Probabilistic Graphical Models

Special Topics in Machine Learning Brown University CSCI 2950-P, Spring 2013 Tuesdays \& Thursdays, 1:00-2:20pm, CIT506

Instructor: Erik Sudderth
Teaching Assistant: Jason Pacheco

Hidden Markov Models (HMMs) Visual Tracking

$$
p(x, y)=p\left(x_{0}\right) \prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right)
$$

"Conditioned on the present, the past and future are statistically independent"

Kinematic Hand Tracking

Kinematic
Prior
Structural
Prior
Dynamic
Prior

Dynamic Bayesian Networks

Murphy,

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation
$x_{s} \longrightarrow$ unobserved or hidden variable $y_{s} \longrightarrow$ local observation of x_{s}

Wavelet Decompositions

- Bandpass decomposition of images into multiple scales \& orientations
- Dense features which simplify statistics of natural images

Hidden Markov Trees

- Hidden states model evolution of image patterns across scale and location

Medical Diagnosis

diseases

Parameterization: Noisy-OR, logistic regression, generalized linear models...

Low Density Parity Check (LDPC) Code

Sensor localization

Sensor localization

Example Data for a Topic Model

Poisoning by ice-cream.
No chemist certainly would suppose that the same poison exists in all samples of ice-cream which have produced untoward symptoms in man. Mineral poisons, copper, lead, arsenic, and mercury, have all
been found in ice cream. In some instances these been found in ice cream. In some instances these have been used with criminal intent. In other cases their presence has been accidental. Likewise, that vanila is somern is well bnown to bearer, at least, of the poiidea that the poisonous properties of the cream which he examined were due to putrid gelatine is certainly a rational theory. The poisonous principle might in this case arise from the decomposition of the gelatine or with the gelatine there may be introduced into the milk a ferment, by the growth of which a poison i produced.
解 above sources of the poisoning existed. There were had been used in making the cream. The vanilla used was shown to be not poisonous. This showing was made, not by a chemical analysis, which might not have been conclusive, but Mr. Novie and I drank of the vanilla extract which was used, and no ill re-
sults followed. Still, from this cream we isolated the same poison which I had before found in poisonous cheese (Zeitschrift für physiologische chemie, \mathbf{x},

RNA Editing and the Evolution of Parasites

Chaotic Beetles Charles Godiray and Michael Hassel
 move over the surface ofthe a atractor, sets of
adidecent traecories ara pulted dpart, then
strecthed and folded , so that it becomes im-
 into the future. The strengt of the mixing
thangegives ires ot the extreme sensitivity to
initial conditions and

- Our data are the pages Science from 1880-2002 (from JSTOR)
- No reliable punctuation, meta-data, or references.
- Note: this is just a subset of JSTOR's archive.
D. Blei, 2008

Example Output: 4 Topics

human	evolution	disease	computer
genome	evolutionary	host	models
dna	species	bacteria	information
genetic	organisms	diseases	data
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
molecular	groups	strains	systems
sequencing	phylogenetic	control	model
map	living	infectious	parallel
information	diversity	malaria	methods
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

Columns sorted by probability of word given topic.
D. Blei, 2008

LDA: Intuition Seeking Life's Bare (Genetic) Necessities

Cold Spring Harbor, New YorkHow many genes does an organism need to survive? Last week at the genome meeting here," . two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can he sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job-but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

* Genome Mapping and Sequencing, Cold Spring Harbor, New York, May 8 to 12.
"are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. "It may be a way of organizing any newly sequenced genome," explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI)
in Bethesda, Maryland. Comparing an

Stripping down. Computer analysis yields an estimate of the minimum modern and ancient genomes.

Every document discusses a mixture of multiple topics.

D. Blei, 2008

LDA: Generative Model
 Seeking Life's Bare (Genetic) Necessities

- Cast these intuitions into a generative probabilistic process
- Each document is a random mixture of corpus-wide topics
- Each word is drawn from one of those topics
D. Blei, 2008

LDA: Graphical Model

D. Blei, 2008

Graphical Models

Directed
Bayesian Network

Factor Graph

Undirected
Graphical Model

Undirected Graphical Models

An undirected graph \mathcal{G} is defined by

$$
\begin{array}{ll}
\mathcal{V} \longrightarrow & \text { set of } N \text { nodes }\{1,2, \ldots, N\} \\
\mathcal{E} \longrightarrow & \text { set of edges }(s, t) \text { connecting nodes } s, t \in \mathcal{V}
\end{array}
$$

Nodes $s \in \mathcal{V}$ are associated with random variables x_{s}

Graph Separation

$$
p\left(x_{A}, x_{C} \mid x_{B}\right)=p\left(x_{A} \mid x_{B}\right) p\left(x_{C} \mid x_{B}\right)
$$

Inference in Graphical Models

$$
p(x \mid y)=\frac{1}{Z} \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right) \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right)
$$

$y \longrightarrow$ observations (implicitly encoded via compatibilities)

Maximum a Posteriori (MAP) Estimates

$$
\hat{x}=\arg \max _{x} p(x \mid y)
$$

Posterior Marginal Densities

$$
p_{t}\left(x_{t} \mid y\right)=\sum_{x_{\mathcal{V} \backslash t}} p(x \mid y)
$$

- Provide both estimators and confidence measures
- Sufficient statistics for iterative parameter estimation

Why the Partition Function? $z=\sum_{x} \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right) \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right)$

Statistical Physics

- Sensitivity of physical systems to external stimuli

Hierarchical Bayesian Models

- Marginal likelihood of observed data
- Fundamental in hypothesis testing \& model selection

Cumulant Generating Function

- For exponential families, derivatives with respect to parameters provide marginal statistics

PROBLEM: Computing Z in general graphs is NP-complete

Exact Inference

MESSAGES: Sum-product or belief propagation algorithm

$$
m_{t s}\left(x_{s}\right)=\alpha \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}, y\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)
$$

Computational cost:
$N \longrightarrow$ number of nodes $M \longrightarrow$ discrete states for each node
 Belief Prop: $\mathcal{O}\left(N M^{2}\right)$
Brute Force: $\mathcal{O}\left(M^{N}\right)$

Continuous Variables

$$
m_{i j}\left(x_{j}\right) \propto \int_{x_{i}} \psi_{j, i}\left(x_{j}, x_{i}\right) \psi_{i}\left(x_{i}, y\right) \prod_{k \in \Gamma(i) \backslash j} m_{k i}\left(x_{i}\right) d x_{i}
$$

Discrete State Variables

$>$ Messages are finite vectors

> Updated via matrix-vector products Gaussian State Variables
> Messages are mean \& covariance
> Updated via information Kalman filter
Continuous Non-Gaussian State Variables
$>$ Closed parametric forms unavailable
$>$ Discretization can be intractable even with 2 or 3 dimensional states

Variational Inference: An Example

$$
p(x \mid y)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}, y\right)
$$

- Choose a family of approximating distributions which is tractable. The simplest example:

$$
q(x)=\prod_{s \in \mathcal{V}} q_{s}\left(x_{s}\right)
$$

- Define a distance to measure the quality of different approximations. One possibility:

$$
D(q \| p)=\sum_{x} q(x) \log \frac{q(x)}{p(x \mid y)}
$$

- Find the approximation minimizing this distance

Advanced Variational Methods

- Exponential families
- Mean field methods: naïve and structured
- Variational EM for parameter estimation
- Loopy belief propagation (BP)
- Bethe and Kikuchi entropies
- Generalized BP, fractional BP
- Convex relaxations and bounds
- MAP estimation and linear programming

Markov Chain Monte Carlo

- At each time point, state $z^{(t)}$ is a configuration of all the variables in the model: parameters, hidden variables, etc.
- We design the transition distribution $q\left(z \mid z^{(t)}\right)$ so that the chain is irreducible and ergodic, with a unique stationary distribution $p^{*}(z)$

$$
p^{*}(z)=\int_{\mathcal{Z}} q\left(z \mid z^{\prime}\right) p^{*}\left(z^{\prime}\right) d z^{\prime}
$$

- For learning, the target equilibrium distribution is usually the posterior distribution given data $x: \quad p^{*}(z)=p(z \mid x)$
- Popular recipes: Metropolis-Hastings and Gibbs samplers

Sequential Monte Carlo

Particle Filters, Condensation, Survival of the Fittest, ...

- Nonparametric approximation to optimal BP estimates
- Represent messages and posteriors using a set of samples, found by simulation

Course Evaluation

Homeworks: 60\%

- Four equally weighted assignments
- Each assignment available for two weeks before due date
- Combine mathematical derivations, algorithm design, programming, and analysis of real datasets
$>$ Multiscale models of images, objects, visual scenes
$>$ Particle filters for localization and tracking
$>$ Topic models of text document collections
> ...

Final Project: 40\%

- Proposal: 1-3 pages, due on March 22 (5\%)
- Presentation: ~10 minutes, on May 7 (10\%)
- Conference-style technical report, due on May 13 (25\%)

Final Projects

Best case: Application of course material to your own area of research

Key Requirements: Novel use of graphical models

- Identify a family of graphical models suitable for a particular application, try baseline learning algorithms
- Propose, develop, and experimentally test a new type of graphical learning or inference algorithm
- Experimentally compare different models or algorithms on an interesting, novel dataset
- There will not be a list of projects to choose from. You must propose your own (with the instructor's advice). We will include pointers to many research papers with relevant applications.

Changes from Previous Years

- Readings from books \& in-depth tutorials, not recent research papers. More accessible.
- No reading comments or student presentation of research papers. Course staff will lecture.
- Homework assignments require mathematical derivations and algorithm implementation.
- Subject matter: Probabilistic Graphical Models
>Fall 2011 topic was Applied Bayesian
Nonparametrics, may repeat for credit
>Spring 2010 topics similar. You are welcome to (officially) audit, but see me about taking for credit.

Textbook \& Readings

An Introduction to Probabilistic Graphical Models

Michael I. Jordan
University of California, Berkeley

- Draft textbook by Michael I. Jordan, available as a printed course reader, more details soon...
- Variational tutorial by Wainwright and Jordan (2008)
- Background chapter of Prof. Sudderth' s thesis
- Tutorial articles on Markov chain Monte Carlo, particle filters
- A few other papers for advanced topics...

Course Prerequisites

- A course in modern statistical machine learning
> Brown CSCI 1950F: Intro to Machine Learning
> Brown APMA 1690: Computational Probability and Statistics (also APMA 2690)
> Possibly other classes or experience...
- Programming experience (Matlab, Java, ...)
- Readings will require "mathematical maturity"
- Insufficient background by themselves:
$>$ Brown CSCI 1410: Introduction to AI
$>$ Traditional undergrad statistics (APMA 1650/1660)

Prereq: Intro Machine Learning

 Supervised Learning Unsupervised Learning| classification or categorization | clustering |
| :---: | :---: |
| regression | dimensionality reduction |

- Bayesian and frequentist estimation
- Model selection, cross-validation, overfitting
- Expectation-Maximization (EM) algorithm

Background Material

You will probably want a copy of one of these books...

Shading \& Plate Notation

Naïve Bayes Inference: $\quad p(y, \mathbf{x})=p(y) \prod_{j=1} p\left(x_{j} \mid y\right)$
Convention: Shaded nodes are observed, open nodes are latent/hidden

Supervised Learning

Generative ML or MAP Learning: Naïve Bayes
$\max _{\pi, \theta} \log p(\pi)+\log p(\theta)+\sum_{i=1}^{N}\left[\log p\left(y_{i} \mid \pi\right)+\log p\left(x_{i} \mid y_{i}, \theta\right)\right]$

Test
Discriminative ML or MAP Learning: Logistic regression
$\max _{\theta} \log p(\theta)+\sum_{i=1}^{N} \log p\left(y_{i} \mid x_{i}, \theta\right)$

Learning via Optimization

ML Estimate: $\quad \hat{w}=\arg \min _{w}-\sum_{i} \log p\left(y_{i} \mid x_{i}, w\right)$
MAP Estimate: $\quad \hat{w}=\arg \min _{w}-\log p(w)-\sum_{i} \log p\left(y_{i} \mid x_{i}, w\right)$
Gradient vectors:

$$
\begin{aligned}
f: \mathbb{R}^{M} & \rightarrow \mathbb{R} \\
\nabla_{w} f: \mathbb{R}^{M} & \rightarrow \mathbb{R}^{M}
\end{aligned} \quad\left(\nabla_{w} f(w)\right)_{k}=\frac{\partial f(w)}{\partial w_{k}}
$$

Hessian matrices:

$$
\nabla_{w}^{2} f: \mathbb{R}^{M} \rightarrow \mathbb{R}^{M \times M}
$$

$$
\left(\nabla_{w} f(w)\right)_{k, \ell}=\frac{\partial^{2} f(w)}{\partial w_{k} \partial w_{\ell}}
$$

Optimization of Smooth Functions:

- Closed form: Find zero gradient points, check curvature
- Iterative: Initialize somewhere, use gradients to take steps towards better (by convention, smaller) values

Unsupervised Learning

Clustering:

$$
\max _{\pi, \theta} \log p(\pi)+\log p(\theta)+\sum_{i=1}^{N} \log \left[\sum_{z_{i}} p\left(z_{i} \mid \pi\right) p\left(x_{i} \mid z_{i}, \theta\right)\right]
$$

Dimensionality Reduction:
$\max _{\pi, \theta} \log p(\pi)+\log p(\theta)+\sum_{i=1}^{N} \log \left[\int_{z_{i}} p\left(z_{i} \mid \pi\right) p\left(x_{i} \mid z_{i}, \theta\right) d z_{i}\right]$

- No notion of training and test data: labels are never observed
- As before, maximize posterior probability of model parameters
- For hidden variables associated with each observation, we marginalize over possible values rather than estimating
- Fully accounts for uncertainty in these variables
- There is one hidden variable per observation, so cannot perfectly estimate even with infinite data
- Must use generative model (discriminative degenerates)

Expectation Maximization (EM)

Supervised
Training $\pi, \theta \longrightarrow$ parameters (define low-dimensional manifold)
$z_{1}, \ldots, z_{N} \longrightarrow$ hidden data (locate observations on manifold)

- Initialization: Randomly select starting parameters
- E-Step: Given parameters, find posterior of hidden data
- Equivalent to test inference of full posterior distribution
- M-Step: Given posterior distributions, find likely parameters
- Similar to supervised ML/MAP training
- Iteration: Alternate E-step \& M-step until convergence

Gaussian Mixture Models vs. HMMs

Mixture Model

$p\left(x_{i} \mid z_{i}, \pi, \mu, \Sigma\right)=\operatorname{Norm}\left(x_{i} \mid \mu_{z_{i}}, \Sigma_{z_{i}}\right)$

Hidden

 Markov Model

$$
\begin{gathered}
p\left(z_{t} \mid \pi, \mu, \Sigma, z_{t-1}, z_{t-2}, \ldots\right)=\operatorname{Cat}\left(z_{t} \mid \pi_{z_{t-1}}\right) \\
p\left(x_{t} \mid z_{t}, \pi, \mu, \Sigma\right)=\operatorname{Norm}\left(x_{t} \mid \mu_{z_{t}}, \Sigma_{z_{t}}\right)
\end{gathered}
$$

Recover mixture model when all rows of state transition matrix are equal.

Probabilistic PCA \& Factor Analysis

- Both Models: Data is a linear function of low-dimensional latent coordinates, plus Gaussian noise

$$
\begin{aligned}
p\left(x_{i} \mid z_{i}, \theta\right) & =\mathcal{N}\left(x_{i} \mid W z_{i}+\mu, \Psi\right) \quad p\left(z_{i} \mid \theta\right)=\mathcal{N}\left(z_{i} \mid 0, I\right) \\
p\left(x_{i} \mid \theta\right) & =\mathcal{N}\left(x_{i} \mid \mu, W W^{T}+\Psi\right) \quad \begin{array}{c}
\text { low rank covariance } \\
\text { parameterization }
\end{array}
\end{aligned}
$$

- Factor analysis: Ψ is a general diagonal matrix
- Probabilistic PCA: $\Psi=\sigma^{2} I$ is a multiple of identity matrix

A Quick Poll

Administration

Registration: E-mail sudderth@cs.brown.edu with

- Your name and CS logon
- Your department, major, and year
- Your background in statistical machine learning
$>$ If you've taken Brown courses, just say which ones
$>$ Otherwise, a few sentences about your experience
Course webpage: Up now, watch for more information http://cs.brown.edu/courses/csci2950-p/index.html
Readings for Tuesday:
- Graphical Models, M. Jordan, Stat. Science 2004.
- Chapter 2 from textbook (available soon)

