
Probabilistic 
Graphical Models 

Special Topics in Machine Learning 
Brown University CSCI 2950-P, Spring 2013 

Tuesdays & Thursdays, 1:00-2:20pm, CIT506 

Instructor:  Erik Sudderth 
Teaching Assistant:  Jason Pacheco 



Learning from Structured Data 



Hidden Markov Models (HMMs) 

“Conditioned on the present, the past and 
future are statistically independent”  

Visual Tracking 



Kinematic Hand Tracking 

Kinematic 
Prior 

Structural 
Prior 

Dynamic 
Prior 



Dynamic Bayesian Networks 

Murphy, 
2002 



Nearest-Neighbor Grids 

unobserved or hidden variable 
local observation of 

Low Level Vision 

•  Image denoising 

•  Stereo 

•  Optical flow 

•  Shape from shading 

•  Superresolution 

•  Segmentation 



Wavelet Decompositions 
•  Bandpass decomposition 

of images into multiple 
scales & orientations 

•  Dense features which 
simplify statistics of 
natural images 

* 



Hidden Markov Trees 

•  Hidden states model 
evolution of image 
patterns across scale and 
location 



Medical Diagnosis 

Parameterization: Noisy-OR, logistic regression, generalized 
linear models… 



Low Density Parity Check 
(LDPC) Code 
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Sensor localization 



12 

A	   B	  
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Sensor localization 



Example Data for a Topic Model 

D. Blei, 2008 



Example Output: 4 Topics 

D. Blei, 2008 

Columns sorted by probability of word given topic. 



LDA: Intuition 

D. Blei, 2008 
Every document discusses a mixture of multiple topics. 



LDA: Generative Model 

D. Blei, 2008 



LDA: Graphical Model 

D. Blei, 2008 



Graphical Models 
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Directed 
Bayesian Network Factor Graph Undirected 

Graphical Model 



set of      nodes  

set of edges             connecting nodes   

Nodes             are associated with random variables 

An undirected graph     is defined by 

Undirected Graphical Models 

Graph Separation 

Conditional 
Independence 



Inference in Graphical Models 

Maximum a Posteriori (MAP) Estimates 

•  Provide both estimators and confidence measures 

•  Sufficient statistics for iterative parameter estimation 

Posterior Marginal Densities 

observations (implicitly encoded via compatibilities)  



Why the Partition Function? 

•  Sensitivity of physical systems to external stimuli 
Statistical Physics 

Hierarchical Bayesian Models 
•  Marginal likelihood of observed data 

•  Fundamental in hypothesis testing & model selection 

Cumulant Generating Function 
•  For exponential families, derivatives with respect 

to parameters provide marginal statistics 

PROBLEM:  Computing Z in general graphs is NP-complete  



Exact Inference 
MESSAGES:  Sum-product or belief propagation algorithm 

number of nodes 
discrete states  
for each node 

Belief Prop: 
Brute Force: 

Computational cost: 



Continuous Variables 

Discrete State Variables  
Ø Messages are finite vectors 

Ø Updated via matrix-vector products 
Gaussian State Variables  
Ø Messages are mean & covariance 

Ø Updated via information Kalman filter 
Continuous Non-Gaussian State Variables  
Ø Closed parametric forms unavailable 

Ø Discretization can be intractable even 
with 2 or 3 dimensional states 



Variational Inference: An Example 

• Choose a family of approximating distributions 
which is tractable.  The simplest example: 

• Define a distance to measure the quality of different 
approximations.  One possibility: 

• Find the approximation minimizing this distance 



Advanced Variational Methods 
•  Exponential families 

•  Mean field methods: naïve and structured 

•  Variational EM for parameter estimation 

•  Loopy belief propagation (BP) 

•  Bethe and Kikuchi entropies 

•  Generalized BP, fractional BP 

•  Convex relaxations and bounds 

•  MAP estimation and linear programming 

• ……… 



Markov Chain Monte Carlo 

•  At each time point, state          is a configuration of all the 
variables in the model: parameters, hidden variables, etc. 

•  We design the transition distribution                       so that 
the chain is irreducible and ergodic, with a unique 
stationary distribution 

z(0) z(1) z(2) z(t+1) ⇠ q(z | z(t))

z(t)

q(z | z(t))

p⇤(z)

p⇤(z) =

Z

Z
q(z | z0)p⇤(z0) dz0

•  For learning, the target equilibrium distribution is usually the 
posterior distribution given data x:   

•  Popular recipes:  Metropolis-Hastings and Gibbs samplers 
p

⇤(z) = p(z | x)



Sequential Monte Carlo 
Particle Filters, Condensation, Survival of the Fittest,… 

Sample-based density estimate 

Weight by observation likelihood 

Resample & propagate by dynamics 

•  Nonparametric approximation 
to optimal BP estimates 

•  Represent messages and 
posteriors using a set of 
samples, found by simulation  



Course Evaluation 

•  Four equally weighted assignments 
•  Each assignment available for two weeks before due date 
•  Combine mathematical derivations, algorithm design, 

programming, and analysis of real datasets 
Ø Multiscale models of images, objects, visual scenes 
Ø Particle filters for localization and tracking 
Ø  Topic models of text document collections 
Ø … 

Homeworks: 60% 

•  Proposal: 1-3 pages, due on March 22 (5%) 
•  Presentation: ~10 minutes, on May 7 (10%) 
•  Conference-style technical report, due on May 13 (25%) 

Final Project: 40% 



Final Projects 

•  Identify a family of graphical models suitable for a 
particular application, try baseline learning algorithms 

•  Propose, develop, and experimentally test a new type of 
graphical learning or inference algorithm  

•  Experimentally compare different models or algorithms on 
an interesting, novel dataset  

•  There will not be a list of projects to choose from.  
You must propose your own (with the instructor’s advice). 
We will include pointers to many research papers with 
relevant applications. 

Key Requirements: Novel use of graphical models 

Best case: Application of course 
material to your own area of research 



Changes from Previous Years 
•  Readings from books & in-depth tutorials, 

not recent research papers.  More accessible. 
•  No reading comments or student presentation 

of research papers.  Course staff will lecture. 
•  Homework assignments require mathematical 

derivations and algorithm implementation. 
•  Subject matter:  Probabilistic Graphical Models 

Ø Fall 2011 topic was Applied Bayesian 
Nonparametrics, may repeat for credit 

Ø Spring 2010 topics similar.  You are welcome to 
(officially) audit, but see me about taking for credit. 



Textbook & Readings 

•  Draft textbook by Michael I. Jordan, available as a printed 
course reader, more details soon… 

•  Variational tutorial by Wainwright and Jordan (2008) 
•  Background chapter of Prof. Sudderth’s thesis 
•  Tutorial articles on Markov chain Monte Carlo, particle filters 
•  A few other papers for advanced topics… 



Course Prerequisites 
•  A course in modern statistical machine learning 

Ø  Brown CSCI 1950F:  Intro to Machine Learning 
Ø  Brown APMA 1690:  Computational Probability 

and Statistics (also APMA 2690) 
Ø  Possibly other classes or experience... 

•  Programming experience (Matlab, Java, …) 
•  Readings will require “mathematical maturity” 

•  Insufficient background by themselves: 
Ø  Brown CSCI 1410: Introduction to AI 
Ø  Traditional undergrad statistics (APMA 1650/1660) 



Prereq: Intro Machine Learning 
Supervised Learning Unsupervised Learning 
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classification or 
categorization 

regression 

clustering 

dimensionality 
reduction 

•  Bayesian and frequentist estimation 
•  Model selection, cross-validation, overfitting 
•  Expectation-Maximization (EM) algorithm 



Background Material 

You will probably want a copy of one of these books… 



Shading & Plate Notation 

Naïve Bayes Inference: 

Convention:  Shaded nodes are observed, open nodes are latent/hidden 

Y 

Xj 
D 

Plates denote 
replication of 
random variables 



Supervised Learning 
Generative ML or MAP Learning:  Naïve Bayes 

N 

yi

xi

⇡

✓

⇡

✓

Train Test 

xt

yt

max

⇡,✓
log p(⇡) + log p(✓) +

NX

i=1

[log p(yi | ⇡) + log p(xi | yi, ✓)]

Discriminative ML or MAP Learning:  Logistic regression 

N 

yi

xi
✓ ✓

Train Test 

xt

yt

max

✓
log p(✓) +

NX

i=1

log p(yi | xi, ✓)



Learning via Optimization 

f : RM ! R
Gradient vectors: 

(rwf(w))k =
@f(w)

@wkrwf : RM ! RM

ŵ = argmin

w
� log p(w)�

X

i

log p(yi | xi, w)

ŵ = argmin

w
�
X

i

log p(yi | xi, w)ML Estimate: 

MAP Estimate: 

Hessian matrices: 

r2
wf : RM ! RM⇥M (rwf(w))k,` =

@2f(w)

@wk@w`

Optimization of Smooth Functions: 
•  Closed form:  Find zero gradient points, check curvature 
•  Iterative:  Initialize somewhere, use gradients to take steps 

towards better (by convention, smaller) values 



Unsupervised Learning 

N 
xi

⇡

✓

max

⇡,✓
log p(⇡) + log p(✓) +

NX

i=1

log

"
X

zi

p(zi | ⇡)p(xi | zi, ✓)
#

max

⇡,✓
log p(⇡) + log p(✓) +

NX

i=1

log

Z

zi

p(zi | ⇡)p(xi | zi, ✓) dzi
�

Clustering: 

Dimensionality Reduction: 

zi

•  No notion of training and test data: labels are never observed 
•  As before, maximize posterior probability of model parameters 
•  For hidden variables associated with each observation, we 

marginalize over possible values rather than estimating 
•  Fully accounts for uncertainty in these variables 
•  There is one hidden variable per observation, so cannot 

perfectly estimate even with infinite data 
•  Must use generative model (discriminative degenerates) 



Expectation Maximization (EM) 

N 

yi

xi

⇡

✓

⇡

✓

Supervised 
Training 

Supervised 
Testing 

xt

yt

N 
xi

⇡

✓

zi

Unsupervised 
Learning 

•  Initialization: Randomly select starting parameters 
•  E-Step: Given parameters, find posterior of hidden data 

•  Equivalent to test inference of full posterior distribution 
•  M-Step: Given posterior distributions, find likely parameters 

•  Similar to supervised ML/MAP training 
•  Iteration: Alternate E-step & M-step until convergence 

z1, . . . , zN
⇡, ✓ parameters (define low-dimensional manifold) 

hidden data (locate observations on manifold) 



Gaussian Mixture Models vs. HMMs 
z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Mixture 
Model 

p(xi | zi,⇡, µ,⌃) = Norm(xi | µzi ,⌃zi)

p(zi | ⇡, µ,⌃) = Cat(zi | ⇡)

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Hidden 
Markov 
Model 

p(zt | ⇡, µ,⌃, zt�1, zt�2, . . .) = Cat(zt | ⇡zt�1)
p(xt | zt,⇡, µ,⌃) = Norm(xt | µzt ,⌃zt)

Recover mixture model when all rows of state transition matrix are equal. 

zi 2 {1, . . . ,K}



Probabilistic PCA & Factor Analysis 

C. Bishop, Pattern Recognition & Machine Learning 
z

p(z)

bz

x2

x1

µ

p(x|bz)
} bz|w|

w

x2

x1

µ

p(x)

•  Both Models:   Data is a linear function of low-dimensional 
latent coordinates, plus Gaussian noise 

•  Factor analysis:       is a general diagonal matrix 
•  Probabilistic PCA:                    is a multiple of identity matrix 

p(zi | ✓) = N (zi | 0, I)p(xi | zi, ✓) = N (xi | Wzi + µ, )

p(xi | ✓) = N (xi | µ,WW

T + )

 
 = �2I

low rank covariance 
parameterization 



A Quick Poll 



Administration 

•  Your name and CS logon 
•  Your department, major, and year 
•  Your background in statistical machine learning 

Ø  If you’ve taken Brown courses, just say which ones 
Ø  Otherwise, a few sentences about your experience 

Registration:  E-mail sudderth@cs.brown.edu with 

Readings for Tuesday: 
•  Graphical Models, M. Jordan, Stat. Science 2004. 
•  Chapter 2 from textbook (available soon) 

Course webpage:  Up now, watch for more information 
http://cs.brown.edu/courses/csci2950-p/index.html 


