
CSCI 2950-P Homework 2: Inference & Learning
for Undirected Graphical Models

Brown University, Spring 2013

Homework due at 11:59pm on March 22, 2013

We begin by designing algorithms for reliable communication in the presence of noise.
We focus on error correcting codes based on highly sparse, low density parity check (LDPC)
matrices, and use the sum-product variant of the loopy belief propagation (BP) algorithm
to estimate partially corrupted message bits. For background information on LDPC codes,
see Chap. 47 of MacKay’s Information Theory, Inference, and Learning Algorithms, which
is freely available online: http://www.inference.phy.cam.ac.uk/mackay/itila/.

We consider rate 1/2 error correcting codes, which encode N message bits using a 2N -
bit codeword. LDPC codes are specified by a N × 2N binary parity check matrix H,
whose columns correspond to codeword bits, and rows to parity check constraints. We
define Hij = 1 if parity check i depends on codeword bit j, and Hij = 0 otherwise. Valid
codewords are those for which the sum of the bits connected to each parity check, as indicated
by H, equals zero in modulo-2 addition (i.e., the number of “active” bits must be even).
Equivalently, the modulo-2 product of the parity check matrix with the 2N -bit codeword
vector must equal a N -bit vector of zeros. As illustrated in Fig. 1, we can visualize these
parity check constraints via a corresponding factor graph. The parity check matrix H can
then be thought of as an adjacency matrix, where rows correspond to factor (parity) nodes,
columns to variable (codeword bit) nodes, and ones to edges linking factors to variables.

For the LDPC codes we consider, we also define a corresponding 2N×N generator matrix
G. To encode an N -bit message vector we would like to transmit, we take the modulo-2
matrix product of the generator matrix with the message. The generator matrix has been
constructed (via linear algebra over the finite field GF(2)) such that this product always
produces a valid 2N -bit codeword. Geometrically, its columns are chosen to span the null
space of H. We use a systematic encoding, in which the first N codeword bits are simply
copies of the message bits. The problems below use precomputed (G,H) pairs produced by
Neal’s LDPC software: http://www.cs.utoronto.ca/~radford/ldpc.software.html.

Question 1:

a) Implement code that, given an arbitrary parity check matrix H, constructs a corresponding
factor graph. The parity check factors should evaluate to 1 if an even number of adjacent
bits are active (equal 1), and 0 otherwise. Your factor graph representation should inter-
face with some implementation of the sum-product algorithm, either your own code from

1

Figure 1: A factor graph representation of a LDPC code linking four factor (parity constraint)
nodes to eight variable (message bit) nodes. The unary factors encode noisy observations of the
message bits from the output of some communications channel.

Homework 1, or the provided solution code. Define a small test case, and verify that your
graphical model assigns zero probability to invalid codewords.

b) Load the N = 128-bit LDPC code provided in ldpc36-128.mat. To evaluate decoding
performance, we assume that the all-zeros codeword is sent, which always satisfies any
set of parity checks. Using the rand method, simulate the output of a binary symmetric
channel: each transmitted bit is flipped to its complement with error probability ε = 0.05,
and equal to the transmitted bit otherwise. Define unary factors for each variable node
which equal 1 − ε if that bit equals the “received” bit at the channel output, and ε oth-
erwise. Run the sum-product algorithm for 50 iterations of a parallel message update
schedule, initializing by setting all variable-to-factor messages to be constant. After the
final iteration, plot the estimated posterior probability that each codeword bit equals one.
If we decode by setting each bit to the maximum of its corresponding marginal, would we
find the right codeword?

c) Repeat the experiment from part (b) for 10 random channel noise realizations with error
probability ε = 0.05. For each trial, run sum-product for 50 iterations. After each iter-
ation, determine an estimated codeword by taking the maximum of each bit’s marginal
distribution, and evaluate the Hamming distance (number of differing bits) between the
estimated and true (all-zeros) codeword. On a single plot, display 10 curves showing
Hamming distance versus iteration for each Monte Carlo trial. Is BP a reliable decoding
algorithm?

d) Repeat part (c), but with a higher error probability ε = 0.09. Discuss any qualitative
differences in the behavior of the loopy BP decoder.

e) Load the N = 1600-bit LDPC code provided in ldpc36-1600.mat. Using this, we will
replicate the visual decoding demonstration from MacKay’s Fig. 47.5. Start by converting
a 40 × 40 binary image to a 1600-bit message vector; you may use the logo image we
provide, or create your own. Encode the message using the provided generator matrix G,
and add noise with error probability ε = 0.08. For this input, plot images showing the
output of the sum-product decoder after 0, 1, 2, 3, 5, 10, 20, and 30 iterations. The rem

2

method may be useful for computing modulo-2 sums. You can use the reshape method to
easily convert between images and rasterized message vectors.

f) Repeat part (e) with a higher error probability of your choice, and discuss differences.

We now develop algorithms for learning, from complete observations, undirected graphical
models of N binary variables xs ∈ {0, 1}. We focus on models with pairwise dependencies,
and use a minimal parameterization which allocates one parameter θs for each node s ∈ V ,
and one parameter θst for each edge (s, t) ∈ E . The overall joint distribution is then:

p(x | θ) = exp

{∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt − Φ(θ)

}
(1)

Φ(θ) = log

(∑
x

exp

{∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

})
(2)

The questions below use voting records from senators during the 112th United States Congress
(January 3, 2011 until January 3, 2013), as collected by voteview.org. We provide data for
N = 13 senators, and all L = 486 bills, in the binary matrix senatorVotes. If xs` is the vote
of senator s on measure `, we let xs` = 1 if their vote was “Yea”, and xs` = 0 otherwise (a
vote of “Nay”, or more rarely a failure to vote). We also provide the last names, home states,
and party affiliations (1 for Democrat, 2 for Republican) of each Senator. For learning, we
interpret the bills as L independent samples from some joint distribution on Senate votes.

For some of the questions below, you need to solve L1-regularized optimization problems.
We recommend using Schmidt’s L1General Matlab package, which is available at:
http://www.di.ens.fr/~mschmidt/Software/L1General.html.

Question 2:

a) Consider a pairwise binary MRF as in eq. (1). Suppose that the graph is fully disconnected
(E = ∅). Derive a closed form expression for the maximum likelihood (ML) estimates of
the node parameters θs. Compute these ML estimates using the full vote dataset, and plot
the estimated θs values for each senator.

b) Now allow the pairwise binary MRF of eq. (1) to have some arbitrary, fixed set of edges.
Consider the joint log-likelihood of a dataset with L independent observations. Derive an
expression for the gradient of this log-likelihood with respect to some vectorized ordering
of the parameters θ. Simplify your answer to be as explicit as possible. Write a function
that, given some training dataset, computes the log-likelihood objective value and gradient
corresponding to any candidate model parameters θ. Hint: It may be helpful to use your
previously developed code for exhaustive, enumeration-based inference.

c) Using the gradient objective from part (b), and an optimization package such as L1General,
write code which computes the ML estimate of the model parameters θ. Assume a fully
connected pairwise graphical model, for which E contains an edge linking every pair of
nodes. Apply this code to the full Senate voting record, and plot the log-likelihood of the
estimated model after each optimization iteration. Initialize the node parameters θs to the
ML estimates from part (a), and the edge parameters θst = 0.

3

d) Can the fully connected, pairwise graphical model estimated in part (c) represent an arbi-
trary joint distribution on N binary variables? If so, explain why. If not, discuss which
statistics of the data it does capture.

e) Consider two different models learned from the voting data: the factorized model from
part (a), and the fully connected model from part (c). For each model, compute the
binary entropy of the corresponding joint distribution:

H(θ) = −
∑
x

p(x | θ) log2 p(x | θ)

What do these numbers suggest about the voting patterns of US senators?

f) Suppose that we place a factorized Laplacian prior on our model parameters:

p(θ | λ) =
∏
s∈V

Lap(θs | λs)
∏

(s,t)∈E

Lap(θst | λst)

Lap(θ | λ) =
λ

2
exp{−λ|θ|}

Derive an objective whose minimum, given a dataset with L training examples and fixed
hyperparameters λ, gives the maximum a posteriori (MAP) estimate of θ. Adapt the code
from part (c) to numerically compute MAP estimates.

g) Let λst = λ̄ for all pairs of nodes, and λs = 0 (the limit as the variance of the node
parameter priors approaches infinity). Use the votes for the first 400 bills as a training
set, and the remaining 86 bills as a validation set. For a range of possible λ̄, find MAP
parameter estimates. For each learned model, evaluate the log-probability of the validation
data, and plot these probabilities as a function of λ̄. Use a logarithmic scale when choosing
candidate λ̄, and when making this plot.

h) Suggest a way of associating graphical structures to the models learned in part (g). Plot
the graph corresponding to the λ̄ which produced the highest validation log-likelihood, as
well as the graph with the smallest number of edges that was nevertheless connected. In
both cases, label the nodes of the graphs with the names of the corresponding senators.

Consider the undirected graphical model in Figure 2, in which we assume the model potentials
are associated with the cliques of the graph. In the questions below, assume that each variable
in the input graphical model takes one of M discrete states.

Question 3:

a) By adding appropriate edges, create a triangulated version of the graph in Fig. 2. Hint:
Recall that certain simple inference algorithms implicitly produce graph triangulations.

b) Construct a junction tree corresponding to the triangulated graph from part (a). Describe
how you verify that your junction tree is valid.

4

7 8

4 5

1 2

9

6

3

10

Figure 2: An undirected graphical model of ten random variables.

c) Suppose that you use this junction tree to implement the Shafer-Shenoy inference algo-
rithm, with an optimal schedule that computes each message once. What are the computa-
tion requirements? What are the storage requirements? You may use order-of-magnitude
estimates to quantify individual message updates, but your analysis should account for the
topology and node cardinalities of this particular junction tree.

5

