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Exponential Families of Distributions 

fixed vector of sufficient statistics (features), 
specifying the family of distributions 
unknown vector of natural parameters, 
determine particular distribution in this family 

�(x) 2 Rd

✓ 2 ⇥

normalization constant or partition function, 
ensuring this is a valid probability distribution 
reference measure independent of parameters 
(for many models, we simply have                 ) 

h(x) = 1h(x) > 0

Z(✓) > 0

To ensure this construction is valid, we take 

⇥ = {✓ 2 Rd | Z(✓) < 1}



Why the Exponential Family? 

•  Many standard distributions are in this family, and by studying 
exponential families, we study them all simultaneously 

•  Explains similarities among learning algorithms for different 
models, and makes it easier to derive new algorithms: 
•  ML estimation takes a simple form for exponential families: 

moment matching of sufficient statistics 
•  Bayesian learning is simplest for exponential families: 

they are the only distributions with conjugate priors 
•  They have a maximum entropy interpretation:  Among all 

distributions with certain moments of interest, the exponential 
family is the most random (makes fewest assumptions) 



Examples of Exponential Families 

•  Bernoulli and binomial (2 classes) 
•  Categorical and multinomial (K classes) 

•  Scalar Gaussian 
•  Multivariate Gaussian 

•  Poisson 

•  Dirichlet and beta 
•  Gamma and exponential 
•  … 

�(x) = [I(x = 1), . . . , I(x = K � 1)]

�(x) = I(x = 1) = x

�(x) = [x, x2]
�(x) = [x, xxT ]

h(x) =
1

x!
,�(x) = x



Non-Exponential Families 
•  Uniform distribution 

Unif(x | a, b) = 1

b� a

I(a  x  b)

•  Laplace and Student-t distributions 

Lap(x | µ,�) = �

2

exp(��|x� µ|)



Convexity 



Convexity & Jensen’s Inequality 

f(x)

chord

a x! b

f(E[X])  E[f(X)]



Concavity & Jensen’s Inequality 
ln(E[X]) � E[ln(X)]



Log Partition Function 

•  Derivatives of log partition function have an intuitive form: 

r✓A(✓) = E✓[�(x)]

r2
✓A(✓) = Cov✓[�(x)] = E✓[�(x)�(x)

T
]� E✓[�(x)]E✓[�(x)]

T

•  Important consequences for learning with exponential families: 
•  Finding gradients is equivalent to finding expected 

sufficient statistics, or moments, of some current model 
•  The Hessian is positive definite so           is convex 
•  This in turn implies that the parameter space        is convex 
•  Learning is a convex problem:  No local optima! 

At least when we have complete observations… 

A(✓)
⇥



A Little Information Theory 
•  The entropy is a natural measure of the inherent uncertainty 

(difficulty of compression) of some random variable: 
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Proposition 2.1.1. The log partition function Φ(θ) of eq. (2.2) is convex (strictly so
for minimal representations) and continuously differentiable over its domain Θ. Its
derivatives are the cumulants of the sufficient statistics {φa | a ∈ A}, so that

∂Φ(θ)

∂θa
= Eθ[φa(x)] !

∫

X
φa(x) p(x | θ) dx (2.4)

∂2Φ(θ)

∂θa∂θb
= Eθ[φa(x)φb(x)] − Eθ[φa(x)] Eθ[φb(x)] (2.5)

Proof. For a detailed proof of this classic result, see [15, 36, 311]. The cumulant gener-
ating properties follow from the chain rule and algebraic manipulation. From eq. (2.5),
∇2Φ(θ) is a positive semi–definite covariance matrix, implying convexity of Φ(θ). For
minimal families, ∇2Φ(θ) must be positive definite, guaranteeing strict convexity.

Due to this result, the log partition function is also known as the cumulant generating
function of the exponential family. The convexity of Φ(θ) has important implications
for the geometry of exponential families [6, 15, 36, 74].

Entropy, Information, and Divergence

Concepts from information theory play a central role in the study of learning and
inference in exponential families. Given a probability distribution p(x) defined on a
discrete space X , Shannon’s measure of entropy (in natural units, or nats) equals

H(p) = −
∑

x∈X

p(x) log p(x) (2.6)

In such diverse fields as communications, signal processing, and statistical physics,
entropy arises as a natural measure of the inherent uncertainty in a random variable [49].
The differential entropy extends this definition to continuous spaces:

H(p) = −
∫

X
p(x) log p(x) dx (2.7)

In both discrete and continuous domains, the (differential) entropy H(p) is concave,
continuous, and maximal for uniform densities. However, while the discrete entropy is
guaranteed to be non-negative, differential entropy is sometimes less than zero.

For problems of model selection and approximation, we need a measure of the
distance between probability distributions. The relative entropy or Kullback-Leibler
(KL) divergence between two probability distributions p(x) and q(x) equals

D(p || q) =

∫

X
p(x) log

p(x)

q(x)
dx (2.8)

Important properties of the KL divergence follow from Jensen’s inequality [49], which
bounds the expectation of convex functions:

E[f(x)] ≥ f(E[x]) for any convex f : X → R (2.9)
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discrete entropy 
(concave, non-negative) 

differential entropy 
(concave, real-valued) 

•  The relative entropy or Kullback-Leibler (KL) divergence  
is then a non-negative, but asymmetric, “distance” between a 
given pair of probability distributions: 
 
 
The KL divergence equals zero iff                 almost everywhere. 
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Applying Jensen’s inequality to the logarithm of eq. (2.8), which is concave, it is eas-
ily shown that the KL divergence D(p || q) ≥ 0, with D(p || q) = 0 if and only if
p(x) = q(x) almost everywhere. However, it is not a true distance metric because
D(p || q) "= D(q || p). Given a target density p(x) and an approximation q(x), D(p || q)
can be motivated as the information gain achievable by using p(x) in place of q(x) [49].
Interestingly, the alternate KL divergence D(q || p) also plays an important role in the
development of variational methods for approximate inference (see Sec. 2.3).

An important special case arises when we consider the dependency between two
random variables x and y. Let pxy(x, y) denote their joint distribution, px(x) and
py(y) their corresponding marginals, and X and Y their sample spaces. The mutual
information between x and y then equals

I(pxy) ! D(pxy || pxpy) =

∫

X

∫

Y
pxy(x, y) log

pxy(x, y)

px(x)py(y)
dy dx (2.10)

= H(px) + H(py) − H(pxy) (2.11)

where eq. (2.11) follows from algebraic manipulation. The mutual information can be
interpreted as the expected reduction in uncertainty about one random variable from
observation of another [49].

Projections onto Exponential Families

In many cases, learning problems can be posed as a search for the best approximation
of an empirically derived target density p̃(x). As discussed in the previous section, the
KL divergence D(p̃ || q) is a natural measure of the accuracy of an approximation q(x).
For exponential families, the optimal approximating density is elegantly characterized
by the following moment–matching conditions:

Proposition 2.1.2. Let p̃ denote a target probability density, and pθ an exponential
family. The approximating density minimizing D(p̃ || pθ) then has canonical parameters
θ̂ chosen to match the expected values of that family’s sufficient statistics:

Eθ̂[φa(x)] =

∫

X
φa(x) p̃(x) dx a ∈ A (2.12)

For minimal families, these optimal parameters θ̂ are uniquely determined.

Proof. From the definition of KL divergence (eq. (2.8)), we have

D(p̃ || pθ) =

∫

X
p̃(x) log

p̃(x)

p(x | θ)
dx

=

∫

X
p̃(x) log p̃(x) dx −

∫

X
p̃(x)

[

log ν(x) +
∑

a∈A

θaφa(x) − Φ(θ)

]

dx

= −H(p̃) −
∫

X
p̃(x) log ν(x) dx −

∑

a∈A

θa

∫

X
φa(x) p̃(x) dx + Φ(θ)

p(x) = q(x)

•  The mutual information measures dependence between a 
pair of random variables: 
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Learning in Exponential Families 

•  Given any target probability distribution        , the closest 
exponential family distribution matches moments: 

p̃(x)

✓̂ = argmin
✓

D(p̃ || p✓)
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•  Given L samples, their empirical distribution equals 

p̃(x) =
1

L

LX

`=1

�

x

(`)(x)

•  For exponential families, maximum likelihood estimation 
always minimizes KL divergence from empirical distribution: 
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Taking derivatives with respect to θa and setting ∂D(p̃ || pθ) /∂θa = 0, we then have

∂Φ(θ)

∂θa
=

∫

X
φa(x) p̃(x) dx a ∈ A

Equation (2.12) follows from the cumulant generating properties of Φ(θ) (eq. (2.4)).
Because Φ(θ) is strictly convex for minimal families (Prop. 2.1.1), the canonical param-
eters θ̂ satisfying eq. (2.12) achieve the unique global minimum of D(p̃ || pθ).

In information geometry, the density satisfying eq. (2.12) is known as the I–projection
of p̃(x) onto the e–flat manifold defined by the exponential family’s canonical param-
eters [6, 52]. Note that the optimal projection depends only the potential functions’
expected values under p̃(x), so that these statistics are sufficient to determine the clos-
est approximation.

In many applications, rather than an explicit target density p̃(x), we instead observe
L independent samples {x(")}L

"=1 from that density. In this situation, we define the
empirical density of the samples as follows:

p̃(x) =
1

L

L∑

"=1

δ
(
x, x(")

)
(2.13)

Here, δ
(
x, x(")

)
is the Dirac delta function for continuous X , and the Kronecker delta

for discrete X . Specializing Prop. 2.1.2 to this case, we find a correspondence between
information projection and maximum likelihood (ML) parameter estimation.

Proposition 2.1.3. Let pθ denote an exponential family with canonical parameters θ.
Given L independent, identically distributed samples {x(")}L

"=1, with empirical density

p̃(x) as in eq. (2.13), the maximum likelihood estimate θ̂ of the canonical parameters
coincides with the empirical density’s information projection:

θ̂ = arg max
θ

L∑

"=1

log p(x(") | θ) = arg min
θ

D(p̃ || pθ) (2.14)

These optimal parameters are uniquely determined for minimal families, and charac-
terized by the following moment matching conditions:

Eθ̂[φa(x)] =
1

L

L∑

"=1

φa(x
(")) a ∈ A (2.15)
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Maximum Entropy Models 

•  Consider a collection of d target statistics           , whose 
expectations with respect to some distribution           are p̃(x)

�a(x)
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Proof. Expanding the KL divergence from p̃(x) (eq. (2.13)), we have

D(p̃ || pθ) =

∫

X
p̃(x) log p̃(x) dx −

∫

X
p̃(x) log p(x | θ) dx

= −H(p̃) −
∫

X

1

L

L∑

"=1

δ
(
x, x(")

)
log p(x | θ) dx

= −H(p̃) − 1

L

L∑

"=1

log p(x(") | θ)

Because H(p̃) does not depend on θ, the parameters minimizing D(p̃ || pθ) and maxi-
mizing the expected log–likelihood coincide, establishing eq. (2.14). The unique char-
acterization of θ̂ via moment–matching (eq. (2.15)) then follows from Prop. 2.1.2.

In principle, Prop. 2.1.2 and 2.1.3 suggest a straightforward procedure for learning ex-
ponential familes: estimate appropriate sufficient statistics, and then find correspond-
ing canonical parameters via convex optimization [6, 15, 36, 52]. In practice, however,
significant difficulties may arise. For example, practical applications often require semi-
supervised learning from partially labeled training data, so that the needed statistics
cannot be directly measured. Even when sufficient statistics are available, calculation
of the corresponding parameters can be intractable in large, complex models.

These results also have important implications for the selection of appropriate ex-
ponential families. In particular, because the chosen statistics are sufficient for param-
eter estimation, the learned model cannot capture aspects of the target distribution
neglected by these statistics. These concerns motivate our later development of non-
parametric methods (see Sec. 2.5) which extend exponential families to learn richer,
more flexible models.

Maximum Entropy Models

In the previous section, we argued that certain statistics are sufficient to characterize
the best exponential family approximation of a given target density. The following
theorem shows that if these statistics are the only available information about a target
density, then the corresponding exponential family provides a natural model.

Theorem 2.1.1. Consider a collection of statistics {φa | a ∈ A}, whose expectations
with respect to some target density p̃(x) are known:

∫

X
φa(x) p̃(x) dx = µa a ∈ A (2.16)

The unique distribution p̂(x) maximizing the entropy H(p̂), subject to these moment
constraints, is then a member of the exponential family of eq. (2.1), with ν(x) = 1 and
canonical parameters θ̂ chosen so that Eθ̂[φa(x)] = µa.

•  The unique distribution            maximizing the entropy           , 
subject to the constraint that these moments are exactly 
matched, is then an exponential family distribution with 

p̂(x) H(p̂)
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mizing the expected log–likelihood coincide, establishing eq. (2.14). The unique char-
acterization of θ̂ via moment–matching (eq. (2.15)) then follows from Prop. 2.1.2.

In principle, Prop. 2.1.2 and 2.1.3 suggest a straightforward procedure for learning ex-
ponential familes: estimate appropriate sufficient statistics, and then find correspond-
ing canonical parameters via convex optimization [6, 15, 36, 52]. In practice, however,
significant difficulties may arise. For example, practical applications often require semi-
supervised learning from partially labeled training data, so that the needed statistics
cannot be directly measured. Even when sufficient statistics are available, calculation
of the corresponding parameters can be intractable in large, complex models.

These results also have important implications for the selection of appropriate ex-
ponential families. In particular, because the chosen statistics are sufficient for param-
eter estimation, the learned model cannot capture aspects of the target distribution
neglected by these statistics. These concerns motivate our later development of non-
parametric methods (see Sec. 2.5) which extend exponential families to learn richer,
more flexible models.

Maximum Entropy Models

In the previous section, we argued that certain statistics are sufficient to characterize
the best exponential family approximation of a given target density. The following
theorem shows that if these statistics are the only available information about a target
density, then the corresponding exponential family provides a natural model.

Theorem 2.1.1. Consider a collection of statistics {φa | a ∈ A}, whose expectations
with respect to some target density p̃(x) are known:

∫

X
φa(x) p̃(x) dx = µa a ∈ A (2.16)

The unique distribution p̂(x) maximizing the entropy H(p̂), subject to these moment
constraints, is then a member of the exponential family of eq. (2.1), with ν(x) = 1 and
canonical parameters θ̂ chosen so that Eθ̂[φa(x)] = µa. h(x) = 1

Out of all distributions which reproduce the observed 
sufficient statistics, the exponential family distribution 
(roughly) makes the fewest additional assumptions.  
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of the canonical parameters can be written as follows:

p(θ | x(1), . . . , x(L), λ) =
p(x(1), . . . , x(L) | θ, λ) p(θ | λ)∫

Θ p(x(1), . . . , x(L) | θ, λ) p(θ | λ) dθ
(2.17)

∝ p(θ | λ)
L∏

!=1

p(x(!) | θ) (2.18)

The proportionality symbol of eq. (2.18) represents the constant needed to ensure in-
tegration to unity (in this case, the data likelihood of eq. (2.17)). Recall that, for
minimal exponential families, the canonical parameters are uniquely associated with
expectations of that family’s sufficient statistics (Prop. 2.1.3). The posterior distribu-
tion of eq. (2.18) thus captures our knowledge about the statistics likely to be exhibited
by future observations.

In many situations, statistical models are used primarily to predict future observa-
tions. Given L independent observations as before, the predictive likelihood of a new
observation x̄ equals

p(x̄ | x(1), . . . , x(L), λ) =

∫

Θ
p(x̄ | θ) p(θ | x(1), . . . , x(L), λ) dθ (2.19)

where the posterior distribution over parameters is as in eq. (2.18). By averaging over
our posterior uncertainty in the parameters θ, this approach leads to predictions which
are typically more robust than those based on a single parameter estimate.

In principle, a fully Bayesian analysis should also place a prior distribution p(λ)
on the hyperparameters. In practice, however, computational considerations frequently
motivate an empirical Bayesian approach [21, 75, 107] in which λ is estimated by max-
imizing the training data’s marginal likelihood:

λ̂ = arg max
λ

p(x(1), . . . , x(L) | λ) (2.20)

= arg max
λ

∫

Θ
p(θ | λ)

L∏

!=1

p(x(!) | θ) dθ (2.21)

In situations where this optimization is intractable, cross–validation approaches which
optimize the predictive likelihood of a held–out data set are often useful [21].

More generally, the predictive likelihood computation of eq. (2.19) is itself in-
tractable for many practical models. In these cases, the parameters’ posterior dis-
tribution (eq. (2.18)) is often approximated by a single maximum a posteriori (MAP)
estimate:

θ̂ = arg max
θ

p(θ | x(1), . . . , x(L), λ) (2.22)

= arg max
θ

p(θ | λ)
L∏

!=1

p(x(!) | θ) (2.23)
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This approach is best justified when the training set size L is very large, so that the pos-
terior distribution of eq. (2.22) is tightly concentrated [21, 107]. Sometimes, however,
MAP estimates are used with smaller datasets because they are the only computation-
ally viable option.

Parametric and Predictive Sufficiency

When computing the posterior distributions and predictive likelihoods motivated in
the previous section, it is very helpful to have compact ways of characterizing large
datasets. For exponential families, the notions of sufficiency introduced in Sec. 2.1.1
can be extended to simplify learning with prior knowledge.

Theorem 2.1.2. Let p(x | θ) denote an exponential family with canonical parameters θ,
and p(θ | λ) a corresponding prior density. Given L independent, identically distributed
samples {x(!)}L

!=1, consider the following statistics:

φ(x(1), . . . , x(L)) !

{
1

L

L∑

!=1

φa(x
(!))

∣∣∣ a ∈ A
}

(2.24)

These empirical moments, along with the sample size L, are then said to be parametric
sufficient for the posterior distribution over canonical parameters, so that

p(θ | x(1), . . . , x(L), λ) = p(θ | φ(x(1), . . . , x(L)) , L, λ) (2.25)

Equivalently, they are predictive sufficient for the likelihood of new data x̄:

p(x̄ | x(1), . . . , x(L), λ) = p(x̄ | φ(x(1), . . . , x(L)) , L, λ) (2.26)

Proof. Parametric sufficiency follows from the Neyman factorization criterion, which
is satisfied by any exponential family. The correspondence between parametric and
predictive sufficiency can then be argued from eqs. (2.18, 2.19). For details, see Sec.
4.5 of Bernardo and Smith [21].

This theorem makes exponential families particularly attractive when learning from
large datasets, due to the often dramatic compression provided by the statistics of
eq. (2.24). It also emphasizes the importance of selecting appropriate sufficient statis-
tics, since other features of the data cannot affect subsequent model predictions.

Analysis with Conjugate Priors

Theorem 2.1.2 shows that statistical predictions in exponential families are functions
solely of the chosen sufficient statistics. However, it does not provide an explicit char-
acterization of the posterior distribution over model parameters, or guarantee that the
predictive likelihood can be computed tractably. In this section, we describe an expres-
sive family of prior distributions which are also analytically tractable.
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Chapter 2

Nonparametric and
Graphical Models

STATISTICAL methods play a central role in the design and analysis of machine vi-
sion systems. In this background chapter, we review several learning and inference

techniques upon which our later contributions are based. We begin in Sec. 2.1 by de-
scribing exponential families of probability densities, emphasizing the roles of sufficiency
and conjugacy in Bayesian learning. Sec. 2.2 then shows how graphs may be used to im-
pose structure on exponential families. We contrast several types of graphical models,
and provide results clarifying their underlying statistical assumptions.

To apply graphical models in practical applications, computationally efficient learn-
ing and inference algorithms are needed. Sec. 2.3 describes several variational meth-
ods which approximate intractable inference tasks via message–passing algorithms. In
Sec. 2.4, we discuss a complementary class of Monte Carlo methods which use stochas-
tic simulations to analyze complex models. In this thesis, we propose new inference
algorithms which integrate variational and Monte Carlo methods in novel ways.

Finally, we conclude in Sec. 2.5 with an introduction to nonparametric methods
for Bayesian learning. These infinite–dimensional models achieve greater robustness
by avoiding restrictive assumptions about the data generation process. Despite this
flexibility, variational and Monte Carlo methods can be adapted to allow tractable
analysis of large, high–dimensional datasets.

! 2.1 Exponential Families

An exponential family of probability distributions [15, 36, 311] is characterized by the
values of certain sufficient statistics. Let x be a random variable taking values in some
sample space X , which may be either continuous or discrete. Given a set of statistics or
potentials {φa | a ∈ A}, the corresponding exponential family of densities is given by

p(x | θ) = ν(x) exp

{
∑

a∈A

θaφa(x) − Φ(θ)

}

(2.1)
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where θ ∈ R|A| are the family’s natural or canonical parameters, and ν(x) is a non-
negative reference measure. In some applications, the parameters θ are set to fixed
constants, while in other cases they are interpreted as latent random variables. The log
partition function Φ(θ) is defined to normalize p(x | θ) so that it integrates to one:

Φ(θ) = log

∫

X
ν(x) exp

{
∑

a∈A

θaφa(x)

}

dx (2.2)

For discrete spaces, dx is taken to be counting measure, so that integrals become sum-
mations. This construction is valid when the canonical parameters θ belong to the set
Θ for which the log partition function is finite:

Θ !
{

θ ∈ R
|A| | Φ(θ) < ∞

}
(2.3)

Because Φ(θ) is a convex function (see Prop. 2.1.1), Θ is necessarily convex. If Θ is also
open, the exponential family is said to be regular. Many classic probability distributions
form regular exponential families, including the Bernoulli, Poisson, Gaussian, beta, and
gamma densities [21, 107]. For example, for scalar Gaussian densities the sufficient
statistics are {x, x2}, ν(x) = 1, and Θ constrains the variance to be positive.

Exponential families are typically parameterized so that no linear combination of
the potentials {φa | a ∈ A} is almost everywhere constant. In such a minimal repre-
sentation,1 there is a unique set of canonical parameters θ associated with each density
in the family, whose dimension equals d ! |A|. Furthermore, the exponential family
defines a d–dimensional Riemannian manifold, and the canonical parameters a coor-
dinate system for that manifold. By characterizing the convex geometric structure of
such manifolds, information geometry [6, 15, 52, 74, 305] provides a powerful framework
for analyzing learning and inference algorithms. In particular, as we discuss in Sec. 2.3,
results from conjugate duality [15, 311] underlie many algorithms used in this thesis.

In the following sections, we further explore the properties of exponential families,
emphasizing results which guide the specification of sufficient statistics appropriate to
particular learning problems. We then introduce a family of conjugate priors for the
canonical parameters θ, and provide detailed computational methods for two exponen-
tial families (the normal–inverse–Wishart and Dirichlet–multinomial) used extensively
in this thesis. For further discussion of the convex geometry underlying exponential
families, see [6, 15, 36, 74, 311].

" 2.1.1 Sufficient Statistics and Information Theory

In this section, we establish several results which motivate the use of exponential fam-
ilies, and clarify the notion of sufficiency. The following properties of the log partition
function establish its central role in the study of exponential families:

1We note, however, that overcomplete representations play an important role in recent theoretical
analyses of variational approaches to approximate inference [305, 306, 311].
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}

(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(!)}L

!=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
!=1 φa(x(!))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

!=1

log ν(x(!)) (2.33)
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flexibility, variational and Monte Carlo methods can be adapted to allow tractable
analysis of large, high–dimensional datasets.

! 2.1 Exponential Families

An exponential family of probability distributions [15, 36, 311] is characterized by the
values of certain sufficient statistics. Let x be a random variable taking values in some
sample space X , which may be either continuous or discrete. Given a set of statistics or
potentials {φa | a ∈ A}, the corresponding exponential family of densities is given by

p(x | θ) = ν(x) exp

{
∑

a∈A

θaφa(x) − Φ(θ)

}

(2.1)
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where θ ∈ R|A| are the family’s natural or canonical parameters, and ν(x) is a non-
negative reference measure. In some applications, the parameters θ are set to fixed
constants, while in other cases they are interpreted as latent random variables. The log
partition function Φ(θ) is defined to normalize p(x | θ) so that it integrates to one:

Φ(θ) = log

∫

X
ν(x) exp

{
∑

a∈A

θaφa(x)

}

dx (2.2)

For discrete spaces, dx is taken to be counting measure, so that integrals become sum-
mations. This construction is valid when the canonical parameters θ belong to the set
Θ for which the log partition function is finite:

Θ !
{

θ ∈ R
|A| | Φ(θ) < ∞

}
(2.3)

Because Φ(θ) is a convex function (see Prop. 2.1.1), Θ is necessarily convex. If Θ is also
open, the exponential family is said to be regular. Many classic probability distributions
form regular exponential families, including the Bernoulli, Poisson, Gaussian, beta, and
gamma densities [21, 107]. For example, for scalar Gaussian densities the sufficient
statistics are {x, x2}, ν(x) = 1, and Θ constrains the variance to be positive.

Exponential families are typically parameterized so that no linear combination of
the potentials {φa | a ∈ A} is almost everywhere constant. In such a minimal repre-
sentation,1 there is a unique set of canonical parameters θ associated with each density
in the family, whose dimension equals d ! |A|. Furthermore, the exponential family
defines a d–dimensional Riemannian manifold, and the canonical parameters a coor-
dinate system for that manifold. By characterizing the convex geometric structure of
such manifolds, information geometry [6, 15, 52, 74, 305] provides a powerful framework
for analyzing learning and inference algorithms. In particular, as we discuss in Sec. 2.3,
results from conjugate duality [15, 311] underlie many algorithms used in this thesis.

In the following sections, we further explore the properties of exponential families,
emphasizing results which guide the specification of sufficient statistics appropriate to
particular learning problems. We then introduce a family of conjugate priors for the
canonical parameters θ, and provide detailed computational methods for two exponen-
tial families (the normal–inverse–Wishart and Dirichlet–multinomial) used extensively
in this thesis. For further discussion of the convex geometry underlying exponential
families, see [6, 15, 36, 74, 311].

" 2.1.1 Sufficient Statistics and Information Theory

In this section, we establish several results which motivate the use of exponential fam-
ilies, and clarify the notion of sufficiency. The following properties of the log partition
function establish its central role in the study of exponential families:

1We note, however, that overcomplete representations play an important role in recent theoretical
analyses of variational approaches to approximate inference [305, 306, 311].
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}

(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(!)}L

!=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
!=1 φa(x(!))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

!=1

log ν(x(!)) (2.33)
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For an exponential family, the conjugate prior is defined by: 
•  Prior expected values        of the d sufficient statistics 
•  A measure of confidence in those prior expectations, 

expressed as a positive number of pseudo-observations 
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This
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Local exponential family: 
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