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Some figures courtesy Michael Jordan’s draft textbook, 
An Introduction to Probabilistic Graphical Models 



Expectation Maximization (EM) 
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•  Initialization: Randomly select starting parameters 
•  E-Step: Given parameters, find posterior of hidden data 

•  Equivalent to test inference of full posterior distribution 
•  M-Step: Given posterior distributions, find likely parameters 

•  Distinct from supervised ML/MAP, but often still tractable 
•  Iteration: Alternate E-step & M-step until convergence 

z1, . . . , zN
⇡, ✓ parameters (shared across observations) 

hidden data (unique to particular instances) 



EM as Lower Bound Maximization 
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•  Initialization: Randomly select starting parameters 
•  E-Step: Given parameters, find posterior of hidden data 

 
 

•  M-Step: Given posterior distributions, find likely parameters 
 
 

•  Iteration: Alternate E-step & M-step until convergence 
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Lower Bounds on Marginal Likelihood 
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C. Bishop, Pattern Recognition & Machine Learning 

q(z) = p(z | x, ✓)
E-Step: 



EM: Expectation Step 
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•  General solution, for any probabilistic model: 

q

(t)(z) = p(z | x, ✓(t�1)) posterior distribution 
given current parameters 

•  For a directed graphical model: 
z1 z2 z3

x1 x2 x3

z0

✓
fixes conditional distributions of 
every child node, given parents 

x observed nodes (training data) 
z unobserved nodes (hidden data) 

Inference:  Find summary statistics of 
posterior needed for following M-step   



EM: Maximization Step 
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•  Recall directed graphical model factorization: 
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From E-step, only require posterior marginal distributions 
of each node and its parents, given observations  

(which have probability one) for that training instance. 
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EM: A Sequence of Lower Bounds 

C. Bishop, Pattern Recognition & Machine Learning 
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Expectation Maximization Algorithm 

C. Bishop, Pattern Recognition & Machine Learning 
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E Step:  Optimize 
distribution on hidden 
variables given parameters 

M Step:  Optimize  
parameters given 
distribution on  
hidden variables 

Infer 
Marginals 

Optimize 
Parameters 

Re-Infer 
Marginals 



M-Step for Exponential Families 
p(x, z | ✓) = exp{✓T�(x, z)�A(✓)}•  Exponential Family: 

•  E-step Produces: 
 

•  M-step Objective: 
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•  Taking gradient shows that optimum parameters satisfy 
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•  As in basic mixture models, solution always matches moments: 
Ø  For observed variables, empirical distribution of data 
Ø  For hidden variables, weighted distribution from E-step 

•  In directed graphical models, apply to each local conditional… 



EM for MAP Estimation 
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•  Initialization: Randomly select starting parameters 
•  E-Step: Given parameters, find posterior of hidden data 

 
 

•  M-Step: Given posterior distributions, find likely parameters 
 
 

•  Iteration: Alternate E-step & M-step until convergence 
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Objective is sum of prior 
and weighted likelihood 

Up to a constant independent of  
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Undirected Graphical Models 

set of N nodes or vertices,  

set of hyperedges linking subsets of nodes 

{1, 2, . . . , N}V
F f ✓ V

•  Assume an exponential family representation of each factor: 
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•  Partition function globally couples the local factor parameters 



Learning for Undirected Models 
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•  Partition function globally couples the local factor parameters 

•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 
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Learning for Undirected Models 
•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 
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•  Take gradient with respect to parameters for a single factor: 
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•  Must be able to compute marginal distributions for factors in current model: 
Ø  Tractable for tree-structured factor graphs via sum-product 
Ø  What about general factor graphs or undirected graphs? 

log p(D | ✓) =
"

NX

n=1

X

f2F
✓

T
f �f (xf,n)

#
�NA(✓)


