Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 4: Inference \& Elimination Algorithms

Some figures courtesy Michael Jordan's draft textbook,
An Introduction to Probabilistic Graphical Models

Minimizing Expected Loss

$y \in \mathcal{Y} \longrightarrow$ unknown class or category, finite set of options
$x \in \mathcal{X} \longrightarrow$ observed data, can take values in any space
$\mathcal{A}=\mathcal{Y} \longrightarrow$ action is to choose one of the categories
$L(y, a) \longrightarrow$ table giving loss for all possible mistakes

- The posterior expected loss of taking action a is

$$
\rho(a \mid \mathbf{x}) \triangleq \mathbb{E}_{p(y \mid \mathbf{x})}[L(y, a)]=\sum_{y} L(y, a) p(y \mid \mathbf{x})
$$

- The optimal Bayes decision rule is then

$$
\delta(\mathbf{x})=\arg \min _{a \in \mathcal{A}} \rho(\mathbf{a} \mid \mathbf{x})
$$

- Bayesian classification requires both model and loss

Minimizing Probability of Error

$$
L(y, a)=\mathbb{I}(y \neq a)= \begin{cases}0 & \text { if } a=y \\ 1 & \text { if } a \neq y\end{cases}
$$

- The posterior expected loss of taking action a is

$$
\begin{aligned}
\rho(a \mid \mathbf{x}) & \triangleq \mathbb{E}_{p(y \mid \mathbf{x})}[L(y, a)]=\sum_{y} L(y, a) p(y \mid \mathbf{x}) \\
\rho(a \mid x) & =p(a \neq y \mid x)=1-p(a=y \mid x)
\end{aligned}
$$

- Optimal decision is the maximum a posteriori (MAP) estimate:

$$
\hat{y}(x)=\arg \max _{y \in \mathcal{Y}} p(y \mid x)
$$

- If classes are equally likely a priori, this becomes

$$
\hat{y}(x)=\arg \max _{y \in \mathcal{Y}} p(x \mid y) \quad \text { if } \quad p(y)=\frac{1}{C}
$$

Inference in Graphical Models

$x_{E} \longrightarrow$ observed evidence variables (subset of nodes)
$x_{F} \longrightarrow$ unobserved query nodes we'd like to infer
$x_{R} \longrightarrow \quad$ remaining variables, extraneous to this query but part of the given graphical representation

$$
p\left(x_{E}, x_{F}\right)=\sum p\left(x_{E}, x_{F}, x_{R}\right) \quad R=V \backslash\{E, F\}
$$

Maximum a Posteriori (MAP) Estimates

$$
\hat{x}_{F}=\arg \max _{x_{F}} p\left(x_{F} \mid x_{E}\right)=\arg \max _{x_{F}} p\left(x_{E}, x_{F}\right)
$$

Posterior Marginal Densities

$$
p\left(x_{F} \mid x_{E}\right)=\frac{p\left(x_{E}, x_{F}\right)}{p\left(x_{E}\right)} \quad p\left(x_{E}\right)=\sum_{x_{F}} p\left(x_{E}, x_{F}\right)
$$

Provides Bayesian estimators, confidence measures, and sufficient statistics for iterative parameter estimation

Directed Graphical Models

$\mathcal{V} \longrightarrow \quad$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$\mathcal{E} \longrightarrow$ set of oriented edges (s, t) linking parents s to children t, so that the set of parents of a node is

$$
\operatorname{pa}(t)=\Gamma(t)=\{s \in \mathcal{V} \mid(s, t) \in \mathcal{E}\}
$$

$X_{s}=x_{s} \longrightarrow \quad$ random variable associated with node s

Parameterization \& Representation

Representational (storage, learning, computation) Complexity

- Joint distribution: Exponential in number of variables
- Directed graphical model: Exponential in number of parents ("fan-in") of each node, linear in number of nodes

Inference with Two Variables

$p(x, y)=p(x) p(y \mid x)$
Table Lookup:

$$
p(y \mid x=\bar{x})
$$

Bayes Rule:
$p(x \mid y=\bar{y})=\frac{p(\bar{y} \mid x) p(x)}{p(\bar{y})}$

Naïve Inference is Intractable

- Suppose each variable takes one of k discrete states:
$p\left(x_{1}, x_{2}, \ldots, x_{5}\right)=\sum_{x_{6}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(x_{6} \mid x_{2}, x_{5}\right)$
Costs $\mathcal{O}(k)$ operations to update each of $\mathcal{O}\left(k^{5}\right)$ table entries
- Use factorization and distributive law to reduce complexity:

$$
=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) \sum_{x_{6}} p\left(x_{6} \mid x_{2}, x_{5}\right)
$$

Inference in Directed Graphs

$$
\begin{aligned}
& F=\{1\} \\
& p\left(x_{1} \mid \bar{x}_{6}\right)=? \\
& p\left(x_{1}, \bar{x}_{6}\right)=\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
&=p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
&=p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) m_{5}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Inference in Directed Graphs

$$
\begin{aligned}
& F=\{1\} \\
& p\left(x_{1} \mid \bar{x}_{6}\right)=? \\
& p\left(x_{1}, \bar{x}_{6}\right)=\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
&=p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) \\
&=p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) m_{5}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Inference in Directed Graphs

$$
\begin{aligned}
& F=\{1\} \\
& p\left(x_{1} \mid \bar{x}_{6}\right)=? \\
& p\left(x_{1}, \bar{x}_{6}\right)=\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
&=p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right) \\
&=p\left(x_{1}\right) m_{2}\left(x_{1}\right) . \\
& p\left(x_{1} \mid \bar{x}_{6}\right)=\frac{p\left(x_{1}\right) m_{2}\left(x_{1}\right)}{\sum_{x_{1}} p\left(x_{1}\right) m_{2}\left(x_{1}\right)} \\
& X_{6}=\bar{x}_{6}
\end{aligned}
$$

Evidence Potentials

$$
\begin{aligned}
& g\left(\bar{x}_{i}\right)=\sum_{x_{i}} g\left(x_{i}\right) \delta\left(x_{i}, \bar{x}_{i}\right) . \delta\left(x_{i}, \bar{x}_{i}\right)=1 \text { if } x_{i}=\bar{x}_{i} \\
& \delta\left(x_{i}, \bar{x}_{i}\right)=0 \text { if } x_{i} \neq \bar{x}_{i} \\
& m_{6}\left(x_{2}, x_{5}\right)=\sum_{x_{6}} p\left(x_{6} \mid x_{2}, x_{5}\right) \delta\left(x_{6}, \bar{x}_{6}\right)=p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right)
\end{aligned}
$$

- Encoding observations via evidence potentials:

$$
\begin{gathered}
\delta\left(x_{E}, \bar{x}_{E}\right) \triangleq \prod_{i \in E} \delta\left(x_{i}, \bar{x}_{i}\right) \quad p^{E}(x) \triangleq p(x) \delta\left(x_{E}, \bar{x}_{E}\right) \\
p\left(x_{F}, \bar{x}_{E}\right)=\sum_{x_{E}} p\left(x_{F}, x_{E}\right) \delta\left(x_{E}, \bar{x}_{E}\right) \\
p\left(\bar{x}_{E}\right)=\sum_{x_{F}} \sum_{x_{E}} p\left(x_{F}, x_{E}\right) \delta\left(x_{E}, \bar{x}_{E}\right) .
\end{gathered}
$$

- For undirected graphical models:

$$
p^{E}(x) \triangleq \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_{X_{C}}^{E}\left(x_{C}\right) \quad \quad \psi_{i}^{E}\left(x_{i}\right) \triangleq \psi_{i}\left(x_{i}\right) \delta\left(x_{i}, \bar{x}_{i}\right)
$$

Undirected Graphical Models

- A clique is a fully connected subset of nodes

Theorem 2.2.1 (Hammersley-Clifford). Let \mathcal{C} denote the set of cliques of an undirected graph \mathcal{G}. A probability distribution defined as a normalized product of nonnegative potential functions on those cliques is then always Markov with respect to \mathcal{G} :

$$
\begin{equation*}
p(x) \propto \prod_{c \in \mathcal{C}} \psi_{c}\left(x_{c}\right) \tag{2.71}
\end{equation*}
$$

Conversely, any strictly positive density $(p(x)>0$ for all $x)$ which is Markov with respect to \mathcal{G} can be represented in this factored form.

- It is possible, but not necessary, to restrict factorization only to the maximal cliques (not strict subsets of other cliques)

Inference in Undirected Graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right)=\frac{1}{Z} m_{2}\left(x_{1}\right)
\end{aligned}
$$

A Graph Elimination Algorithm

Algebraic Marginalization Operations

- Marginalize out the variable associated with sum node
- Compute a new potential table involving all other variables which depend on the just-marginalized variable

Graph Manipulation Operations

- Remove, or eliminate, a single node from the graph
- Add edges (if they don't already exist) between all pairs of nodes who were neighbors of the just-removed node

A Graph Elimination Algorithm

- Choose an elimination ordering (query nodes should be last)
- Eliminate a node, remove its incoming edges, add edges between all pairs of its neighbors
- Iterate until all non-query nodes are eliminated

Graph Elimination Example

Elimination Order: (6,5,4,3,2,1)

Graph Elimination Example

Elimination Order: (6,5,4,3,2,1)

Elimination Algorithm Complexity

- Elimination cliques: Sets of neighbors of eliminated nodes
- Marginalization cost: Exponential in number of variables in each elimination clique (dominated by largest clique)
- Treewidth of graph: Over all possible elimination orderings, the smallest possible max-elimination-clique size, minus one
- NP-Hard: Finding the best elimination ordering for an arbitrary input graph (but heuristic algorithms often effective)

Elimination Order Matters

Treewidth $=1$

Treewidth $=2$

Elimination in Undirected Trees

Cost linear in number of nodes, quadratic in number of states

Directed to Undirected Graphs

Directed Graph

Moral Graph
Moralize (G)
for each node X_{i} in I connect all of the parents of X_{i}
end
drop the orientation of all edges return G

- Moral graph links ("marries") all parents with a common child
- Any directed graphical model factorizes according to the cliques of the resulting undirected graph, and is thus Markov

Types of Graphical Models

Directed

Factor

Undirected

Factor Graphs Allow Fine-grained Factorization
 $$
p(x)=\frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f}\right)
$$

- Each potential, or factor, depends on a subset of nodes f
- Create factor nodes (black squares) linked to dependent variable nodes, resulting in bipartite factor graph

