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Nonparametric Clustering
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Clusters, arbitrarily ordered

Large Support: All partitions of the data, from one giant
cluster to N singletons, have positive probability under prior
Exchangeable: Partition probabilities are invariant to
permutations of the data

Desirable: Good asymptotics, computational tractability,
flexibility and ease of generalization...



Chinese Restaurant Process (CRP)
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Distance Dependent CRP
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* Good: Simple, computationally easy generalization which
can make clustering depend on any feature: time, space, ...

» Tricky: Relationship between local distance and global
clustering behavior hard to analyze (no marginal invariance)



Finite Dirichlet Mixtures
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Marginal likelihoods generally expressed as ratios of normalizers



From Assignments to Partitions
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An Infinite Limit
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 Good: Recover the CRP as an infinite limit of a standard,
widely studied parametric model.

« Tricky: Dealing with equivalence classes in the infinite
limit, which becomes harder for more complex models




De Finetti's Theorem

* Finitely exchangeable random variables satisfy:

p(z1,...,xN) = p(;z?,r(l), . :4177(N)) for any permutation 7(-)

« A sequence is infinitely exchangeable if every finite
subsequence is exchangeable

* Exchangeable variables need not be independent, but
always have a representation with conditional independencies:

Theorem 2.2.2 (De Finetti). For any infinitely exchangeable sequence of random
variables {x;};2,, x; € X, there exists some space ©, and corresponding density p(6),
such that the joint probability of any N observations has a mizture representation.:

N
p(z1,29,...,2N) = / p(0) Hp(;z,’z- 1 0) db (2.77)
© i=1

When X is a K—dimensional discrete space, © may be chosen as the (K — 1)—simplex.
For Fuclidean X, © is an infinite-dimensional space of probability measures.

An explicit construction is useful in hierarchical modeling...



De Finetti’'s Directed Graph
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What distribution underlies the infinitely exchangeable CRP?



Dirichlet Processes

E[G(T)] = H(T) G ~ DP(a, H)

For any finite partition
K
JTk=0 TuNTy=0  k#/¢
k=1

the distribution of the measure of those cells is Dirichlet:

(G(Tl), e ooy G(TK)) ~ Dir(aH(Tl), .« ooy OzH(TK))



DP Posteriors and Conjugacy

Proposition 2.5.1. Let G ~ DP(a, H) be a random measure distributed according to

a Dirichlet process. Given N independent observations 0; ~ G, the posterior measure
also follows a Dirichlet process:

N
_ _ 1 .
p(G 1 01, ... ,QN,CY,H) = DP (a + N, TN (QH + ZEZIO(Z)) (2.169)

Proof Hint: For any finite partition, we have

p((G(Th),...,G(Tk)) | 0 € Ty) = Dir(aH (T1) aH(Ty)+1,...,aH(Tk))

ooooo

An observation must be of one of the countably infinite
atoms which compose the random Dirichlet measure



DPs and Polya Urns

Theorem 2.5.4. Let G ~ DP(«a, H) be distributed according to a Dirichlet process,
where the base measure H has corresponding density h(6). Consider a set of N obser-

vations 0; ~ G taking K distinct values {Gk}szl. The predictive distribution of the next
observation then equals

1

K
p(ONs1=0101,...,0n0,0, H) = oy <ah(9) + Zde(e,ek)> (2.180)
' k=1

where Ny is the number of previous observations of Ok, as in eq. (2.179).

My variation on the classical balls in urns analogy:

« Consider an urn containing a pounds of very tiny,
colored sand (the space of possible colors is ©)

« Take out one grain of sand, record its color as 7

- Put that grain back, add 1 extra pound of that color

* Repeat this process... \




DPs are Neutral: “Almost” independent

The distribution of a random probability measure G
Is neutral with respect to a finite partition (Ty,....Tk) iff

- GTe) |,
G(Tk) is independent of { = G(Ty) ’ U+ k}

given that G(Ty) < 1.

Theorem 2.5.2. Consider a distribution P on probability measures G for some space
©. Assume that P assigns positive probability to more than one measure G, and that
with probability one samples G ~ P assign positive measure to at least three distinct
points 0 € ©. The following conditions are then equivalent:

(i) P =DP(a, H) is a Dirichlet process for some base measure H on ©.
(ii) P is neutral with respect to every finite, measurable partition of ©.

(iii) For every measurable T C ©, and any N observations 0; ~ G, the posterior
distribution p(G(T) | 01, ..., HN) depends only on the number of observations that
fall within T (and not their particular locations).



The Stick-Breaking Construction:
DP Realizations are Discrete

Theorem 2.5.3. Let m = {mx}ze; be an infinite sequence of mizture weights derived
from the following stick—breaking process, with parameter a > 0:

B ~ Beta(1, @) k=1,2,... (2.174)
k—1 k—1

Tk :Bk H(l —}Bg) :Bk(l —Z’/Tg) (2175)
(=1 (=1

Given a base measure H on ©, consider the following discrete random measure:
oo
G(0) = md(0,0) O ~ H (2.176)
k=1

This construction guarantees that G ~ DP(a, H). Conversely, samples from a Dirichlet
process are discrete with probability one, and have a representation as in eq. (2.176).



DP Stick-Breaking Construction
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Stick-Breaking Construction: Sethuraman, 1994



Dirichlet Stick-Breaking

v, ~ Beta(l, a)
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DP Mixture Models




Samples from DP Mixture Priors
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Samples from DP Mixture Priors
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Samples from DP Mixture Priors




Views of the Dirichlet Process

Implicit stochastic process: Finite Dirichlet marginals
Implicit stochastic process: Neutrality

Explicit stochastic process: Normalized gamma process
Explicit stochastic process: Stick-breaking construction
Marginalized predictions: Polya urn and the CRP
Infinite limit of finite Dirichlet mixture model



Generalizing the Dirichlet Process

» Distribution on partitions leads to a
generalized Chinese restaurant process

» Special cases arise as excursion lengths
for Markov chains, Brownian motions, ...

Power Law Distributions
DP PY

Number of unique Heaps’ La\C/LV-'
clusters in N (’)(b l0g N) (f)(bN )

observations
Zipf's Law:

Size of sorted 14+b —k —1
cluster weight k O (ab (%) ) O (Oéabk a)

Natural Language Goldwater, Griffiths, & Johnson, 2005
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Hierarchical and Dependent DP Models

« Hierarchical DP and the Chinese restaurant franchise
* Nested DP and the nested Chinese restaurant process
» Hierarchical DP hidden Markov models, switching LDS
« Hierarchical DP hidden Markov trees

« (Gaussian processes and correlated mixture models



Hierarchical Dirichlet Process




Chinese Restaurant Franchise
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Nested Dirichlet Process
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Hierarchical LDA and the Nested CRP
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« (Good: Topics are arranged in a hierarchy of unknown
structure, results tend to be more semantically interpretable

* Limiting: Each document is generated by a single path
through the tree, cannot combine disparate topics
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Infinite Markov Models &
The Sequence Memoizer

Good: Tractably learn and predict with Markov models of
infinite depth: Only finite contexts observed in training
Limiting: Structure of tree depends on assumption that
modeling sequences of discrete characters



HDP-HMM
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Hierarchical Dirichlet Process HMM

 Dirichlet process (DP):
» Mode space of unbounded size

» Model complexity adapts to
observations

 Hierarchical:
» Ties mode transition distributions
» Shared sparsity
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Hierarchical Dirichlet Process HMM
(Global transition distribution:
B ~ Stick(7)

Mode-specific transition distributions:

m; ~DP(af) j=1,2,3,...
sparsity of 3 is shared
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Sticky HDP-HMM
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HDP-AR-HMM and HDP-SLDS

/ HDP-AR-HMI\N

O = {Agkg’ E(k)}

2

HDP-SLDS
0, = {A(k), g(k),R}




Z+; —  indexes infinite set T — infinite set of state
of hidden states transition distributions
o At
th E {17 2, 3, o o .} Zt?f TrzPa(ti)

HDP-HMM & HDP-HMT cleanly deal with problem of choosing
State space size, but retain other Markov model assumptions



1D Gaussian Processes
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Squared exponential kernel or radial basis function (RBF) kernel
has a countably infinite set of underlying feature functions



2D Gaussian Processes
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Paisley 2011
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Why the GP? Provides functions which are smooth,
allow flexible correlation modeling, and computationally tractable



Latent Feature Models

(a) K features (b) K features (c) K features
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Distributions on Depending on application, features
binary matrices can be associated with any
indicating feature parameter value of interest

presence/absence

« Latent Feature model. Each group of observations is
associated with a subset of the possible latent features

« Factorial power: There are 2X combinations of K features

* Question: What is the analog of the DP for feature modeling?



From Clustering to Factorial Modeling

Dirichlet Process & Chinese Restaurant Process

* Implicit stochastic process: Finite Dirichlet marginals

* Implicit stochastic process: Neutrality

« Explicit stochastic process: Normalized gamma process
« Explicit stochastic process: Stick-breaking construction
« Marginalized predictions: Polya urn and the CRP

* Infinite limit of finite Dirichlet mixture model

Beta Process & Indian Buffet Process
 Implicit stochastic process: Poisson feature counts
« Implicit stochastic process: Completely random measure
» EXxplicit stochastic process: Un-normalized beta process
« Explicit stochastic process: Stick-breaking construction(s)
« Marginalized predictions: Indian buffet process
« Infinite limit of finite beta-Bernoulli feature model

Every temporal/spatial/hierarchical DP model should generalize...



Big Challenge: Learning & Inference

Collapsed or marginalize infinite model

» Chinese restaurant process and ddCRP
* Indian buffet process
« Powerful but limited applicability

Fixed truncation of true infinite model

* Truncated stick breaking

* Finite Dirichlet-multinomial

* Finite beta-Bernoulli

« Starting point for most variational methods

Dynamic truncations which avoid approximation
» Slice sampling
« Retrospective MCMC and reversible jump MCMC
* Local search for posterior modes

For the hardest problems, none are satisfactory...



