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Exponential Families of Distributions 

fixed vector of sufficient statistics (features), 
specifying the family of distributions 
unknown vector of natural parameters, 
determine particular distribution in this family 

�(x) 2 Rd

✓ 2 ⇥

normalization constant or partition function, 
ensuring this is a valid probability distribution 
reference measure independent of parameters 
(for many models, we simply have                 ) 

h(x) = 1h(x) > 0

Z(✓) > 0

To ensure this construction is valid, we take 

⇥ = {✓ 2 Rd | Z(✓) < 1}



Factor Graphs & Exponential Families 

set of N nodes or vertices,  

set of hyperedges linking subsets of nodes 

{1, 2, . . . , N}V
normalization constant (partition function) Z

F f ✓ V

p(x) =
1

Z(✓)

Y

f2F
 f (xf | ✓f )

•  A factor graph is created from non-negative potential functions 

•  To guarantee non-negativity, we typically define potentials as 
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

Local exponential family: 
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

�(✓) = logZ(✓)



Undirected Graphs & Exp. Families 
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

�(✓) = logZ(✓)
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  Pick features to define an exponential family of distributions 
•  Use factor graph to represent structure of chosen statistics 
•  Create undirected graph with a clique for every factor node 
•  Result:  Visualization of Markov properties of your family 



Generalized Linear Models 
•  General framework for modeling non-Gaussian data with 

linear prediction, using exponential families: 
•  Construct instance-specific natural parameters: 

•  Observation comes from exponential family: 

✓i = w

T
�(xi)

p(yi | xi, w) = exp {yi✓i �A(✓i)}

•  Special cases:  linear regression and logistic regression 
•  ML and MAP estimation is generally straightforward 
•  Many possible extensions: 

•  Multivariate responses with more parameters 
(biggest difficulty is notation and indexing) 

•  Link functions to allow more flexibility in how (w, xi) ! ✓i



Directed Graphs & Exp. Families 

•  For each node, pick an appropriate exponential family 
•  Pick features of parent nodes relevant to child variable 

Most generally, indicators for all joint configurations of parents. 
•  Child parameters are a (learned) linear func. of parent features 
•  Result:  Node-specific generalized linear models 

p(x) =
NY

i=1

p(xi | x�(i), ✓i)

p(xi | x�(i), ✓i) = exp

�
xi✓

T
i �(x�(i))�A(✓

T
i �(x�(i)))

 



Inference versus Learning 
•  Inference:  Given a model with known parameters, estimate or 

find marginals of “hidden” variables for some data instance 
•  Learning:  Given multiple data instances, find (often ML/MAP) 

estimates of parameters for a graphical model of their structure 
•  Training instances may be completely or partially observed 

•  Inference:  Given observed symptoms for a particular patient, 
infer probabilities that they have contracted various diseases  

•  Learning:  Given a database of many patient diagnoses, 
learn the relationships between diseases and symptoms 

Example:  Expert systems for medical diagnosis 

•  Inference:  What object category is depicted at each pixel? 
•  Learning:  How do objects relate to low-level image features? 

Example:  Markov random fields for semantic image segmentation 



Mean Parameter Spaces 

•  For a given collection of sufficient statistics, 
what is the set of all realizable mean parameters?  

3.4 Mean Parameterization and Inference Problems 53

We illustrate these concepts with a continuation of a previous
example:

Example 3.7 (Gaussian MRF Mean Parameters). Using the
canonical parameterization of the Gaussian Markov random field pro-
vided in Example 3.3, the mean parameters for a Gaussian Markov ran-
dom field are the second-order moment matrix Σ := E[XXT ] ∈ Rm×m,
and the mean vector µ = E[X] ∈ Rm. For this particular model, it is
straightforward to characterize the set M of globally realizable mean
parameters (µ,Σ). We begin by recognizing that if (µ,Σ) are realized
by some distribution (not necessarily Gaussian), then Σ − µµT must
be a valid covariance matrix of the random vector X, implying that
the positive semidefiniteness (PSD) condition Σ − µµT # 0 must hold.
Conversely, any pair (µ,Σ) for which the PSD constraint holds, we may
construct a multivariate Gaussian distribution with mean µ, and (pos-
sibly degenerate) covariance Σ − µµT , which by construction realizes
(µ,Σ). Thus, we have established that for a Gaussian Markov random
field, the set M has the form

M = {(µ,Σ) ∈ Rm × Sm
+ | Σ − µµT # 0}, (3.27)

where Sm
+ denotes the set of m × m symmetric positive semidefinite

matrices. Figure 3.4 illustrates this set in the scalar case (m = 1),

Fig. 3.4 Illustration of the set M for a scalar Gaussian: the model has two mean parameters
µ = E[X] and Σ11 = E[X2], which must satisfy the quadratic constraint Σ11 − µ2 ≥ 0. Note
that the set M is convex, which is a general property.

Scalar Gaussian 

56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as





0 0 1
1 0 −1
0 1 −1
−1 −1 1








µ1

µ2

µ12



 ≥





0
0
0
−1




.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.

Pair of Binary Variables 

•  The set of realizable parameters is always convex.  Why?  

µa = Ep[�a(x)] =

Z
�a(x)p(x) dx

M , {µ 2 Rd | 9 p such that Ep[�(x)] = µ}

p(x | ✓) = exp{✓T�(x)�A(✓)}



Preview: Inference and Learning 

3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

µa = Ep[�a(x)] =

Z
�a(x)p(x) dx

M , {µ 2 Rd | 9 p such that Ep[�(x)] = µ}

p(x | ✓) = exp{✓T�(x)�A(✓)}
A(✓) = log

Z

X
exp{✓T�(x)} dx

⌦ = {✓ 2 Rd | A(✓) < +1}



Supervised Learning 
Generative ML or MAP Learning: 

N 

yi

xi

⇡

✓

⇡

✓

Train Test 

xt

yt

max

⇡,✓
log p(⇡) + log p(✓) +

NX

i=1

[log p(yi | ⇡) + log p(xi | yi, ✓)]

Discriminative ML or MAP Learning: 

N 

yi

xi
✓ ✓

Train Test 

xt

yt

max

✓
log p(✓) +

NX

i=1

log p(yi | xi, ✓)



Unsupervised Learning 

N 
xi

⇡

✓

max

⇡,✓
log p(⇡) + log p(✓) +

NX

i=1

log

"
X

zi

p(zi | ⇡)p(xi | zi, ✓)
#

max

⇡,✓
log p(⇡) + log p(✓) +

NX

i=1

log

Z

zi

p(zi | ⇡)p(xi | zi, ✓) dzi
�

Clustering: 

Dimensionality Reduction: 

zi

•  No notion of training and test data: labels are never observed 
•  As before, maximize posterior probability of model parameters 
•  For hidden variables associated with each observation, we 

marginalize over possible values rather than estimating 
•  Fully accounts for uncertainty in these variables 
•  There is one hidden variable per observation, so cannot 

perfectly estimate even with infinite data 
•  Must use generative model (discriminative degenerates) 



Unsupervised Learning Algorithms 

N 

yi

xi

⇡

✓

⇡

✓

Supervised 
Training 

Supervised 
Testing 

xt

yt

N 
xi

⇡

✓

zi

Unsupervised 
Learning 

•  Initialization: Randomly select starting parameters 
•  Estimation: Given parameters, infer likely hidden data 

•  Similar to testing phase of supervised learning 
•  Learning: Given hidden & observed data, find likely parameters 

•  Similar to training phase of supervised learning 
•  Iteration: Alternate estimation & learning until convergence 

z1, . . . , zN
⇡, ✓ parameters (shared across instances) 

hidden data (unique to particular instances) 



Expectation Maximization (EM) 

N 

yi

xi

⇡

✓

⇡

✓

Supervised 
Training 

Supervised 
Testing 

xt

yt

N 
xi

⇡

✓

zi

Unsupervised 
Learning 

•  Initialization: Randomly select starting parameters 
•  E-Step: Given parameters, find posterior of hidden data 

•  Equivalent to test inference of full posterior distribution 
•  M-Step: Given posterior distributions, find likely parameters 

•  Distinct from supervised ML/MAP, but often still tractable 
•  Iteration: Alternate E-step & M-step until convergence 

z1, . . . , zN
⇡, ✓ parameters (shared across observations) 

hidden data (unique to particular instances) 



Concavity & Jensen’s Inequality 
ln(E[X]) � E[ln(X)]



EM as Lower Bound Maximization 

ln p(x | ✓) �
X

z

q(z) ln

✓
p(x, z | ✓)

q(z)

◆

ln p(x | ✓) �
X

z

q(z) ln p(x, z | ✓)�
X

z

q(z) ln q(z) , L(q, ✓)

ln p(x | ✓) = ln

✓X

z

p(x, z | ✓)
◆

•  Initialization: Randomly select starting parameters 
•  E-Step: Given parameters, find posterior of hidden data 

 
 

•  M-Step: Given posterior distributions, find likely parameters 
 
 

•  Iteration: Alternate E-step & M-step until convergence 

✓(0)

q(t) = argmax

q
L(q, ✓(t�1)

)

✓(t) = argmax

✓
L(q(t), ✓)



Lower Bounds on Marginal Likelihood 

ln p(X|✓)L(q,✓)

KL(q||p)

C. Bishop, Pattern Recognition & Machine Learning 

q(z) = p(z | x, ✓)
E-Step: 



EM: Expectation Step 
ln p(x | ✓) �

X

z

q(z) ln p(x, z | ✓)�
X

z

q(z) ln q(z) , L(q, ✓)

q(t) = argmax

q
L(q, ✓(t�1)

)

•  General solution, for any probabilistic model: 

q

(t)(z) = p(z | x, ✓(t�1)) posterior distribution 
given current parameters 

•  For a directed graphical model: 
z1 z2 z3

x1 x2 x3

z0

✓
fixes conditional distributions of 
every child node, given parents 

x observed nodes (training data) 
z unobserved nodes (hidden data) 

Inference:  Find summary statistics of 
posterior needed for following M-step   


