Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 5:
Belief Propagation \& Factor Graphs

Some figures courtesy Michael Jordan's draft textbook,
An Introduction to Probabilistic Graphical Models

Inference in Graphical Models

$x_{E} \longrightarrow$ observed evidence variables (subset of nodes)
$x_{F} \longrightarrow$ unobserved query nodes we'd like to infer
$x_{R} \longrightarrow \quad$ remaining variables, extraneous to this query

$$
p\left(x_{E}, x_{F}\right)=\sum_{x_{R}} p\left(x_{E}, x_{F}, x_{R}\right) \quad R=V \backslash\{E, F\}
$$

Posterior Marginal Densities

$p\left(x_{F} \mid x_{E}\right)=\frac{p\left(x_{E}, x_{F}\right)}{p\left(x_{E}\right)}$

$$
p\left(x_{E}\right)=\sum_{x_{F}} p\left(x_{E}, x_{F}\right)
$$

- Provides Bayesian estimators, confidence measures, and sufficient statistics for iterative parameter estimation
- The elimination algorithm assumed a single query node. What if we want the marginals for all unobserved nodes?

Inference in Undirected Trees

- For a tree, the maximal cliques are always pairs of nodes:

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

Inference via the Distributed Law

$$
\begin{aligned}
p_{1}\left(x_{1}\right) & =\sum_{x_{2}, x_{3}, x_{4}} \psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
& =\psi_{1}\left(x_{1}\right) \sum_{x_{2}, x_{3}, x_{4}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right)
\end{aligned}
$$

Inference via the Distributed Law

$$
\begin{aligned}
p_{1}\left(x_{1}\right) & =\sum_{x_{2}, x_{3}, x_{4}} \psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
& =\psi_{1}\left(x_{1}\right) \sum_{x_{2}, x_{3}, x_{4}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
& =\psi_{1}\left(x_{1}\right) \sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \sum_{x_{3}, x_{4}} \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right)
\end{aligned}
$$

Inference via the Distributed Law

$$
\begin{aligned}
p_{1}\left(x_{1}\right) & =\sum_{x_{2}, x_{3}, x_{4}} \psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
& =\psi_{1}\left(x_{1}\right) \underbrace{}_{x_{2}, x_{3}, x_{4}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
& =\psi_{1}\left(x_{1}\right) \sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \underbrace{\sum_{x_{3}, x_{4}} \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right)}_{m_{32}\left(x_{2}\right)} \\
& =\psi_{1}\left(x_{1}\right) \sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right)[\underbrace{\left.\left[\sum_{\left.x_{4}\right)} \psi_{24}\left(x_{2}\right) m_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right)\right]}_{\left.m_{2}\left(x_{1}\right)=\sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right)\right]}
\end{aligned}
$$

Computing Multiple Marginals

- Can compute all marginals, at all nodes, by combining incoming messages from adjacent edges
- Each message must only be computed once, via some message update schedule

Belief Propagation (Sum-Product)

BELIEFS: Posterior marginals

$$
\begin{gathered}
q_{t}\left(x_{t} \mid y\right)=\alpha \psi_{t}\left(x_{t}, y\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right) \\
\Gamma(t)
\end{gathered} \longrightarrow_{\substack{\text { neighborhood of node } \mathrm{t} \\
\text { (adiacent nodes) }}}
$$

MESSAGES: Sufficient statistics

$$
m_{t s}\left(x_{s}\right)=\alpha \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}, y\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)
$$

I) Message Product
II) Message Propagation

Message Update Schedules

- Message Passing Protocol: A node can send a message to a neighboring node when, and only when, it has received incoming messages from all of its other neighbors

- Synchronous Parallel Schedule: At each iteration, every node computes all outputs for which it has needed inputs
- Global Sequential Schedule: Choose some node as the root of the true. Pass messages from the leaves to the root, and then from the root back to the leaves.
- Asynchronous Parallel Schedule: Initialize messages arbitrarily. At each iteration, all nodes compute all outputs from all current inputs. Iterate until convergence.

Belief Propagation for Trees

- Dynamic programming algorithm which exactly computes all marginals
- On Markov chains, BP equivalent to alpha-beta or forward-backward algorithms for HMMs
- Sequential message schedules require each message to be updated only once
- Computational cost:
$N \longrightarrow$ number of nodes $M \longrightarrow \begin{gathered}\text { discrete states } \\ \text { for each node }\end{gathered}$ Belief Prop: $\mathcal{O}\left(N M^{2}\right)$ Brute Force: $\mathcal{O}\left(M^{N}\right)$

BP for Continuous Variables

$$
\begin{aligned}
& p\left(x_{1}\right) \propto \iiint \psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) d x_{4} d x_{3} d x_{2} \\
& \propto \psi_{1}\left(x_{1}\right) \iiint \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) d x_{4} d x_{3} d x_{2} \\
& \propto \psi_{1}\left(x_{1}\right) \int \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right)\left[\iint \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) d x_{4} d x_{3}\right] d x_{2} \\
& \propto \psi_{1}\left(x_{1}\right) \int \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right)[\underbrace{\left[\int \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) d x_{3}\right]}_{m_{32}\left(x_{2}\right)} \cdot \underbrace{\left[\int \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) d x_{4}\right] d x_{2}}_{m_{42}\left(x_{2}\right)}
\end{aligned}
$$

Proof on Board

BP Algorithm

BP Algorithm

BP Algorithm

Inference for Graphs with Cycles

- For graphs with cycles, the dynamic programming BP derivation breaks

Junction Tree Algorithm

- Cluster nodes to break cycles
- Run BP on the tree of clusters
- Exact, but often intractable

Loopy Belief Propagation

- Iterate local BP message updates on the graph with cycles
- Hope beliefs converge
- Empirically, often very effective...

A Brief History of Loopy BP

- 1993: Turbo codes (and later LDPC codes, rediscovered from Gallager's 1963 thesis) revolutionize error correcting codes (Berrou et. al.)
- 1995-1997: Realization that turbo decoding algorithm is equivalent to loopy BP (MacKay \& Neal)
- 1997-1999: Promising results in other domains, \& theoretical analysis via computation trees (Weiss)
- 2000: Connection between loopy BP \& variational approximations, using ideas from statistical physics (Yedidia, Freeman, \& Weiss)
- 2001-2007: Many results interpreting, justifying, and extending loopy BP

Pairwise Markov Random Fields

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

- Simple parameterization, but still expressive and widely used in practice
- Guaranteed Markov with respect to graph

$\mathcal{E} \longrightarrow$ set of undirected edges (s, t) linking pairs of nodes
$\mathcal{V} \longrightarrow \quad$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow \quad$ normalization constant (partition function)

Undirected Graphical Models

$$
p(x)=\frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_{c}\left(x_{c}\right)
$$

- Parameterization exactly captures those non-degenerate distributions which are Markov with respect to this graph
- Sometimes restricted to maximal cliques, but this is not necessary

$\mathcal{C} \longrightarrow \quad$ set of cliques (fully connected subsets) of nodes
$\mathcal{E} \longrightarrow$ set of undirected edges (s,t) linking pairs of nodes
$\mathcal{V} \longrightarrow \quad$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow \quad$ normalization constant (partition function)

Factor Graphs

$$
p(x)=\frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f}\right)
$$

- In a hypergraph, the hyperedges link arbitrary subsets of nodes (not just pairs)
- Visualize by a bipartite graph, with square (usually black) nodes for hyperedges
- A factor graph associates a non-negative
 potential function with each hyperedge
- Motivation: factorization key to computation
$\mathcal{F} \longrightarrow$ set of hyperedges linking subsets of nodes $f \subseteq \mathcal{V}$
$\mathcal{V} \longrightarrow$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow$ normalization constant (partition function)

Factor Graphs \& Factorization

$$
p(x)=\frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f}\right)
$$

- For a given undirected graph, there exist distributions which have equivalent Markov properties, but different factorizations and different inference/learning complexities:

Pairwise Nearest-Neighbor MRF

Low Density Parity Check (LDPC) Code

Directed Graphs as Factor Graphs

Directed Graphical Model:

$$
p(x)=\prod_{i=1}^{N} p\left(x_{i} \mid x_{\Gamma(i)}\right)
$$

Corresponding Factor Graph:

$$
p(x)=\prod_{i=1}^{N} \psi_{i}\left(x_{i}, x_{\Gamma(i)}\right)
$$

- Associate one factor with each node, linking it to its parents and defined to equal the corresponding conditional distribution
- Information lost: Directionality of conditional distributions, and fact that global partition function $Z=1$

