Applied Bayesian Nonparametrics

Special Topics in Machine Learning Brown University CSCI 2950-P, Fall 2011

December 1: Spatially Dependent Pitman-Yor Processes via Gaussian Processes

Parsing Visual Scenes

Are Images Bags of Features?

Inspired by the successes of *topic models* for text data, some have proposed learning from *local image features*

Are Images Bags of Features?

Inspired by the successes of *topic models* for text data, some have proposed learning from *local image features*

Compute color & texture descriptors for each superpixel

First Approach:

Fei-Fei & Perona 2005, Sivic et. al. 2005

Ignore spatial structure entirely (bag of "visual words")

Second Approach:

Russell et. al. 2006, Todorovic & Ahuja 2007

Cluster features via one or more *bottom-up segmentations*

Segmentation: Mean Shift

EDISON: Comaniciu & Meer, 2002

- Cluster by modes of *Parzen window* density estimator in space of appearance features
- Very *sensitive* to bandwidth parameter

Outline

Natural Scene Statistics

- Counts, partitions, and power laws
- Hierarchical *Pitman-Yor* processes

Spatial Priors for Image Partitions

- > What's wrong with Potts models?
- Spatial dependence via Gaussian processes

Unsupervised Image Analysis

- Variational inference
- Image segmentation

Priors on Counts & Partitions

Segmentation as Partitioning

- How many regions does this image contain?
- What are the sizes of these regions?

Unsupervised Object Category Discovery

- How many object categories have I observed?
- How frequently does each category appear?

Pitman-Yor Processes

The *Pitman-Yor process* defines a distribution on infinite discrete measures, or *partitions*

Why Pitman-Yor?

Generalizing the Dirichlet Process

- Distribution on partitions leads to a generalized Chinese restaurant process
- Special cases arise as excursion lengths for Markov chains, Brownian motions, ...

Power Law Distributions

	-	-	
	2		
4		- al	

Jim Pitman

Natural Language Statistics

Goldwater, Griffiths, & Johnson, 2005 Teh, 2006

Marc Yor

Natural Scene Statistics

- Does Pitman-Yor prior match human segmentation?
- How do statistics vary across scene categories?

Highway

Insidecity

Street

Tallbuilding Oliva & Torralba, 2001

Manual Image Segmentation

Sign in (why?)

There are 299506 labelled objects

Polygons in this image (IMG, XML)

sky buildinas building occluded building building cars side van side occluded cars side car side occluded car side occluded car side crop buildinas building person walking occluded sidewalk fence road window window window

Labels for more than 29,000 segments in 2,688 images of natural scenes

Object Size Histograms

Object Counts per Image

Object Name Frequencies

Feature Extraction

- Partition image into ~1,000 superpixels
- Compute *texture* and *color* features:
 SIFT Descriptor (Lowe 2004)
 Robust Hue Descriptor (van de Weijer & Schmid, 2006)
- VQ histograms to discrete visual words

PY Mixture Segmentation

LabelMe Segments:

PY Mixture Segmentation

LabelMe Segments:

Outline

Natural Scene Statistics

- Counts, partitions, and power laws
- Hierarchical Pitman-Yor processes

Spatial Priors for Image Partitions

- > What's wrong with Potts models?
- Spatial dependence via Gaussian processes

Unsupervised Image Analysis

- Variational inference
- Image segmentation

Discrete Markov Random Fields

Ising and Potts Models

$$p(z) = \frac{1}{Z(\beta)} \prod_{(s,t)\in E} \psi_{st}(z_s, z_t)$$
$$\log \psi_{st}(z_s, z_t) = \begin{cases} \beta_{st} > 0 & z_s = z_t \\ 0 & \text{otherwise} \end{cases}$$

- Interactive foreground segmentation
- Supervised training for known categories

...but very little success at segmentation of unconstrained natural scenes.

GrabCut: Rother, Kolmogorov, & Blake 2004

Verbeek & Triggs, 2007

Region Classification with Markov Field Aspect Models

Verbeek & Triggs, CVPR 2007

10-State Potts Samples

States sorted by size: largest in blue, smallest in red

1996 IEEE DSP Workshop

The Ising/Potts model is not well suited to segmentation tasks

R.D. Morris X. Descombes J. Zerubia INRIA, 2004, route des Lucioles, BP93, Sophia Antipolis Cedex, France.

 $N(z) \rightarrow \operatorname{number of edges on which}_{\text{states take same value}}$

→ edge strength

Even within the *phase transition* region, samples lack the *size distribution* and *spatial coherence* of real image segments

Geman & Geman, 1984

128 x128 grid 8 nearest neighbor edges K = 5 states Potts potentials: $\beta = 2/3$

200 Iterations

10,000 Iterations

Product of Potts and DP?

Orbanz & Buhmann 2006

Spatially Dependent Pitman-Yor

- Cut random surfaces

 (samples from a GP)
 with thresholds
 (as in Level Set Methods)
- Assign each pixel to the *first* surface which exceeds threshold (as in Layered Models)

Duan, Guindani, & Gelfand, *Generalized Spatial DP*, 2007

Spatially Dependent Pitman-Yor

- Cut random surfaces

 (samples from a GP)
 with thresholds
 (as in Level Set Methods)
- Assign each pixel to the *first* surface which exceeds threshold (as in Layered Models)
- Retains *Pitman-Yor marginals* while jointly modeling rich *spatial dependencies* (as in Copula Models)

Stick-Breaking Revisited

Multinomial Sampler: $u_i \sim \text{Unif}(0, 1)$ $z_i = \text{CDF}_{\pi}^{-1}(u_i)$

Sequential Binary Sampler: $b_{ki} \sim \text{Bernoulli}(v_k)$ $z_i = \min\{k \mid b_{ki} = 1\}$

PY Gaussian Thresholds

$$\mathbb{P}[\Phi(u_{ki}) < v_k] = v_k$$

because

 $\Phi(u_{ki}) \sim \text{Unif}(0,1)$ **Gaussian Sampler:**

 $u_{ki} \sim \mathcal{N}(0, 1)$

Sequential Binary Sampler: $b_{ki} \sim \text{Bernoulli}(v_k)$ $z_i = \min\{k \mid u_{ki} < \Phi^{-1}(v_k)\}$ $z_i = \min\{k \mid b_{ki} = 1\}$

PY Gaussian Thresholds

Spatially Dependent Pitman-Yor

Preservation of PY Marginals

Samples from Spatial Prior

Comparison: Potts Markov Random Field

Logistic of Gaussians?

- Pass set of Gaussian processes through softmax to get probabilities of independent segment assignments
- Like adding *white noise* to GP before thresholding
 Fernandez & Green, 2002
 Figueiredo et. al., 2005, 2007
 Woolrich & Behrens, 2006
 Blei & Lafferty, 2006

Outline

Natural Scene Statistics

- Counts, partitions, and power laws
- > Hierarchical Pitman-Yor processes

Spatial Priors for Image Partitions

- > What's wrong with Potts models?
- Spatial dependence via Gaussian processes

Unsupervised Image Analysis

- Variational inference
- Image segmentation

Covariance Kernels

- Thresholds determine segment size: Pitman-Yor
- Covariance determines segment shape:

 $C(y_i, y_j) \iff$ probability that features at locations (y_i, y_j) are in the same segment

Bag of Features:

$$C(y_i, y_j) = \delta(y_i - y_j)$$

Image Distance:

$$C(y_i, y_j) = e^{-\lambda(y_i - y_j)^2}$$

Intervening Contours:

Discriminative dependence on maximum boundary probability along straight lines connecting feature pairs

Berkeley Pb (probability of boundary) detector

HPY Variational Inference

 $q(\mathbf{k}, \mathbf{t}, \mathbf{v}, \mathbf{w}, \boldsymbol{\theta}) =$

$$\prod_{k=1}^{K} q(w_k \mid \omega_k) q(\theta_k \mid \eta_k)$$

$$Beta Dirichlet$$

$$\prod_{j=1}^{J} \prod_{t=1}^{T} q(v_{jt} \mid \nu_{jt}) q(k_{jt} \mid \kappa_{jt})$$

$$Beta Mult(K)$$

$$\prod_{j=1}^{J} \prod_{i=1}^{N_j} q(t_{ji} \mid \tau_{ji})$$

$$Mult(T)$$

HPY Variational Implementation

Latent Dirichlet Allocation: Blei, Ng, & Jordan 2003 DP Mixtures: Blei & Jordan 2006; Kurihara, Welling, & Teh 2007

Desirable Properties

- Closed form, coordinate ascent updates implemented by sparse matrix operations (faster than collapsed Gibbs)
- Likelihood bound for convergence diagnosis
- Avoid multiple restarts via deterministic annealing

Why Not Collapsed Variational Methods?

Teh, Kurihara, & Welling 2008

> Computational cost: $\mathcal{O}(NT + TK)$ versus $\mathcal{O}(NK)$

Thousands of object categories, but only a few are in each image...

Generalization to Gaussian coupling of PY processes...

Variational for Dependent PY

Factorized Gaussian Posteriors

$$q(\mathbf{u}) = \prod_{k=1}^{K} \prod_{i=1}^{N} \mathcal{N}(u_{ki} \mid \mu_{ki}, \lambda)$$
$$q(\bar{\mathbf{v}}) = \prod_{k=1}^{K} \mathcal{N}(\bar{v}_k \mid \nu_k, \delta_k)$$

Sufficient Statistics

$$z_i = \min\{k \mid u_{ik} < \bar{v}_k\}$$

Allows closed form update of $~q(heta_k)~$ via

$$\mathbb{P}_q[u_{ki} < \bar{v}_k] = \Phi\left(\frac{\nu_k - \mu_{ki}}{\sqrt{\delta_k + \lambda_{ki}}}\right)$$

 $\log p(\mathbf{x} \mid \alpha, \rho) \geq H(q) + \mathbb{E}_q[\log p(\mathbf{u}, \bar{\mathbf{v}}, \boldsymbol{\theta} \mid \alpha, \rho)]$

Variational for Dependent PY

Updating Layered Partitions

Evaluation of beta normalization constants: $\mathbb{E}_{q}[\log \Phi(\bar{v}_{k})] \leq \log \mathbb{E}_{q}[\Phi(\bar{v}_{k})]$ $= \log \Phi\left(\frac{\nu_{k}}{\sqrt{1+\delta_{L}}}\right) \overset{\times}{\overset{\times}{\overset{}_{\mathsf{K}}}}$

Jointly optimize each layer's threshold and Gaussian assignment surface, fixing all other layers, via backtracking conjugate gradient with line search

Reducing Local Optima

Place factorized posterior on eigenfunctions of Gaussian process, not single features

 $\log p(\mathbf{x} \mid \alpha, \rho) \geq H(q) + \mathbb{E}_q[\log p(\mathbf{u}, \bar{\mathbf{v}}, \boldsymbol{\theta} \mid \alpha, \rho)]$

Robustness and Initialization

Log-likelihood bounds versus iteration, for many random initializations of mean field variational inference on a single image.

Human Image Segmentation

With S. Ghosh BSDS: Spatial PY Inference

BSDS: Spatial PY Inference

Spatial PY (Raw EP)

Spatial PY (Merged PY)

- Our Gaussian process layer representation, and low rank covariance, can create some small disconnected regions
- Can further polish results by giving connected components their own layers, & possibly merging with spatial neighbors

Comparing Spatial Models

PY Learned

Multiscale NCut

BSDS: Spatial PY & Mean Shift

Spatial PY (EP)

Mean Shift

- Sometimes mean shift's kernel density estimator is effective in feature space clustering
- But it can be unstable in more ambiguous images...

BSDS: Spatial PY & Mean Shift

BSDS: Spatial PY & Mean Shift

Multiple Spatial PY Modes

Collected in a single uphill search sequence

Currently exploring ways of getting more diversity...

Conclusions

Hierarchical Pitman-Yor Processes allow...

- efficient variational *parsing* of scenes into unknown numbers of segments
- empirically justified *power law* priors
- potential for learning shared appearance models from related images & scenes

Future Directions

- parallelized, scalable learning from extremely *large image databases*
- nonparametric models of dependency in other application domains

