Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 6:
Sum-Product Inference for Factor Graphs,
Learning Directed Graphical Models

Some figures courtesy Michael Jordan's draft textbook,
An Introduction to Probabilistic Graphical Models

Pairwise Markov Random Fields

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

- Simple parameterization, but still expressive and widely used in practice
- Guaranteed Markov with respect to graph

$\mathcal{E} \longrightarrow$ set of undirected edges (s, t) linking pairs of nodes
$\mathcal{V} \longrightarrow \quad$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow \quad$ normalization constant (partition function)

Belief Propagation (Sum-Product)

BELIEFS: Posterior marginals

$$
\hat{p}_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)
$$

$\Gamma(t) \longrightarrow \quad$ neighborhood of node t
MESSAGES: Sufficient statistics

Belief Propagation for Trees

- Dynamic programming algorithm which exactly computes all marginals
- On Markov chains, BP equivalent to alpha-beta or forward-backward algorithms for HMMs
- Sequential message schedules require each message to be updated only once
- Computational cost:
$N \longrightarrow$ number of nodes $M \longrightarrow \begin{gathered}\text { discrete states } \\ \text { for each node }\end{gathered}$ Belief Prop: $\mathcal{O}\left(N M^{2}\right)$ Brute Force: $\mathcal{O}\left(M^{N}\right)$

Factor Graphs

$$
p(x)=\frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f}\right)
$$

- In a hypergraph, the hyperedges link arbitrary subsets of nodes (not just pairs)
- Visualize by a bipartite graph, with square (usually black) nodes for hyperedges
- A factor graph associates a non-negative
 potential function with each hyperedge
- Motivation: factorization key to computation
$\mathcal{F} \longrightarrow$ set of hyperedges linking subsets of nodes $f \subseteq \mathcal{V}$
$\mathcal{V} \longrightarrow$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow$ normalization constant (partition function)

Factor Graphs \& Factorization

$$
p(x)=\frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f}\right)
$$

- For a given undirected graph, there exist distributions which have equivalent Markov properties, but different factorizations and different inference/learning complexities:

Directed Graphs as Factor Graphs

Directed Graphical Model:

$$
p(x)=\prod_{i=1}^{N} p\left(x_{i} \mid x_{\Gamma(i)}\right)
$$

Corresponding Factor Graph:

$$
p(x)=\prod_{i=1}^{N} \psi_{i}\left(x_{i}, x_{\Gamma(i)}\right)
$$

- Associate one factor with each node, linking it to its parents and defined to equal the corresponding conditional distribution
- Information lost: Directionality of conditional distributions, and fact that global partition function $Z=1$

Sum-Product Algorithm

Belief Propagation for Factor Graphs

$$
\nu_{i s}\left(x_{i}\right)=\prod_{t \in \mathcal{N}(i) \backslash s} \mu_{t i}\left(x_{i}\right) \quad \mu_{s i}\left(x_{i}\right)=\sum_{x_{\mathcal{N}(s) \backslash i}}\left(f_{s}\left(x_{\mathcal{N}(s)}\right) \prod_{j \in \mathcal{N}(s) \backslash i} \nu_{j s}\left(x_{j}\right)\right)
$$

- From each variable node, the incoming and outgoing messages are functions only of that particular variable
- Factor message updates must sum over all combinations of the adjacent variable nodes (exponential in degree)

Comparing Sum-Product Variants

- For pairwise potentials, there is one "incoming" message for each outgoing factor message, simplifies to earlier algorithm:

$$
m_{t s}\left(x_{s}\right) \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)
$$

Factor Graph Message Schedules

- All of the previously discussed message schedules are valid
- Here is an example of a synchronous parallel schedule:

Sum-Product for "Nearly" Trees
 Undirected

Graphical Model

(a)

Pairwise Graphical Model via Auxiliary Variable

(b)

Factor Graph

(c)

- Sum-product algorithm computes exact marginal distributions for any factor graph which is tree-structured (no cycles)
- This includes some undirected graphs with cycles

- Early work on belief propagation (Pearl, 1980's) focused on directed graphical models, and was complicated by directionality of edges and multiple parents (polytrees)
- Factor graph framework makes this a simple special case

Learning Directed Graphical Models

- Directed factorization causes likelihood to locally decompose:
$p(x \mid \theta)=p\left(x_{1} \mid \theta_{1}\right) p\left(x_{2} \mid x_{1}, \theta_{2}\right) p\left(x_{3} \mid x_{1}, \theta_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}, \theta_{4}\right)$
$\log p(x \mid \theta)=\log p\left(x_{1} \mid \theta_{1}\right)+\log p\left(x_{2} \mid x_{1}, \theta_{2}\right)+\log p\left(x_{3} \mid x_{1}, \theta_{3}\right)+\log p\left(x_{4} \mid x_{2}, x 3, \theta_{4}\right)$
- Often paired with a correspondingly factorized prior:

$$
p(\theta)=p\left(\theta_{1}\right) p\left(\theta_{2}\right) p\left(\theta_{3}\right) p\left(\theta_{4}\right)
$$

$\log p(\theta)=\log p\left(\theta_{1}\right)+\log p\left(\theta_{2}\right)+\log p\left(\theta_{3}\right)+\log p\left(\theta_{4}\right)$

Complete Observations

Directed
Graphical Model

N Independent, Identically Distributed Training Examples

Plate Notation

- A directed graphical model encodes assumed statistical dependencies among the different parts of a single training example:

$$
p(\mathcal{D} \mid \theta)=\prod^{N} \prod p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{i}\right) \quad \mathcal{D}=\left\{x_{\mathcal{V}, 1}, \ldots, x_{\mathcal{V}, N}\right\}
$$

- Given N independent, identically distributed, completely observed samples:
$\log p(\mathcal{D} \mid \theta)=\sum_{n=1}^{N} \sum_{i \in \mathcal{V}} \log p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{i}\right)=\sum_{i \in \mathcal{V}}\left[\sum_{n=1}^{N} \log p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{i}\right)\right]$

Priors and Tied Parameters

$$
\begin{aligned}
\log p(\mathcal{D} \mid \theta) & =\sum_{n=1}^{N} \sum_{i \in \mathcal{V}} \log p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{i}\right)=\sum_{i \in \mathcal{V}}\left[\sum_{n=1}^{N} \log p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{i}\right)\right] \\
\log p(\theta) & =\sum_{i \in \mathcal{V}} p\left(\theta_{i}\right)
\end{aligned} \quad \text { A "meta-independent" factorized prior }
$$

- Factorized posterior allows independent learning for each node:

$$
\log p(\theta \mid \mathcal{D})=C+\sum_{i \in \mathcal{V}}\left[\log p\left(\theta_{i}\right)+\sum_{n=1}^{N} \log p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{i}\right)\right]
$$

- Learning remains tractable when subsets of nodes are "tied" to use identical, shared parameter values:

$$
\begin{aligned}
& \log p(\mathcal{D} \mid \theta)=\sum_{i \in \mathcal{V}}\left[\sum_{n=1}^{N} \log p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{b_{i}}\right)\right] \\
& \log p\left(\theta_{b} \mid \mathcal{D}\right)=C+\log p\left(\theta_{b}\right)+\sum_{i \mid b_{i}=b} \sum_{n=1}^{N} \log p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{b}\right)
\end{aligned}
$$

Example: Temporal Models

Learning Binary Probabilities

Bernoulli Distribution: Single toss of a (possibly biased) coin
$\operatorname{Ber}(x \mid$
$\theta)=\theta^{\mathbb{I}(x=1)}$
$(1-\theta)^{\mathbb{I}(x=0)}$
$0 \leq \theta \leq 1$

- Suppose we observe N samples from a Bernoulli distribution with unknown mean:

$$
\begin{gathered}
X_{i} \sim \operatorname{Ber}(\theta), i=1, \ldots, N \\
p\left(x_{1}, \ldots, x_{N} \mid \theta\right)=\theta^{N_{1}}(1-\theta)^{N_{0}} \\
N_{1}=\sum_{i=1}^{N} \mathbb{I}\left(x_{i}=1\right) \quad N_{0}=\sum_{i=1}^{N} \mathbb{I}\left(x_{i}=0\right)
\end{gathered}
$$

- What is the maximum likelihood parameter estimate?

$$
\hat{\theta}=\arg \max _{\theta} \log p(x \mid \theta)=\frac{N_{1}}{N}
$$

Beta Distributions

Probability density function: $x \in[0,1]$
$\operatorname{Beta}(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}$

$$
B(a, b) \triangleq \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \quad a, b>0
$$

Beta Distributions

Bayesian Learning of Probabilities

Bernoulli Likelihood: Single toss of a (possibly biased) coin
$\operatorname{Ber}(x \mid \theta)=\theta^{\mathbb{I}(x=1)}(1-\theta)^{\mathbb{I}(x=0)} \quad 0 \leq \theta \leq 1$
$p\left(x_{1}, \ldots, x_{N} \mid \theta\right)=\theta^{N_{1}}(1-\theta)^{N_{0}}$
Beta Prior Distribution:

$$
p(\theta)=\operatorname{Beta}(\theta \mid a, b) \propto \theta^{a-1}(1-\theta)^{b-1}
$$

Posterior Distribution:
$p(\theta \mid x) \propto \theta^{N_{1}+a-1}(1-\theta)^{N_{0}+b-1} \propto \operatorname{Beta}\left(\theta \mid N_{1}+a, N_{0}+b\right)$

- This is a conjugate prior, because posterior is in same family
- Estimate by posterior mode (MAP) or mean (preferred)
- Here, posterior predictive equivalent to mean estimate

Sequence of Beta Posteriors

Multinomial Simplex

Constrained Optimization

- Solution:

$$
\hat{\theta}_{k}=\frac{a_{k}}{a_{0}} \quad a_{0}=\sum_{k=1}^{K} a_{k}
$$

- Proof for $\mathrm{K}=2$: Change of variables to unconstrained problem
- Proof for general K: Lagrange multipliers (see textbook)

Learning Categorical Probabilities

Multinoulli Distribution: Single roll of a (possibly biased) die

$$
\operatorname{Cat}(x \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{x_{k}} \quad \mathcal{X}=\{0,1\}^{K}, \sum_{k=1}^{K} x_{k}=1
$$

- If we have N_{k} observations of outcome k in N trials:

$$
p\left(x_{1}, \ldots, x_{N} \mid \theta\right)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}
$$

- The maximum likelihood parameter estimates are then:

$$
\hat{\theta}=\arg \max _{\theta} \log p(x \mid \theta) \quad \hat{\theta}_{k}=\frac{N_{k}}{N}
$$

- Will this produce sensible predictions when K is large?

Dirichlet Probability Densities

$$
\operatorname{Dir}(x \mid \alpha) \triangleq \frac{1}{B(\alpha)} \prod_{k=1}^{k} \prod_{k}^{\alpha-1} \mathbb{I}_{I}\left(x \in S_{K}\right)
$$

$$
S_{K}=\left\{\mathbf{x}: 0 \leq x_{k} \leq 1, \sum_{k=1} x_{k}=1\right\}
$$

$$
B(\boldsymbol{\alpha}) \triangleq \frac{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)}{\Gamma\left(\alpha_{0}\right)} \quad \alpha_{0} \triangleq \sum_{k=1}^{K} \alpha_{k}
$$

$$
\alpha=0.10
$$

Mean: $\mathbb{E}\left[x_{k}\right]=\frac{\alpha_{k}}{\alpha_{0}}$
Mode: $\quad \hat{x}_{k}=\frac{\alpha_{k}-1}{\alpha_{0}-K}$

Dirichlet Probability Densities

Dirichlet Samples

Samples from Dir (alpha=1)

$\operatorname{Dir}(\theta \mid 1.0,1.0,1.0,1.0,1.0)$

Bayesian Learning of Probabilities

Multinoulli Distribution: Single roll of a (possibly biased) die

$$
\begin{array}{r}
\operatorname{Cat}(x \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{x_{k}} \quad \mathcal{X}=\{0,1\}^{K}, \sum_{k=1}^{K} \\
p\left(x_{1}, \ldots, x_{N} \mid \theta\right)=\prod_{k=1}^{K} \theta_{k}^{N_{k}}
\end{array}
$$

Dirichlet Prior Distribution:

$$
p(\theta)=\operatorname{Dir}(\theta \mid \alpha) \propto \prod_{k=1}^{n} \theta_{k}^{\alpha_{k}-1}
$$

Posterior Distribution:
$p(\theta \mid x) \propto \prod_{k=1}^{K} \theta_{k}^{N_{k}+\alpha_{k}-1} \propto \operatorname{Dir}\left(\theta \mid N_{1}+\alpha_{1}, \ldots, N_{K}+\alpha_{K}\right)$

- This is a conjugate prior, because posterior is in same family

Learning Directed Graphical Models

$$
\log p(\theta \mid \mathcal{D})=C+\sum_{i \in \mathcal{V}}\left[\log p\left(\theta_{i}\right)+\sum_{n=1}^{N} \log p\left(x_{i, n} \mid x_{\Gamma(i), n}, \theta_{i}\right)\right]
$$

- For nodes with no parents, parameters define a single Bernoulli or categorical distribution
> Bayesian or ML learning as in previous slides
- More generally, there are multiple categorical distributions per node, one for every combination of parent variables
$>$ Learning objective decomposes into multiple terms, one for subset of training data with each parent configuration
> Apply independent Bayesian or ML learning to each
- Concerns for nodes with many parents:
$>$ Computation: Large number of parameters to estimate
$>$ Sparsity: May have little (or even no) data for some configurations of the parent variables
> Priors can help, but may still be inadequate...

Naïve Bayes: ML \& Bayes

$p\left(\mathbf{x}_{i}, y_{i} \mid \boldsymbol{\theta}\right)=p\left(y_{i} \mid \boldsymbol{\pi}\right) \prod_{j} p\left(x_{i j} \mid \boldsymbol{\theta}_{j}\right)=\prod_{c} \pi_{c}^{\mathbb{I}\left(y_{i}=c\right)} \prod_{j} \prod_{c} p\left(x_{i j} \mid \boldsymbol{\theta}_{j c}\right)^{\mathbb{I}\left(y_{i}=c\right)}$
$\log p(\mathcal{D} \mid \boldsymbol{\theta})=\sum_{c=1}^{C} N_{c} \log \pi_{c}+\sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i: y_{i}=c} \log p\left(x_{i j} \mid \boldsymbol{\theta}_{j c}\right)$
$N_{c} \longrightarrow$ number of examples of training class c

- Maximizing the sum of functions of independent parameters can be done by maximizing them independently:

$$
\underset{\text { Likelihood }}{\text { Maximum }} \quad \hat{\pi}_{c}=\frac{N_{c}}{N} \quad \hat{\theta}_{j c}=\frac{N_{j c}}{N_{c}} \quad \text { if } \quad x_{j} \mid y=c \sim \operatorname{Ber}\left(\theta_{j c}\right)
$$

- Similarly, if the parameters for different features are independent under the prior, they remain independent under the posterior, and Bayesian analysis decomposes

Example: Medical Diagnosis

diseases

findings

- Learning independent finding distribution for every combination of diseases may be computationally intractable and lead to poor statistical generalization
- Instead assume restricted parameterizations, in which child distributions depend on some features of parents. Example:

Logistic Regression

$p\left(y_{i} \mid x_{i}, w\right)=\operatorname{Ber}\left(y_{i} \mid \operatorname{sigm}\left(w^{T} \phi\left(x_{i}\right)\right)\right)$

- Linear discriminant analysis:
$\phi\left(x_{i}\right)=\left[1, x_{i 1}, x_{i 2}, \ldots, x_{i d}\right]$
- Quadratic discriminant analysis:

$$
\phi\left(x_{i}\right)=\left[1, x_{i 1}, \ldots, x_{i d}, x_{i 1}^{2}, x_{i 1} x_{i 2}, x_{i 2}^{2}, \ldots\right]
$$

- Can derive weights from Gaussian generative model if that happens to be known, but more generally:
- Choose any convenient feature set $\phi(x)$
- Do discriminative Bayesian learning:

$$
p(w \mid x, y) \propto p(w) \prod_{i=1}^{N} \operatorname{Ber}\left(y_{i} \mid \operatorname{sigm}\left(w^{T} \phi\left(x_{i}\right)\right)\right)
$$

Logistic Regression

Multinomial Logistic Regression

$$
\begin{aligned}
p(y \mid \mathbf{x}, \mathbf{W}) & =\operatorname{Cat}\left(y \mid \mathcal{S}\left(\mathbf{W}^{T} \mathbf{x}\right)\right) \\
\mathcal{S}(\boldsymbol{\eta})_{c} & =\frac{e^{\eta_{c}}}{\sum_{c^{\prime}=1}^{C} e^{\eta_{c^{\prime}}}}
\end{aligned}
$$

$$
\text { as } T \rightarrow 0
$$

$$
\mathcal{S}(\boldsymbol{\eta} / T)_{c}= \begin{cases}1.0 & \text { if } c=\arg \max _{c^{\prime}} \eta_{c^{\prime}} \\ 0.0 & \text { otherwise }\end{cases}
$$

Kernel-RBF Multinomial Logistic Regression

