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Lecture 8:
Inference & Learning for Exponential Families,
Expectation Maximization (EM) Algorithm

Some figures courtesy Michael Jordan'’s draft textbook,
An Introduction to Probabilistic Graphical Models



Exponential Families of Distributions

1
p(x]0) = mh(x) exp[0” ¢ (x)] Z(0) = /mh(x) exp[0” ¢(x)]dx
= h(x)expl0”p(x) — A0)]  A(B) = logZ(6)
d fixed vector of sufficient statistics (features),
(b(a’;) <R specifying the family of distributions

HcoO unknown vector of natural parameters,
determine particular distribution in this family

normalization constant or partition function,
Z(0) >0 — nsuring this is a valid probability distribution

h 0 — reference measure independent of parameters
(ZU) > (for many models, we simply have h(z) = 1)

To ensure this construction is valid, we take

O={0cR"| Z(h) < o0}



Factor Graphs & Exponential Families

p(z) = H (s | Of) () ©

fE]—"
f‘ —— set of hyperedges linking subsets of nodes f cC Yy @
)) — setof Nnodes or vertices, {1,2,..., N}
/, — normalization constant (partition function) @ @

« Afactor graph is created from non-negative potential functions

« To guarantee non-negativity, we typically define potentials as

Vy(ay | 0p) =vi(zy) eXP{ > Opadraley)

aE.Af

= ( H yf(xf)> exp { Z Z Oradta(Ts) — CID(H)} P(0) = log Z(0)

feF feF acAy

Local exponential family:
9]0 = {Qfa ‘ a < .Af}



Undirected Graphs & Exp. Families

OO
plx|0) = ( H Vf(xf)> exp { Z Z Oradra(Ts) — CID(H)} P(0) = log Z(0)

feF feF acAy

Pick features to define an exponential family of distributions
Use factor graph to represent structure of chosen statistics

Create undirected graph with a clique for every factor node

Result: Visualization of Markov properties of your family



Generalized Linear Models

General framework for modeling non-Gaussian data with
linear prediction, using exponential families:
« Construct instance-specific natural parameters:

0; = ’wTCb(%')

* QObservation comes from exponential family:
p(Yi | xi,w) = exp{yith — A(0:)}

Special cases: linear regression and logistic regression
ML and MAP estimation is generally straightforward
Many possible extensions:
* Multivariate responses with more parameters
(biggest difficulty is notation and indexing)
» Link functions to allow more flexibility in how (w,x;) — 6;



Directed Graphs & Exp. Families
OO
N

p(x) = Hp(wz ENONZ) e
i=1
OO

p(z; | zr@y, 0;) = exp {z:0; ¢(zry)) — AO] d(zr))}

* For each node, pick an appropriate exponential family
* Pick features of parent nodes relevant to child variable

Most generally, indicators for all joint configurations of parents.
« Child parameters are a (learned) linear func. of parent features
« Result: Node-specific generalized linear models



Inference versus Learning

* Inference: Given a model with known parameters, estimate or
find marginals of “hidden” variables for some data instance
« Learning: Given multiple data instances, find (often ML/MAP)
estimates of parameters for a graphical model of their structure
« Training instances may be completely or partially observed

Example: Expert systems for medical diagnosis

* Inference: Given observed symptoms for a particular patient,
infer probabilities that they have contracted various diseases

« Learning: Given a database of many patient diagnoses,
learn the relationships between diseases and symptoms

Example: Markov random fields for semantic image segmentation

 Inference: What object category is depicted at each pixel?
* Learning: How do objects relate to low-level image features?



Mean Parameter Spaces
p(z | ) = exp{f” ¢(z) — A(6)}

o = Eyl6u(2)] = [ 6u(@p(a) da
M 2 {y € R* | 3 p such that E,[¢(z)] = u}

* For a given collection of sufficient statistics,

what is the set of all realizable mean parameters?
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* The set of realizable parameters is always convex. Why?



Preview: Inference and Learning

p(z | 0) = exp{0” ¢(z) — A(0)}

A(0) = log /X exp{0’ ¢(x)} dzx

Q=1{0cR| A®9) < +00)

o = Epla(2)] = / ba(2)p(a) da
M 2 {y € R* | 3 p such that E,[¢(z)] = u}

(VA7)




Supervised Learning

Generative ML or MAP Learning:
N

max log p(r) + log p(8 +Z log p(yi | ™) +logp(z; | yi, )]

6.
&

Train Test Train Test

Discriminative ML or MAP Learning:

max log p(f) + ;logp(yi | 2, 0)



Clustering:

1 1 1 VA 7 19
max log p() + log p(0 Zog[ZPNW (i | 2 )]

Dimensionality Reduction:

ma@x log p(m) + log p(0) + Zlog [/ (zi | m)p(x; | 24, 0) dzz-] N

Unsupervised Learning

No notion of training and test data: labels are never observed
As before, maximize posterior probability of model parameters
For hidden variables associated with each observation, we
marginalize over possible values rather than estimating

* Fully accounts for uncertainty in these variables

* There is one hidden variable per observation, so cannot

perfectly estimate even with infinite data
Must use generative model (discriminative degenerates)



Unsupervised Learning Algorithms

ON

N

Supervised

Training
mw,0 ——> parameters (shared across instances)
., RN =— hidden data (unique to particular instances)

ARERE

Supervised
Testing

ON

Unsupervised
Learning

Initialization: Randomly select starting parameters
Estimation: Given parameters, infer likely hidden data

« Similar to testing phase of supervised learning

Learning: Given hidden & observed data, find likely parameters
« Similar to training phase of supervised learning

Iteration: Alternate estimation & learning until convergence



Expectation Maximization (EM)

ON ® ON

Supervised Supervised Unsupervised
Training Testing Learning
T, ) —— parameters (shared across observations)
Z1,...42N =— hidden data (unique to particular instances)
Initialization: Randomly select starting parameters
E-Step: Given parameters, find posterior of hidden data
« Equivalent to test inference of full posterior distribution
M-Step: Given posterior distributions, find likely parameters
 Distinct from supervised ML/MAP, but often still tractable
Iteration: Alternate E-step & M-step until convergence




Concavity & Jensen'’s Inequality
- In(E[X]) > E[ln(X)
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EM as Lower Bound Maximization

Inp(x | 9) ln(Zp:vzW)

p(l’Z!@))

Inp(x | 0) > z)In

P _Zq ( q(z)

Inp(x | 6) >Zq YInp(z,z|0) — Zq YIng(z) = L(q,0)

. In|t|aI|zat|on Randomly select startlng parameters 6’(0)
« E-Step: Given parameters, find posterior of hidden data

¢'") = arg max £(q, 0% )
q

« M-Step: Given posterior distributions, find likely parameters

0 = arg max L(¢'V,0)

 lteration: Alternate E-step & M-step until convergence



Lower Bounds on Marginal Likelihood

C. Bishop, Pattern Recognition & Machine Learning



EM: Expectation Step
Inp(x | 6) >Zq YInp(x,z | 0) — Zq )Ing(z) = L(q,0)

¢\ = arg max L(q, H(t_l))
q

« General solution, for any probabilistic model:

t _ t—1 posterior distribution
q< ) (Z) — P (Z | £, (9( ) ) given current parameters

» For a directed graphical model:

9 fixes conditional distributions of @ @ @

every child node, given parents
X =— observed nodes (training data) @ @ @

< = Unobserved nodes (hidden data)

Inference: Find summary statistics of
posterior needed for following M-step (20)



