
CSCI 2950-P Homework 4: Gibbs Samplers
for Stochastic Block Models of Relational Data

Brown University, Spring 2013

Homework due at 11:59pm on April 26, 2013

In this problem set, we develop Markov chain Monte Carlo (MCMC) learning algorithms
for a family of relational models, which are commonly used to model biological or social
networks. Consider a set of N nodes, representing entities to be modeled. For node pairs
i 6= j, we let yij = 1 if there is a relationship (e.g., friendship) from entity i to entity j, i 6= j,
and yij = 0 otherwise. We focus on directed graphs, for which there is a distinct binary
relationship yji from entity j to entity i. For some experiments, the yij variables will only
be observed for a (known) subset of ordered entity pairs (i, j). All of your derivations and
code should support such partial observations.

We model such relational data as being generated from K unknown latent communities,
indexed by integers k = 1, . . . , K. For each pair of communities k, `, we define an interaction
probability Wk`, and place a uniform prior distribution:

Wk` ∼ Beta(1, 1), 1 ≤ k, ` ≤ K.

We will then use Gibbs samplers to learn this non-symmetric K ×K matrix of community
interaction probabilities, as well as community memberships for individual entities.

The stochastic block models we consider are closely related to probabilistic mixture models
and the latent Dirichlet allocation (LDA) topic model, and you may find it helpful to review
Gibbs samplers for those models. Also remember that the Dirichlet distribution is conjugate
to multinomial likelihoods, and the beta distribution to Bernoulli likelihoods.

Question 1: Stochastic Block Models

The basic stochastic block model assumes each entity i is a member of a single latent com-
munity zi, sampled according to

zi ∼ Cat(π), i = 1, . . . , N.

The K-dimensional distribution of community frequencies π has a symmetric Dirichlet prior:

π ∼ Dir(α, . . . , α).

For all experiments below, assume α = 1. For any pair of nodes i 6= j, their relationship link
variables are generated according to

p(yij = 1 | zi = k, zj = `,W ) = Wk`, p(yji = 1 | zi = k, zj = `,W ) = W`k.

Remember that we may only have partial observations of these link variables.
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a) Given fixed parameters π,W , and observations y for some subset of ordered entity pairs,
derive a formula for the posterior distribution p(zi | z\i, y, π,W ). Here, z\i denotes the
community assignments for all entities except node i.

b) Given fixed entity assignments z, derive formulas for the posterior distributions of the
model parameters, p(π | y, z,W ) and p(W | y, z, π). These should be members of some
standard exponential family of distributions.

c) Implement a Gibbs sampler using the formulas from parts (a,b). Each iteration should
resample each of the z,W, π variables once. Initialize by sampling the parameters π,W
from their prior distributions, and z from its corresponding posterior. Also derive a
formula for, and compute at each iteration, the log-probability log p(y, z,W, π).

d) To test your sampler, construct a synthetic dataset with N = 30 entities, 10 in each of
K = 3 communities. Generate links yij by assuming a within-community link probability
of Wkk = 0.95, and a between-community link probability of Wk` = 0.10, ` 6= k. Then given
only the observed links y, explore how accurately the sampler recovers the underlying W, z
variables. Run your sampler for 500 iterations from each of 5 random initializations, and
plot the resulting log-likelihood curves on a single set of axes. After each iteration, compute
the Rand index (see provided script) between the true assignments and the sampled z, and
plot these scores versus iteration.

e) Apply the stochastic block model to the Sampson monk data. Allow K = 3 communities,
run the sampler for 500 iterations from each of 5 random initializations, and again plot
log-likelihoods and Rand indexes (from the true faction labels) versus iteration.

Question 2: Mixed Membership Stochastic Block Models

The mixed membership stochastic block model generalizes basic block models by allowing
each entity to participate in multiple communities. We begin by sampling a K-dimensional
community membership distribution for each entity:

πi ∼ Dir(α, . . . , α), i = 1, . . . , N.

For all experiments below, assume α = 1. Observation yij is then determined by link-specific
source and receiver community assignments, sij and rij, sampled as follows:

p(yij = 1 | rij = k, sij = `,W ) = Wk`, rij ∼ Cat(πi), sij ∼ Cat(πj).

Intuitively, sij, rij are the communities which “explain” the interactions of node i with node j.

a) Given fixed parameters π,W , and observations y for some subset of ordered entity pairs,
derive a formula for the posterior distributions p(r | s, y, π,W ) and p(s | r, y, π,W ). Are
the indicators rij, sij for different links conditionally independent?

b) Given fixed link assignments r, s, derive formulas for the posterior distributions of the
model parameters, p(π | y, r, s,W ) and p(W | y, r, s, π). These should be members of
some standard exponential family of distributions.
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c) Implement a Gibbs sampler using the formulas from parts (a,b). Each iteration should
resample each of the r, s,W, π variables once. Initialize by sampling the parameters π,W
from their prior distributions. Also derive a formula for, and compute at each iteration,
the log-probability log p(y, r, s,W, π).

d) Apply your sampler to the synthetic data from part 1(d), assuming K = 3, running for
500 iterations from each of 5 initializations, and plotting log-likelihood versus iteration.
Looking at the result from the highest-likelihood Markov chain, does the mixed membership
model provide a reasonable interpretation of this data?

e) Apply your sampler to the Sampson monk data, assuming K = 3, running for 500 iter-
ations from each of 5 initializations, and plotting log-likelihood versus iteration. Looking
at the result from the highest-likelihood Markov chain, how many monks have significant
membership in more than one community?

f) The basic sampler outlined above may mix slowly, due to correlations between the source
and receiver link variables. To address this, derive a formula for the joint posterior distri-
bution p(r, s | y, π,W ). Are the paired indicators (rij, sij) for different links conditionally
independent? Hint: You should be able to sample from this conditional distribution by
considering appropriate K2-dimensional categorical distributions.

g) Repeat the experiments from parts (d,e) using the blocked sampler, including creation of
log-likelihood plots. Are there substantial performance differences between the samplers?

Question 3: Link Prediction

In this question, we use our mixed membership models to predict the presence of likely links
in a partially sampled social network. We focus on a network describing advice relationships
among N = 71 attorneys in a New England law firm.

a) Write code which randomly subsamples half of the yij link variables to use for training,
and reserves the other half for testing. Note that the training data is half of the directed
node pairs (potential links), not half of the actually present links.

b) Using a single train-test split of the attorney network, apply your Gibbs sampler from
problem 1, as well as the blocked Gibbs sampler from problem 2. For both models assume
K = 6, run the sampler for 500 iterations from each of 3 random initializations, and
reserve the final sample from the most probable Markov chain.

c) For the standard block model, compute the posterior distribution of each of the test link
variables yij, given the parameters z, π,W learned during training. Use the held-out test
labels to create an ROC curve summarizing classification performance.

d) For the mixed membership block model, compute the posterior distribution of each of the
test link variables yij, given the parameters π,W learned during training and marginalizing
rij, sij. Use the held-out test labels to create an ROC curve summarizing classification
performance, and compare to part (c).

e) With more computational effort, is there a more sophisticated way you could predict test
link variables based on the output of your Gibbs sampling algorithms?
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