Applied Bayesian Nonparametrics

Special Topics in Machine Learning Brown University CSCI 2950-P, Fall 2011 December 6: Course Review & Outlook

Nonparametric Clustering

Clusters, arbitrarily ordered

- Large Support: All partitions of the data, from one giant cluster to N singletons, have positive probability under prior
- *Exchangeable:* Partition probabilities are invariant to permutations of the data
- Desirable: Good asymptotics, computational tractability, flexibility and ease of generalization...

- Good: Simple, computationally easy generalization which can make clustering depend on any feature: time, space, ...
- Tricky: Relationship between local distance and global clustering behavior hard to analyze (no marginal invariance)

Marginal likelihoods generally expressed as ratios of normalizers

From Assignments to Partitions

$$P(\mathbf{c}) = \int_{\Delta_K} \prod_{i=1}^n P(c_i | \theta) p(\theta) \, d\theta = \frac{\prod_{k=1}^K \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$
$$= \left(\frac{\alpha}{K}\right)^{K_+} \left(\prod_{k=1}^{K^+} \prod_{j=1}^{m_k - 1} (j + \frac{\alpha}{K})\right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

 K_+ is the number of classes for which $m_k > 0$ There are K^N possible values for c

 $P(\mathbf{c}) \rightarrow 0 \text{ as } K \rightarrow \infty$

Instead look at label equivalence classes: $K = K_0 + K_+$

$$P([\mathbf{c}]) = \sum_{\mathbf{c}\in[\mathbf{c}]} P(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \left(\prod_{k=1}^{K^+} \prod_{j=1}^{m_k-1} (j+\frac{\alpha}{K})\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Good: Recover the CRP as an infinite limit of a standard, widely studied parametric model.
- *Tricky:* Dealing with equivalence classes in the infinite limit, which becomes harder for more complex models

De Finetti's Theorem

• Finitely exchangeable random variables satisfy:

 $p(x_1, \ldots, x_N) = p(x_{\tau(1)}, \ldots, x_{\tau(N)})$ for any permutation $\tau(\cdot)$

- A sequence is infinitely exchangeable if every finite subsequence is exchangeable
- Exchangeable variables need not be independent, but always have a representation with conditional independencies:

Theorem 2.2.2 (De Finetti). For any infinitely exchangeable sequence of random variables $\{x_i\}_{i=1}^{\infty}$, $x_i \in \mathcal{X}$, there exists some space Θ , and corresponding density $p(\theta)$, such that the joint probability of any N observations has a mixture representation:

$$p(x_1, x_2, \dots, x_N) = \int_{\Theta} p(\theta) \prod_{i=1}^N p(x_i \mid \theta) \ d\theta$$
(2.77)

When \mathcal{X} is a K-dimensional discrete space, Θ may be chosen as the (K-1)-simplex. For Euclidean \mathcal{X} , Θ is an infinite-dimensional space of probability measures.

An explicit construction is useful in hierarchical modeling...

What distribution underlies the infinitely exchangeable CRP?

Dirichlet Processes

DP Posteriors and Conjugacy

Proposition 2.5.1. Let $G \sim DP(\alpha, H)$ be a random measure distributed according to a Dirichlet process. Given N independent observations $\bar{\theta}_i \sim G$, the posterior measure also follows a Dirichlet process:

$$p(G \mid \bar{\theta}_1, \dots, \bar{\theta}_N, \alpha, H) = \mathrm{DP}\left(\alpha + N, \frac{1}{\alpha + N}\left(\alpha H + \sum_{i=1}^N \delta_{\bar{\theta}_i}\right)\right)$$
(2.169)

Proof Hint: For any finite partition, we have $p((G(T_1), \ldots, G(T_K)) | \bar{\theta} \in T_k) = Dir(\alpha H(T_1), \ldots, \alpha H(T_k) + 1, \ldots, \alpha H(T_K))$

An observation must be of one of the countably infinite atoms which compose the random Dirichlet measure

DPs and Polya Urns

Theorem 2.5.4. Let $G \sim DP(\alpha, H)$ be distributed according to a Dirichlet process, where the base measure H has corresponding density $h(\theta)$. Consider a set of N observations $\overline{\theta}_i \sim G$ taking K distinct values $\{\theta_k\}_{k=1}^K$. The predictive distribution of the next observation then equals

$$p(\bar{\theta}_{N+1} = \theta \mid \bar{\theta}_1, \dots, \bar{\theta}_N, \alpha, H) = \frac{1}{\alpha + N} \left(\alpha h(\theta) + \sum_{k=1}^K N_k \delta(\theta, \theta_k) \right)$$
(2.180)

where N_k is the number of previous observations of θ_k , as in eq. (2.179).

My variation on the classical balls in urns analogy:

- Consider an urn containing α pounds of very tiny, colored sand (the space of possible colors is Θ)
- Take out one grain of sand, record its color as
- Put that grain back, add 1 extra pound of that color
- Repeat this process...

DPs are Neutral: "Almost" independent

The distribution of a random probability measure G is neutral with respect to a finite partition (T_1, \ldots, T_K) iff

 $G(T_k) \quad \text{is independent of} \quad \left\{ \frac{G(T_\ell)}{1 - G(T_k)} \middle| \ell \neq k \right\}$ given that $G(T_k) < 1$.

Theorem 2.5.2. Consider a distribution \mathcal{P} on probability measures G for some space Θ . Assume that \mathcal{P} assigns positive probability to more than one measure G, and that with probability one samples $G \sim \mathcal{P}$ assign positive measure to at least three distinct points $\theta \in \Theta$. The following conditions are then equivalent:

- (i) $\mathcal{P} = DP(\alpha, H)$ is a Dirichlet process for some base measure H on Θ .
- (ii) \mathcal{P} is neutral with respect to every finite, measurable partition of Θ .
- (iii) For every measurable $T \subset \Theta$, and any N observations $\bar{\theta}_i \sim G$, the posterior distribution $p(G(T) | \bar{\theta}_1, \ldots, \bar{\theta}_N)$ depends only on the number of observations that fall within T (and not their particular locations).

The Stick-Breaking Construction: DP Realizations are Discrete

Theorem 2.5.3. Let $\pi = {\pi_k}_{k=1}^{\infty}$ be an infinite sequence of mixture weights derived from the following stick-breaking process, with parameter $\alpha > 0$:

$$\beta_k \sim \text{Beta}(1,\alpha) \qquad k = 1, 2, \dots \qquad (2.174)$$
$$\pi_k = \beta_k \prod_{\ell=1}^{k-1} (1 - \beta_\ell) = \beta_k \left(1 - \sum_{\ell=1}^{k-1} \pi_\ell \right) \qquad (2.175)$$

Given a base measure H on Θ , consider the following discrete random measure:

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \qquad \qquad \theta_k \sim H \qquad (2.176)$$

This construction guarantees that $G \sim DP(\alpha, H)$. Conversely, samples from a Dirichlet process are discrete with probability one, and have a representation as in eq. (2.176).

DP Stick-Breaking Construction $p(x) = \sum_{k=1}^{\infty} \pi_k f(x \mid \theta_k)$

Stick-Breaking Construction: Sethuraman, 1994

 $\alpha = 10$

 $\alpha = 1$

DP Mixture Models

 $z_i \sim \pi$ $x_i \sim F(\theta_{z_i})$

Samples from DP Mixture Priors

Samples from DP Mixture Priors

Samples from DP Mixture Priors

Views of the Dirichlet Process

- Implicit stochastic process: Finite Dirichlet marginals
- Implicit stochastic process: Neutrality
- Explicit stochastic process: Normalized gamma process
- Explicit stochastic process: Stick-breaking construction
- Marginalized predictions: Polya urn and the CRP
- Infinite limit of finite Dirichlet mixture model

Pitman-Yor Processes

Generalizing the Dirichlet Process

- Distribution on partitions leads to a generalized Chinese restaurant process
- Special cases arise as excursion lengths for Markov chains, Brownian motions, ...

Power Law Distributions

	DP	PY
Number of unique clusters in N observations	$\mathcal{O}(b \log N)$	Heaps' Law: $\mathcal{O}(bN^a)$
Size of sorted cluster weight k	$\mathcal{O}\left(\alpha_b \left(\frac{1+b}{b}\right)^{-k}\right)$	Zipf's Law: $\mathcal{O}ig(lpha_{ab}k^{-rac{1}{a}}$

Natural Language Statistics Goldwater, Griffiths, & Johnson, 2005 Teh, 2006

Jim Pitman

Marc Yor

Hierarchical and Dependent DP Models

- Hierarchical DP and the Chinese restaurant franchise
- Nested DP and the nested Chinese restaurant process
- Hierarchical DP hidden Markov models, switching LDS
- Hierarchical DP hidden Markov trees
- Gaussian processes and correlated mixture models

• ..

Hierarchical Dirichlet Process

Chinese Restaurant Franchise

Nested Dirichlet Process

Hierarchical LDA and the Nested CRP

- *Good:* Topics are arranged in a hierarchy of unknown structure, results tend to be more semantically interpretable
- *Limiting:* Each document is generated by a single path through the tree, cannot combine disparate topics

Infinite Markov Models & The Sequence Memoizer

- Good: Tractably learn and predict with Markov models of infinite depth: Only finite contexts observed in training
- *Limiting:* Structure of tree depends on assumption that modeling sequences of discrete characters

HDP-HMM

Hierarchical Dirichlet Process HMM

- Dirichlet process (DP):
 - Mode space of unbounded size
 - Model complexity adapts to observations
- Hierarchical:
 - Ties mode transition distributions
 - Shared sparsity

HDP-HMM

Hierarchical Dirichlet Process HMM

• Global transition distribution:

 $\beta \sim \operatorname{Stick}(\gamma)$

• Mode-specific transition distributions:

 $\pi_j \sim \mathrm{DP}(\alpha\beta) \quad j = 1, 2, 3, \dots$

sparsity of β is shared

Sticky HDP-HMM

Infinite HMM: Beal, et.al., NIPS 2002

HDP-AR-HMM and HDP-SLDS

HDP Hidden Markov Trees

 $\begin{array}{ccc} z_{ti} \rightarrow & \text{indexes infinite set} & \pi_k \rightarrow & \text{infinite set of state} \\ & \text{of hidden states} & & \text{transition distributions} \\ & z_{ti} \in \{1, 2, 3, \ldots\} & & z_{ti} \sim \pi_{z_{\mathrm{Pa(ti)}}}^{d_{ti}} \end{array}$

HDP-HMM & HDP-HMT cleanly deal with problem of choosing state space size, but retain other Markov model assumptions

1D Gaussian Processes

Squared exponential kernel or radial basis function (RBF) kernel has a countably *infinite* set of underlying feature functions

Why the GP? Provides functions which are smooth, allow flexible correlation modeling, and computationally tractable

Latent Feature Models

Distributions on binary matrices indicating feature presence/absence Depending on application, features can be associated with any parameter value of interest

- Latent Feature model: Each group of observations is associated with a *subset* of the possible latent features
- Factorial power: There are 2^K combinations of K features
- Question: What is the analog of the DP for feature modeling?

From Clustering to Factorial Modeling

Dirichlet Process & Chinese Restaurant Process

- Implicit stochastic process: Finite Dirichlet marginals
- Implicit stochastic process: Neutrality
- Explicit stochastic process: Normalized gamma process
- Explicit stochastic process: Stick-breaking construction
- Marginalized predictions: Polya urn and the CRP
- Infinite limit of finite Dirichlet mixture model

Beta Process & Indian Buffet Process

- Implicit stochastic process: Poisson feature counts
- Implicit stochastic process: Completely random measure
- Explicit stochastic process: Un-normalized beta process
- Explicit stochastic process: Stick-breaking construction(s)
- Marginalized predictions: Indian buffet process
- Infinite limit of finite beta-Bernoulli feature model

Every temporal/spatial/hierarchical DP model should generalize...

Big Challenge: Learning & Inference

Collapsed or marginalize infinite model

- Chinese restaurant process and ddCRP
- Indian buffet process
- Powerful but limited applicability

Fixed truncation of true infinite model

- Truncated stick breaking
- Finite Dirichlet-multinomial
- Finite beta-Bernoulli
- Starting point for most variational methods

Dynamic truncations which avoid approximation

- Slice sampling
- Retrospective MCMC and reversible jump MCMC
- Local search for posterior modes

For the hardest problems, none are satisfactory...