamma process from an extended space.  

�  Experiments with synthetic data and NIPS corpus shows 
that inference needs some work.  

�  Lots of  possibilities via normalized random measures. The 
Dirichlet process is just one example of  this with nice 
computational properties.  


