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Minimizing Expected Loss 

•  The posterior expected loss of taking action a is 

•  The optimal Bayes decision rule is then 

•  Bayesian classification requires both model and loss 

unknown class or category, finite set of options 

observed data, can take values in any space 

action is to choose one of the categories 

table giving loss for all possible mistakes 

y 2 Y
x 2 X

L(y, a)
A = Y



Minimizing Probability of Error 

•  The posterior expected loss of taking action a is 

•  Optimal decision is the maximum a posteriori (MAP) estimate: 

•  If classes are equally likely a priori, this becomes 

ŷ(x) = argmax

y2Y
p(y | x)

ŷ(x) = argmax

y2Y
p(x | y) p(y) =

1

C
if 

⇢(a | x) = p(a 6= y | x) = 1� p(a = y | x)



Inference in Graphical Models 

Maximum a Posteriori (MAP) Estimates 

Provides Bayesian estimators, confidence measures,  
and sufficient statistics for iterative parameter estimation 

Posterior Marginal Densities 

observed evidence variables (subset of nodes) xE

xF unobserved query nodes we’d like to infer 

xR
remaining variables, extraneous to this query 
but part of the given graphical representation 

p(xF | xE) =
p(xE , xF )
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Directed Graphical Models 

set of N nodes or vertices,  

set of oriented edges  (s,t)  linking parents s to children t, 
so that the set of parents of a node is 

1X

2X

3X

X 4

X 5

X6

{1, 2, . . . , N}V
E

pa(t) = �(t) = {s 2 V | (s, t) 2 E}

random variable associated with node s 
Xs = xs



Parameterization & Representation 
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Representational (storage, learning, computation) Complexity 
•  Joint distribution:  Exponential in number of variables 
•  Directed graphical model:  Exponential in number of 

parents (“fan-in”) of each node, linear in number of nodes 



Inference with Two Variables 
X

Y

X

Y

X

Y

(a) (b) (c)
p(x, y) = p(x)p(y | x)

p(y | x = x̄)
Table Lookup: 

p(x | y = ȳ) =
p(ȳ | x)p(x)

p(ȳ)

Bayes Rule: 



Naïve Inference is Intractable 
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(a) (b) (c)

•  Suppose each variable takes one of k discrete states: 

Costs           operations to update each of             table entries O(k) O(k5)

X

Y

X

Y

X

Y

(a) (b) (c)

•  Use factorization and distributive law to reduce complexity: 



Inference in Directed Graphs 
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E = {6}
X6 = x̄6p(x1 | x̄6) =?

F = {1}

R = {2, 3, 4, 5}



Inference in Directed Graphs 
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Inference in Directed Graphs 
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X6 = x̄6p(x1 | x̄6) =?
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Evidence Potentials 
�(xi, x̄i) = 1 if xi = x̄i

�(xi, x̄i) = 0 if xi 6= x̄i

= p(x̄6 | x2, x5)

•  Encoding observations via evidence potentials: 

•  For undirected graphical models: 



Undirected Graphical Models 

•  A clique is a fully connected subset of nodes 

52 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS

xg are independent conditioned on the variables xh in any separating set:

p(xf , xg | xh) = p(xf | xh) p(xg | xh) if h separates f from g (2.69)

This property generalizes temporal Markov processes, for which the past and future
are independent conditioned on the present. For example, the undirected graph of
Fig. 2.5(a) implies the following conditional independencies, among others:

p(x1, x2, x5 | x3, x4) = p(x1, x2 | x3, x4) p(x5 | x3)

p(x1, x4, x5 | x2, x3) = p(x1 | x2, x3) p(x4 | x2, x3) p(x5 | x3)

An important special case of eq. (2.69) guarantees that conditioned on its immediate
neighbors, the random variable at any node is independent of the rest of the process:

p
(
xi | xV\i

)
= p

(
xi | xΓ(i)

)
(2.70)

As we discuss in later sections, this local Markov property plays an important role in
the design of efficient learning and inference algorithms.

The following theorem, due to Hammersley and Clifford, shows that Markov random
fields are naturally parameterized via potential functions defined on the cliques of the
corresponding undirected graph.

Theorem 2.2.1 (Hammersley-Clifford). Let C denote the set of cliques of an undi-
rected graph G. A probability distribution defined as a normalized product of non-
negative potential functions on those cliques is then always Markov with respect to G:

p(x) ∝
∏

c∈C

ψc(xc) (2.71)

Conversely, any strictly positive density (p(x) > 0 for all x) which is Markov with
respect to G can be represented in this factored form.

Proof. There are a variety of ways to prove this result; see [26, 35, 43] for examples and
further discussion. For a degenerate Markov distribution which cannot be factored as
in eq. (2.71), see Lauritzen [177].

Comparing eq. (2.71) to eq. (2.66), we see that Markov random fields can always be
represented by a factor graph with one hyperedge for each of the graph’s cliques [175,
339]. This representation is also known as the clique hypergraph corresponding to
G [177]. Note that it is possible, but not necessary, to restrict this factorization to
maximal cliques which are not a strict subset of any other clique (see Fig. 2.5(c)).

In practice, Markov properties are used in two complementary ways. If a stochastic
process is known to satisfy certain conditional independencies, the Hammersley–Clifford
Theorem then motivates models parameterized by local sufficient statistics. Conversely,

•  It is possible, but not necessary, to restrict factorization only 
to the maximal cliques (not strict subsets of other cliques) 



Inference in Undirected Graphs 
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A Graph Elimination Algorithm 

•  Marginalize out the variable associated with sum node 
•  Compute a new potential table involving all other variables 

which depend on the just-marginalized variable 

Algebraic Marginalization Operations 

•  Remove, or eliminate, a single node from the graph  
•  Add edges (if they don’t already exist) between all pairs of 

nodes who were neighbors of the just-removed node 

Graph Manipulation Operations 

•  Choose an elimination ordering (query nodes should be last) 
•  Eliminate a node, remove its incoming edges, add edges 

between all pairs of its neighbors 
•  Iterate until all non-query nodes are eliminated 

A Graph Elimination Algorithm 



Graph Elimination Example 
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Graph Elimination Example 
Elimination Order: (6,5,4,3,2,1) 
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Elimination Algorithm Complexity 
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•  Elimination cliques:  Sets of neighbors of eliminated nodes 
•  Marginalization cost:  Exponential in number of variables in 

each elimination clique (dominated by largest clique) 
•  Treewidth of graph:  Over all possible elimination orderings, 

the smallest possible max-elimination-clique size, minus one 
•  NP-Hard:  Finding the best elimination ordering for an 

arbitrary input graph (but heuristic algorithms often effective)  



Elimination Order Matters 

(a) (b)Treewidth = 1 Treewidth = 2 



Elimination in Undirected Trees 

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

Cost linear in number of nodes, quadratic in number of states 



Directed to Undirected Graphs 
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Directed Graph Moral Graph 
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•  Moral graph links (“marries”) all parents with a common child 
•  Any directed graphical model factorizes according to the 

cliques of the resulting undirected graph, and is thus Markov 



Types of Graphical Models 

Directed Undirected Factor 



Factor Graphs Allow  
Fine-grained Factorization 

p(x) =
1

Z

Y

f2F
 f (xf )

•  Each potential, or factor, depends on a subset of nodes f 
•  Create factor nodes (black squares) linked to dependent 

variable nodes, resulting in bipartite factor graph 


