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Inference in Graphical Models 

•  Provides Bayesian estimators, confidence measures,  
and sufficient statistics for iterative parameter estimation 

•  The elimination algorithm assumed a single query node. 
What if we want the marginals for all unobserved nodes? 

Posterior Marginal Densities 

observed evidence variables (subset of nodes) xE

xF unobserved query nodes we’d like to infer 

xR
remaining variables, extraneous to this query 
but part of the given graphical representation 
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Inference in Undirected Trees 

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

•  For a tree, the maximal cliques are always pairs of nodes: 



Inference via the Distributed Law 
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Computing Multiple Marginals 
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1X •  Can compute all marginals, at all 
nodes, by combining incoming 
messages from adjacent edges 

•  Each message must only be 
computed once, via some 
message update schedule 



Belief Propagation (Sum-Product) 
BELIEFS:  Posterior marginals 

MESSAGES:  Sufficient statistics 

neighborhood of node t 
(adjacent nodes) 

I)  Message Product 
II) Message Propagation 



Message Update Schedules 
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•  Message Passing Protocol:  A node can send a message 
to a neighboring node when, and only when, it has 
received incoming messages from all of its other neighbors 

•  Synchronous Parallel Schedule:  At each iteration, every 
node computes all outputs for which it has needed inputs 

•  Global Sequential Schedule:  Choose some node as the 
root of the true.  Pass messages from the leaves to the 
root, and then from the root back to the leaves. 

•  Asynchronous Parallel Schedule:  Initialize messages 
arbitrarily.  At each iteration, all nodes compute all outputs 
from all current inputs.  Iterate until convergence. 



Belief Propagation for Trees 
• Dynamic programming algorithm which exactly 

computes all marginals  

• On Markov chains, BP equivalent to alpha-beta 
or forward-backward algorithms for HMMs 

• Sequential message schedules require each 
message to be updated only once 

• Computational cost: 
number of nodes 
discrete states  
for each node 

Belief Prop: 
Brute Force: 



BP for Continuous Variables 



BP is Exact for Trees 
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Figure 2.14. For a tree–structured graph, each node i partitions the graph into |Γ(i)| disjoint subtrees.
Conditioned on xi, the variables xj\i in these subtrees are independent.

can be efficiently decomposed into a set of simpler, local computations. In particular,
for tree–structured graphical models a generalization of dynamic programming known
as belief propagation (BP) [178, 231, 255] recursively computes exact posterior marginals
in linear time. In the following sections, we provide a brief derivation of BP, and discuss
issues arising in its implementation. We then present a variational interpretation of BP
which justifies extensions to graphs with cycles.

Message Passing in Trees

Consider a pairwise MRF, parameterized as in Sec. 2.3.1, whose underlying graph
G = (V, E) is tree–structured. As shown in Fig. 2.14, any node i ∈ V divides such
a tree into |Γ(i)| disjoint subsets:

j \ i ! {j} ∪ {k ∈ V | no path from k → j intersects i} (2.110)

By the Markov properties of G, the variables xj\i in these sub–trees are conditionally in-

dependent given xi. The BP algorithm exploits this structure to recursively decompose
the computation of p(xi | y) into a series of simpler, local calculations.

From the Hammersley–Clifford Theorem, Markov properties are expressed through
the algebraic structure of the pairwise MRF’s factorization into clique potentials. As
illustrated in Fig. 2.15, tree–structured graphs allow multi–dimensional integrals (or
summations) to be decomposed into a series of simpler, one–dimensional integrals. As
in dynamic programming [24, 90, 303], the overall integral can then be computed via a
recursion involving messages sent between neighboring nodes. This decomposition is an
instance of the same distributive law underlying a variety of other algorithms [4, 50, 255],
including the fast Fourier transform. Critically, because messages are shared among sim-
ilar decompositions associated with different nodes, BP efficiently and simultaneously
computes the desired marginals for all nodes in the graph.
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Figure 2.15. Example derivation of the BP message passing recursion through repeated application
of the distributive law. Because the joint distribution p(x) factorizes as a product of pairwise clique
potentials, the joint integral can be decomposed via messages mji(xi) sent between neighboring nodes.

To derive the BP algorithm, we begin by considering the clique potentials corre-
sponding to particular subsets of the full graph:

ΨA(xA) !
∏

(i,j)∈E(A)

ψij(xi, xj)
∏

i∈A

ψi(xi, y) A ⊂ V (2.111)

Here, E(A) ! {(i, j) ∈ E | i, j ∈ A} are the edges contained in the node–induced sub-
graph [50] corresponding to A. Using the partitions illustrated in Fig. 2.14, we can then
write the marginal distribution of any node as follows:

p(xi | y) ∝
∫

XV\i

ψi(xi, y)
∏

j∈Γ(i)

ψij(xi, xj) Ψj\i(xj\i) dxV\i (2.112)

∝ ψi(xi, y)
∏

j∈Γ(i)

∫

X
j\i

ψij(xi, xj)Ψj\i(xj\i) dxj\i (2.113)
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Here, E(A) ! {(i, j) ∈ E | i, j ∈ A} are the edges contained in the node–induced sub-
graph [50] corresponding to A. Using the partitions illustrated in Fig. 2.14, we can then
write the marginal distribution of any node as follows:
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Proof on Board 



BP Algorithm 
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BP Algorithm 



Inference for Graphs with Cycles 
•  For graphs with cycles, the dynamic 

programming BP derivation breaks  

Junction Tree Algorithm 
•  Cluster nodes to break cycles 

•  Run BP on the tree of clusters 

•  Exact, but often intractable  

Loopy Belief Propagation 
•  Iterate local BP message updates 

on the graph with cycles 

•  Hope beliefs converge 

•  Empirically, often very effective… 



A Brief History of Loopy BP 
• 1993:  Turbo codes (and later LDPC codes, 

rediscovered from Gallager’s 1963 thesis) 
revolutionize error correcting codes  (Berrou et. al.) 

• 1995-1997:  Realization that turbo decoding 
algorithm is equivalent to loopy BP  (MacKay & Neal) 

• 1997-1999:  Promising results in other domains, & 
theoretical analysis via computation trees (Weiss) 

• 2000:  Connection between loopy BP & variational 
approximations, using ideas from statistical physics 
(Yedidia, Freeman, & Weiss) 

• 2001-2007:  Many results interpreting, justifying, 
and extending loopy BP 



Pairwise Markov Random Fields 

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

set of N nodes or vertices,  

set of undirected edges  (s,t)  linking pairs of nodes 

{1, 2, . . . , N}V
E

normalization constant (partition function) Z
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  Simple parameterization, but still 
expressive and widely used in practice 

•  Guaranteed Markov with respect to graph 



Undirected Graphical Models 

set of N nodes or vertices,  

set of undirected edges  (s,t)  linking pairs of nodes 

{1, 2, . . . , N}V
E

normalization constant (partition function) Z
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distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp
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Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)
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Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  Parameterization exactly captures those 
non-degenerate distributions which are 
Markov with respect to this graph 

•  Sometimes restricted to maximal cliques, 
but this is not necessary 

p(x) =
1

Z

Y

c2C
 c(xc)

set of cliques (fully connected subsets) of nodes C



Factor Graphs 

set of N nodes or vertices,  

set of hyperedges linking subsets of nodes 

{1, 2, . . . , N}V
normalization constant (partition function) Z

•  In a hypergraph, the hyperedges link 
arbitrary subsets of nodes (not just pairs) 

•  Visualize by a bipartite graph, with square 
(usually black) nodes for hyperedges 

•  A factor graph associates a non-negative 
potential function with each hyperedge 

•  Motivation: factorization key to computation 

p(x) =
1

Z

Y

f2F
 f (xf )

F f ✓ V



Factor Graphs & Factorization 
p(x) =

1

Z

Y

f2F
 f (xf )

•  For a given undirected graph, there exist distributions 
which have equivalent Markov properties, but different 
factorizations and different inference/learning complexities:  

Undirected 
Graphical Model 

Pairwise (edge) 
Potentials 

Potentials on 
Maximal Cliques 

Alternative 
Factorization 



Pairwise Nearest-Neighbor MRF 



Low Density Parity Check 
(LDPC) Code 



Directed Graphs as Factor Graphs 

•  Associate one factor with each node, linking it to its parents 
and defined to equal the corresponding conditional distribution 

•  Information lost:  Directionality of conditional distributions, 
and fact that global partition function 

p(x) =
NY

i=1

p(xi | x�(i))

Directed Graphical Model: 

Corresponding Factor Graph: 

p(x) =
NY

i=1

 i(xi, x�(i))

Z = 1


