The Discrete Infinite Logistic Normal Distribution for Mixed-Membership Modeling

John Paisley Chong Wang David Blei

Presented by Xiaoxue Li

Introduction

- Mixed membership models: model relational data, characterized by grouped observations generated by a mixture of latent distributions over the observation space
 -- originally designed for topic models
- HDP-LDA: models shared 'atoms' among documents, an infinite number of statistically independent topics. Little about correlations of topics in group level distribution
- Discrete Infinite Logistic Normal distribution DILN, as hierarchical Bayesian nonparametric prior to model correlations between the occurrences of latent components

Gamma Process Construction of the HDP

Hierarchical representation of Dirichlet Process

$$G \sim \mathrm{DP}(\alpha G_0), \quad G'_m \stackrel{iid}{\sim} \mathrm{DP}(\beta G),$$

 $\theta_n^{(m)} \sim G'_m, \quad X_n^{(m)} \sim f(\theta_n^{(m)}).$

• In a two-level HDP of topic modeling:

Top level

$$G = \sum_{k=1}^{\infty} V_k \prod_{j=1}^{k-1} (1 - V_j) \delta_{\eta_k},$$

$$V_k \stackrel{iid}{\sim} \text{Beta}(1, \alpha), \quad \eta_k \stackrel{iid}{\sim} G_0.$$

Gamma Process Construction of the HDP

Second level

$$G'_{m} = \sum_{k=1}^{\infty} \frac{Z_{k}^{(m)}}{\sum_{j=1}^{\infty} Z_{j}^{(m)}} \delta_{\eta_{k}},$$
$$Z_{k}^{(m)} \stackrel{ind}{\sim} \operatorname{Gamma}(\beta p_{k}, 1);$$

$$p_k := V_k \prod_{j=1}^{k-1} (1 - V_j)$$

completely random measure

Discrete Infinite Logistic Normal

- Latent features imbued with location vectors, "close" features tend to co-occur more often than those that are "far apart"
- Top level $G \sim DP(\alpha G_0 \times L_0).$
- Second level

 $G_m^{DP} \sim DP(\beta G), \quad w^{(m)}(\ell) \sim GP(\mathbf{m}(\ell), \mathbf{K}(\ell, \ell')).$

scale the group-level DP by the exponentiated GP,

 $G'_m(\{\eta,\ell\}) \propto G^{DP}_m(\{\eta,\ell\}) \exp\{w^{(m)}(\ell)\}.$

Normalized Gamma Representation

think of ℓ_k as the location of atom k.

Normalized Gamma Representation

If $w^{(m)} = 0$, then this is a representation of the HDP.

DILN Topic Model

Given G'_m , words in document m are generated according to

$$X_n^{(m)} \sim Mult(\theta_n^{(m)}), \quad \theta_n^{(m)} \stackrel{iid}{\sim} G'_m.$$

For inference, we introduce a latent indicator $C_n^{(m)}$, such that

$$\theta_n^{(m)} = \eta_{C_n^{(m)}}.$$

Variational Inference for DILN

- We use variational inference to learn the approximate posterior of the DILN model [Jordan et al., 1999].
 - Mean-field variational inference uses a factorized q distribution to approximate the true posterior of a model's parameters.
 - Searches for the parameters of q that minimize the KL divergence between q and the true posterior.
- In a DILN topic model, the hidden variables are

Document level: Z, w, C

Corpus level: η , V, m, K, α , β

Note: We learn K directly, rather than latent locations, l_k. This leads to a fast, closed-form update.

Variational Inference for DILN

Inference note: For each group, we use the lower bound

$$-\mathbb{E}_{Q}\left[\ln\sum_{k=1}^{T} Z_{k}\right] \geq -\ln\xi - \frac{\sum_{k=1}^{T} \mathbb{E}_{Q}[Z_{k}] - \xi}{\xi}.$$

• Results in analytical updates for $q(Z_k) = Gamma(Z_k|a_k, b_k)$,

$$a_k = \beta p_k + \sum_{n=1}^N \phi_n(k),$$

$$b_k = \mathbb{E}_Q[\exp\{-w_k\}] + \frac{N}{\xi}.$$

• If $w_k = 0$, this is a new inference algorithm for HDPs.

- Four text corpora: the Huffington Post, the New York Times, Science and Wikipedia, compared with HDP and CTM
- Partition a test document into two halves. Learn document-specific parameters on one half and predict the other half.
- then calculate the per-word perplexity

$$\text{perplexity} = \exp\left\{\frac{-\ln p(X_{\text{half2}}|X_{\text{half1}})}{N}\right\}.$$

D

Question and comment