Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 8:
Inference \& Learning for Exponential Families, Expectation Maximization (EM) Algorithm

Some figures courtesy Michael Jordan's draft textbook,
An Introduction to Probabilistic Graphical Models

Exponential Families of Distributions

$$
\begin{aligned}
p(\mathbf{x} \mid \boldsymbol{\theta}) & =\frac{1}{Z(\boldsymbol{\theta})} h(\mathbf{x}) \exp \left[\boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x})\right] & Z(\boldsymbol{\theta}) & =\int_{\mathcal{X}^{m}} h(\mathbf{x}) \exp \left[\boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x})\right] d \mathbf{x} \\
& =h(\mathbf{x}) \exp \left[\boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x})-A(\boldsymbol{\theta})\right] & A(\boldsymbol{\theta}) & =\log Z(\boldsymbol{\theta})
\end{aligned}
$$

$\phi(x) \in \mathbb{R}^{d} \longrightarrow \begin{aligned} & \text { fixed vector of sufficient statistics (features), } \\ & \text { specifying the family of distributions }\end{aligned}$ specifying the family of distributions
$\theta \in \Theta \longrightarrow$ unknown vector of natural parameters, determine particular distribution in this family
$Z(\theta)>0 \longrightarrow$ normalization constant or partition function, ensuring this is a valid probability distribution
$h(x)>0 \longrightarrow \begin{aligned} & \text { reference measure independent of parameters } \\ & \text { (for many models, we simply have } h(x)=1 \text {) }\end{aligned}$
To ensure this construction is valid, we take

$$
\Theta=\left\{\theta \in \mathbb{R}^{d} \mid Z(\theta)<\infty\right\}
$$

Factor Graphs \& Exponential Families

$$
p(x)=\frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f} \mid \theta_{f}\right)
$$

$\mathcal{F} \longrightarrow \quad$ set of hyperedges linking subsets of nodes $f \subseteq \mathcal{V}$
$\mathcal{V} \longrightarrow$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow$ normalization constant (partition function)

- A factor graph is created from non-negative potential functions
- To guarantee non-negativity, we typically define potentials as

$$
\psi_{f}\left(x_{f} \mid \theta_{f}\right)=\nu_{f}\left(x_{f}\right) \exp \left\{\sum_{a \in \mathcal{A}_{f}} \theta_{f a} \phi_{f_{a}\left(x_{f}\right)}\right\} \quad \begin{array}{ll}
\text { Local exponential family: } \\
& \theta_{f} \triangleq\left\{\theta_{f a} \mid a \in \mathcal{A}_{f}\right\}
\end{array}
$$

$p(x \mid \theta)=\left(\prod_{f \in \mathcal{F}} \nu_{f}\left(x_{f}\right)\right) \exp \left\{\sum_{f \in \mathcal{F}} \sum_{a \in \mathcal{A}_{f}} \theta_{f a} \phi_{f a}\left(x_{f}\right)-\Phi(\theta)\right\} \quad \Phi(\theta)=\log Z(\theta)$

Undirected Graphs \& Exp. Families

- Pick features to define an exponential family of distributions
- Use factor graph to represent structure of chosen statistics
- Create undirected graph with a clique for every factor node
- Result: Visualization of Markov properties of your family

Generalized Linear Models

- General framework for modeling non-Gaussian data with linear prediction, using exponential families:
- Construct instance-specific natural parameters:

$$
\theta_{i}=w^{T} \phi\left(x_{i}\right)
$$

- Observation comes from exponential family:

$$
p\left(y_{i} \mid x_{i}, w\right)=\exp \left\{y_{i} \theta_{i}-A\left(\theta_{i}\right)\right\}
$$

- Special cases: linear regression and logistic regression
- ML and MAP estimation is generally straightforward
- Many possible extensions:
- Multivariate responses with more parameters (biggest difficulty is notation and indexing)
- Link functions to allow more flexibility in how $\left(w, x_{i}\right) \rightarrow \theta_{i}$

Directed Graphs \& Exp. Families

$$
p(x)=\prod_{i=1}^{N} p\left(x_{i} \mid x_{\Gamma(i)}, \theta_{i}\right)
$$

$$
p\left(x_{i} \mid x_{\Gamma(i)}, \theta_{i}\right)=\exp \left\{x_{i} \theta_{i}^{T} \phi\left(x_{\Gamma(i)}\right)-A\left(\theta_{i}^{T} \phi\left(x_{\Gamma(i)}\right)\right)\right\}
$$

- For each node, pick an appropriate exponential family
- Pick features of parent nodes relevant to child variable Most generally, indicators for all joint configurations of parents.
- Child parameters are a (learned) linear func. of parent features
- Result: Node-specific generalized linear models

Inference versus Learning

- Inference: Given a model with known parameters, estimate or find marginals of "hidden" variables for some data instance
- Learning: Given multiple data instances, find (often ML/MAP) estimates of parameters for a graphical model of their structure
- Training instances may be completely or partially observed

Example: Expert systems for medical diagnosis

- Inference: Given observed symptoms for a particular patient, infer probabilities that they have contracted various diseases
- Learning: Given a database of many patient diagnoses, learn the relationships between diseases and symptoms

Example: Markov random fields for semantic image segmentation

- Inference: What object category is depicted at each pixel?
- Learning: How do objects relate to low-level image features?

Mean Parameter Spaces

$$
\begin{aligned}
p(x \mid \theta) & =\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\} \\
\mu_{a} & =\mathbb{E}_{p}\left[\phi_{a}(x)\right]=\int \phi_{a}(x) p(x) d x \\
\mathcal{M} & \triangleq\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { such that } \mathbb{E}_{p}[\phi(x)]=\mu\right\}
\end{aligned}
$$

- For a given collection of sufficient statistics, what is the set of all realizable mean parameters?

Scalar Gaussian

Pair of Binary Variables

- The set of realizable parameters is always convex. Why?

Preview: Inference and Learning

$$
\begin{aligned}
p(x \mid \theta) & =\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\} \\
A(\theta) & =\log \int_{\mathcal{X}} \exp \left\{\theta^{T} \phi(x)\right\} d x \\
\Omega & =\left\{\theta \in \mathbb{R}^{d} \mid A(\theta)<+\infty\right\} \\
\mu_{a} & =\mathbb{E}_{p}\left[\phi_{a}(x)\right]=\int \phi_{a}(x) p(x) d x \\
\mathcal{M} & \triangleq\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { such that } \mathbb{E}_{p}[\phi(x)]=\mu\right\}
\end{aligned}
$$

Supervised Learning

Generative ML or MAP Learning:
$\max _{\pi, \theta} \log p(\pi)+\log p(\theta)+\sum_{i=1}^{N}\left[\log p\left(y_{i} \mid \pi\right)+\log p\left(x_{i} \mid y_{i}, \theta\right)\right]$

Test
Discriminative ML or MAP Learning:
$\max _{\theta} \log p(\theta)+\sum_{i=1}^{N} \log p\left(y_{i} \mid x_{i}, \theta\right)$

Unsupervised Learning

Clustering:

$$
\max _{\pi, \theta} \log p(\pi)+\log p(\theta)+\sum_{i=1}^{N} \log \left[\sum_{z_{i}} p\left(z_{i} \mid \pi\right) p\left(x_{i} \mid z_{i}, \theta\right)\right]
$$

Dimensionality Reduction:
$\max _{\pi, \theta} \log p(\pi)+\log p(\theta)+\sum_{i=1}^{N} \log \left[\int_{z_{i}} p\left(z_{i} \mid \pi\right) p\left(x_{i} \mid z_{i}, \theta\right) d z_{i}\right]$

- No notion of training and test data: labels are never observed
- As before, maximize posterior probability of model parameters
- For hidden variables associated with each observation, we marginalize over possible values rather than estimating
- Fully accounts for uncertainty in these variables
- There is one hidden variable per observation, so cannot perfectly estimate even with infinite data
- Must use generative model (discriminative degenerates)

Unsupervised Learning Algorithms

Supervised
Training $\pi, \theta \longrightarrow$ parameters (shared across instances)
$z_{1}, \ldots, z_{N} \longrightarrow$ hidden data (unique to particular instances)

- Initialization: Randomly select starting parameters
- Estimation: Given parameters, infer likely hidden data
- Similar to testing phase of supervised learning
- Learning: Given hidden \& observed data, find likely parameters
- Similar to training phase of supervised learning
- Iteration: Alternate estimation \& learning until convergence

Expectation Maximization (EM)

Supervised
Training

Supervised Testing

Unsupervised Learning $\pi, \theta \longrightarrow$ parameters (shared across observations)
$z_{1}, \ldots, z_{N} \longrightarrow$ hidden data (unique to particular instances)

- Initialization: Randomly select starting parameters
- E-Step: Given parameters, find posterior of hidden data
- Equivalent to test inference of full posterior distribution
- M-Step: Given posterior distributions, find likely parameters
- Distinct from supervised ML/MAP, but often still tractable
- Iteration: Alternate E-step \& M-step until convergence

Concavity \& Jensen's Inequality

$$
\ln (\mathbb{E}[X]) \geq \mathbb{E}[\ln (X)]
$$

EM as Lower Bound Maximization

$\ln p(x \mid \theta)=\ln \left(\sum_{z} p(x, z \mid \theta)\right)$
$\ln p(x \mid \theta) \geq \sum_{z} q(z) \ln \left(\frac{p(x, z \mid \theta)}{q(z)}\right)$
$\ln p(x \mid \theta) \geq \sum_{z}^{z} q(z) \ln p(x, z \mid \theta)-\sum_{z} q(z) \ln q(z) \triangleq \mathcal{L}(q, \theta)$

- Initialization: Randomly select starting parameters $\theta^{(0)}$
- E-Step: Given parameters, find posterior of hidden data

$$
q^{(t)}=\arg \max _{q} \mathcal{L}\left(q, \theta^{(t-1)}\right)
$$

- M-Step: Given posterior distributions, find likely parameters

$$
\theta^{(t)}=\arg \max _{\theta} \mathcal{L}\left(q^{(t)}, \theta\right)
$$

- Iteration: Alternate E-step \& M-step until convergence

Lower Bounds on Marginal Likelihood

C. Bishop, Pattern Recognition \& Machine Learning

EM: Expectation Step

$$
\begin{aligned}
\ln p(x \mid \theta) & \geq \sum_{z} q(z) \ln p(x, z \mid \theta)-\sum_{z} q(z) \ln q(z) \triangleq \mathcal{L}(q, \theta) \\
q^{(t)} & =\arg \max _{q} \mathcal{L}\left(q, \theta^{(t-1)}\right)
\end{aligned}
$$

- General solution, for any probabilistic model:
$q^{(t)}(z)=p\left(z \mid x, \theta^{(t-1)}\right)$ posterior distribution given current parameters
- For a directed graphical model:
$\theta \longrightarrow \begin{gathered}\text { fixes conditional distributions of } \\ \text { every child node, given parents }\end{gathered}$
$x \longrightarrow$ observed nodes (training data)
$z \longrightarrow$ unobserved nodes (hidden data) Inference: Find summary statistics of posterior needed for following M-step

