
CSCI 2950-P Homework 3: Inference & Learning
for Temporal State Space Models

Brown University, Spring 2013

Homework due at 11:59pm on April 12, 2013

In this problem set, we explore inference and learning algorithms for the switching state
space model, which is summarized by the graphical model of Fig. 1. Our observations are a
sequence of real-valued vectors, yt ∈ Rp, which depend on corresponding latent state vectors
xt ∈ Rd. The temporal evolution of the state and observation vectors is influenced by discrete
“switch” variables zt ∈ {1, 2, . . . , K} as follows:

p(yt | xt, zt = k) = Norm(yt | Ckxt, Rk)

p(xt | xt−1, zt = k) = Norm(xt | Akxt−1, Qk)

If K = 1 so that zt = 1 for all times, we recover a standard linear Gaussian state space model.
In this case, we omit the subscripts above and denote the model parameters by {A,C,Q,R}.
More generally, the discrete switch variables evolve according to a Markov chain:

p(zt | zt−1 = k) = Cat(zt | πk)

Thus, πk` is the probability that zt = ` given zt−1 = k. We assume that z1 is uniformly
distributed across the K possible switch modes, and p(x1) = Norm(x1 | 0, Id).

In general, many different state space models may assign equal likelihood to a given
dataset, due to generalized versions of the rotational ambiguities underlying PCA and factor
analysis models. For all models we consider, we thus constrain C = [Ip O], where O is a
p× (d− p) matrix of zeros, and Ip is a p× p identity matrix. When d = p, we have C = Ip.

For some experiments, we define our state space model parameters to take one of a few
canonical forms. The constant position model takes d = p, and

A = Ip, Q = σ2
xIp, R = σ2

yIp,

so that the observations are noisy estimates of an underlying random walk. The constant
velocity model generates more smooth motions by taking d = 2p, and

A =

[
Ip Ip
Op Ip

]
, Q =

[
σ2
xIp Op

Op σ2
vIp

]
, R = σ2

yIp,

where Op is a p×p matrix of zeros. More generally, we will use the expectation maximization
(EM) algorithm to learn model parameters {A,Q,R} from observation sequences.

1

z1

x1

y1

z2

x2

y2

z3

x3

y3

z4

x4

y4

Figure 1: A directed graphical model representing a switching state space model. Discrete switch
variables zt evolve according to a Markov chain. At each time step, the switch zt selects which
state space model determines the continuous state xt and observations yt.

The following questions ask you to implement variants of the Kalman filter, Kalman
smoother, and EM algorithm for linear-Gaussian state space models. For a compact reference
to the required update equations, see Parameter Estimation for Linear Dynamical Systems,
Ghahramani and Hinton, Technical Report CRG-TR-96-2, Feb. 1996. You can use results
from this report, or other course readings, without proof.

Question 1: Tracking, Kalman Filters, & Particle Filters

Throughout this question we assume a non-switching state space model (K=1).

a) Implement the Kalman filter, which recursively computes p(xt | y1, . . . , yt) for any linear
state space model, parameterized as above. Given a sequence of T observations, your code
should produce a d × T matrix of posterior mean estimates, and a d × d × T array of
posterior covariance estimates.

b) Consider the p = 1-dimensional observation sequence we provide in track. It was sampled
from a constant velocity model with d = 2, σ2

x = 1
3
σ2
v , σ

2
v = 0.12, σ2

y = 20. Using this correct
model, apply your Kalman filter code. On one set of axes, plot the observation sequence,
the posterior mean of the first (position) component of the state, and posterior confidence
intervals. The confidence intervals should be determined as the posterior mean plus or
minus two times the posterior standard deviation of the first state component.

c) Again consider the track data, and suppose that you incorrectly assumed it had been
generated by a constant position model with d = 1, and σ2

x, σ
2
y as in part (b). Apply your

Kalman filter code using this alternative model, and plot your results as in part (b).

d) Implement a basic “bootstrap” particle filter, which proposes particles from the state tran-
sition distribution p(xt | xt−1), reweights with the observation likelihood p(yt | xt), and
resamples weighted particles (with replacement) at each time step.

2

e) Apply your particle filter implementation to the model and data from part (b), using 100
particles. At each time step, estimate the posterior mean as the weighted mean (before
resampling) of the current particle locations. Repeat this experiment five times, and on
a single set of axes, plot the five particle filter mean estimates together with the optimal
Kalman filter mean estimates.

f) Repeat part (e) using 500 particles and 1000 particles. Discuss the robustness of the
particle filter, compared to the Kalman filter.

g) We finish by exploring robustness to outliers. Again consider the track data and inde-
pendently at each time step t, with probability 0.1 replace the true observation by a sample
yt ∼ Norm(0, 402). Apply your Kalman filter to this corrupted data, with the (now in-
accurate) original observation likelihood. Also apply a particle filter with 1000 particles,
and an observation likelihood that correctly models the outlier process. Plot the corrupted
observation data, as well as the mean estimates for both methods, and discuss.

Question 2: Learning, Kalman Smoothers, & Expectation Maximization (EM)

Throughout this question we assume a non-switching state space model (K=1).

a) Implement a Kalman smoother which efficiently computes p(xt | y1, . . . , yT) for any linear
state space model. Use the Rauch-Tung-Striebel (RTS) smoothing algorithm (see Ghahra-
mani and Hinton, or Chap. 15 of Jordan’s textbook), which combines the Kalman filter
from part 1(a) with a backwards smoothing pass.

b) Apply your Kalman smoother to the constant velocity model and track data from part
1(b). On one set of axes, plot the observation sequence, the posterior mean of the first
(position) component of the state, and posterior confidence intervals. Compare to the
estimates produced by the Kalman filter.

c) The marginal log-likelihood of an observation sequence y, integrating over states x for
some fixed state space model parameters, can be written as follows:

log p(y) = log p(y1) +
T−1∑
t=1

log p(yt+1 | y1, . . . , yt)

= log

∫
X1

p(y1 | x1)p(x1) dx1 +
T−1∑
t=1

log

∫
Xt

p(yt+1 | xt)p(xt | y1, . . . , yt) dxt

Use these expressions to efficiently evaluate the log-likelihood in closed form, based on the
output of the Kalman filter. Write code implementing this log-likelihood computation.

d) Implement the EM algorithm for learning linear state space models. Follow Ghahramani
and Hinton, except keep C fixed (as previously discussed) rather than re-estimating it
in the M-step. Assume the first E-step is initialized with some set of valid state space
model parameters. After each M-step, compute the log-likelihood bound from part (c);
these bounds should monotonically increase. Hint: You must use Kalman filter estimates

3

based on the latest model parameters in evaluating this bound, not those from the previous
E-step. To debug, create a simple model, generate synthetic data from that model, and
verify that EM recovers similar parameters.

e) Consider the p = 2-dimensional observation sequence we provide in spiral, and use the
EM algorithm to learn a d = 2-dimensional state space model. Initialize with a constant
position model with σ2

x = 1, σ2
y = 1. Run the EM algorithm for 100 iterations, plot the

marginal log-likelihood versus iteration, and report the learned parameters after the final
iteration. Plot the observation sequence, and the output of the Kalman smoother after the
final iteration, as overlaid 2-dimensional curves.

f) Repeat part (e) using the p = 2-dimensional observation sequence we provide in attractor.

Question 3: Tracking in Switching State Space Models

We now consider the full switching state space model, and apply it to modeling the tracked
motions of dancing honeybees. You can read more about this data at

http://www.cc.gatech.edu/~borg/ijcv_psslds/

Honeybees communicate via dances that can be approximated as switching among K = 3
behaviors: waggle, turn left, turn right. Using training data in which behaviors zt and bee
poses yt are both available, we will learn a switching state space model of bee motion.

We provide three sequences of bee motion. In the questions below we analyze three train-
test splits, where each split uses two training sequences and one test sequence. Our bee
pose representation yt is p = 4-dimensional: two position coordinates, and two orientation
coordinates. For an orientation angle θ, the orientation coordinates are cos(θ), sin(θ), and we
approximate their behavior-specific conditional distributions as Gaussian to simplify learning
and inference. To estimate an angle from inferred angle coordinates, first renormalize those
coordinates to lie on the unit circle, and then apply an inverse-trigonometric function.

a) Assuming training data in which the active behaviors zt are observed, specify formulas for
maximum likelihood estimation of the transition parameters π. Compute and report these
ML estimates for each training split.

b) Suppose that your state space model training data is not a single sequence, but rather
multiple sequences independently sampled from a common set of {A,C,Q,R} model pa-
rameters. Specify an extension of the EM algorithm from problem 2 suitable for this case.
Justify your approach, but a formal derivation of all steps is not required. Hint: Dur-
ing the E-step, the sequences are independent conditioned on the model parameters. The
M-step should aggregate information across all sequences.

c) In general, bees stay in maneuver modes for many time steps before switching to other
maneuver types. Extract “segments” corresponding to the contiguous time blocks where
zt = k for k = 1, 2, 3, and store these as a set of training sequences for learning the
corresponding state space model parameters {Ak, Ck, Qk, Rk}.

d) Set d = p = 4, and use the EM algorithm from part (b) to learn a state space model for
each of the three behavior modes, using the data from part (c). In each case, initialize

4

using a constant position model with σ2
x = 1, σ2

y = 1. For each train-test split, plot the
log-likelihood bounds after each iteration, and report the learned model parameters.

e) We now apply the learned state space model to track bee motion. Simulating the behavior
of sometimes-inaccurate vision-based trackers, generate a noisy observation sequence ỹ
which depends on the true poses y as follows:

p(ỹt | yt) = 0.9Norm(ỹt | yt, 0.1I4) + 0.1Norm(ỹt | 0, 5I4)

Derive an explicit formula for p(ỹt | xt).

f) Apply a “bootstrap” particle filter to bee tracking, where each particle represents a joint
configuration (zt, xt) of the hidden variables at a given time point. For each train-test
split, use switching state-space model parameters learned in parts (a) and (d), a noisy
observation sequence generated as in part (e), and 1000 particles.

g) Analyze the results from part (f). For each sequence, plot (i) the inferred probability that
each behavior is active over time, together with the true held-out behavior labels; (ii) the
posterior mean of the bee’s two-dimensional position over time, together with the true
position; (iii) the posterior mean of the bee’s orientation angle over time (after mapping
angle coordinates to the unit circle), together with the true angle.

h) Optional: Repeat parts (d-g) with a higher state dimension of d = 2p = 8. Initialize with
a constant velocity model with σ2

x = 0.1, σ2
v = 1, σ2

y = 1.

Question 4: Gibbs Sampling for Switching State Space Models

While particle filters provide a natural approach for tracking in switching state space models,
smoothed analysis of batch observation sequences is more challenging. One approach is to
use a Gibbs sampler, which samples discrete modes z and continuous states x from their joint
posterior given known model parameters. In this question, we derive (but do not implement)
the Gibbs sampler update equations.

a) Let z\t denote all modes except zt. Derive the form of p(zt | z\t, x, y), and give an explicit
formula for the parameters of this K-dimensional categorical distribution.

b) Let x\t denote all continuous states except xt. Derive the form of p(xt | x\t, z, y), and
give an explicit formula for this distribution as a member of some standard family of
continuous probability densities.

c) The mixing rate of Gibbs samplers can often be improved by blocked resampling of groups
of variables. Derive the form of p(zt, xt | z\t, x\t, y). Suppose you have code available to
sample from categorical distributions, and from multivariate normal distributions. De-
scribe how you could use this code to draw a correct joint sample (zt, xt).

5

