Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 10:
Triangulation and Junction Tree Algorithms

Some figures courtesy Michael Jordan's draft textbook,
An Introduction to Probabilistic Graphical Models

Inference in Undirected Graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right)=\frac{1}{Z} m_{2}\left(x_{1}\right)
\end{aligned}
$$

A Graph Elimination Algorithm

Algebraic Marginalization Operations

- Marginalize out the variable associated with sum node
- Compute a new potential table involving all other variables which depend on the just-marginalized variable

Graph Manipulation Operations

- Remove, or eliminate, a single node from the graph
- Add edges (if they don't already exist) between all pairs of nodes who were neighbors of the just-removed node

A Graph Elimination Algorithm

- Choose an elimination ordering (query nodes should be last)
- Eliminate a node, remove its incoming edges, add edges between all pairs of its neighbors
- Iterate until all non-query nodes are eliminated

Graph Elimination Example

Elimination Order: (6,5,4,3,2,1)

Graph Elimination Example

Elimination Order: (6,5,4,3,2,1)

Elimination Clique Tree

Elimination for Trees

$$
\begin{aligned}
p_{1}\left(x_{1}\right) & =\sum_{x_{2}, x_{3}, x_{4}} \psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
& =\psi_{1}\left(x_{1}\right) \sum_{x_{2}, x_{3}, x_{4}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right)
\end{aligned}
$$

Elimination for Trees

$$
\begin{aligned}
p_{1}\left(x_{1}\right) & =\sum_{x_{2}, x_{3}, x_{4}} \psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
& =\psi_{1}\left(x_{1}\right) \sum_{x_{2}, x_{3}, x_{4}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
& =\psi_{1}\left(x_{1}\right) \sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \sum_{x_{3}, x_{4}} \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right)
\end{aligned}
$$

Elimination for Trees

$$
\begin{aligned}
& p_{1}\left(x_{1}\right)=\sum_{x_{2}, x_{3}, x_{4}} \psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
&=\psi_{1}\left(x_{1}\right) \sum_{x_{2}, x_{3}, x_{4}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
&=\psi_{1}\left(x_{1}\right) \sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \sum_{x_{3}, x_{4}} \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) \\
&=\psi_{1}\left(x_{1}\right) \sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right)\left[\sum_{x_{3}} \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right)\right] \cdot\left[\sum_{x_{4}} \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right)\right] \\
& m_{21}\left(x_{1}\right)=\sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) m_{32}\left(x_{2}\right) m_{42}\left(x_{2}\right)
\end{aligned}
$$

Belief Propagation (Sum-Product)

BELIEFS: Posterior marginals

$$
\hat{p}_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)
$$

$\Gamma(t) \longrightarrow \quad$ neighborhood of node t
MESSAGES: Sufficient statistics

Undirected Inference Algorithms One Marginal All Marginals

elimination applied to leaves of tree	belief propagation or sum-product algorithm
elimination algorithm	junction tree algorithm: belief propagation on a junction tree

- For directed models, first convert to undirected factor graph form (moralization)
- A junction tree is a clique tree with special properties

Undirected Graphical Models

$$
p(x)=\frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_{c}\left(x_{c}\right)
$$

- Parameterization exactly captures those non-degenerate distributions which are Markov with respect to this graph
- For now, we will assume that potentials are restricted to maximal cliques

$\mathcal{C} \longrightarrow$ set of maximal cliques (fully connected subsets) of nodes
$\mathcal{E} \longrightarrow$ set of undirected edges (s, t) linking pairs of nodes
$\mathcal{V} \longrightarrow \quad$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow$ normalization constant (partition function)

Clique-Based Inference Algorithms

$$
\begin{aligned}
p(x) & =\frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_{c}\left(x_{c}\right) \\
z_{c} & =\left\{x_{s} \mid s \in c\right\}, c \in \mathcal{C} \\
p(z) & \propto \prod_{c \in \mathcal{C}} \psi_{c}\left(z_{c}\right)
\end{aligned}
$$

- For each clique c, define a variable z_{c}
 which enumerates joint configurations of dependent variables
- Does this define an equivalent joint distribution?

PROBLEM: We have defined multiple copies of the variables in the true model, but not enforced any relationships among them

Clique-Based Inference Algorithms

$$
\begin{aligned}
p(x) & =\frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_{c}\left(x_{c}\right) \\
z_{c} & =\left\{x_{s} \mid s \in c\right\}, c \in \mathcal{C} \\
p(z) & \propto \prod_{c \in \mathcal{C}} \psi_{c}\left(z_{c}\right) \prod_{d \neq c} \psi_{c d}\left(z_{c}, z_{d}\right)
\end{aligned}
$$

- For each clique c, define a variable z_{c}
 which enumerates joint configurations of dependent variables
- Add potentials enforcing consistency between all pairs of clique variables which share one of the original variables:

$$
\psi_{c d}\left(z_{c}, z_{d}\right)= \begin{cases}1 & z_{c}=z_{d} \text { for all } x_{s}, s \in c \cap d \\ 0 & \text { otherwise }\end{cases}
$$

PROBLEM: The graph may have a large number of pairwise consistency constraints, and inference will be difficult

Clique-Based Inference Algorithms

$p(x)=\frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_{c}\left(x_{c}\right)$

$$
z_{c}=\left\{x_{s} \mid s \in c\right\}, c \in \mathcal{C}
$$

$$
p(z) \propto \prod_{c \in \mathcal{C}} \psi_{c}\left(z_{c}\right) \prod_{(c, d) \in \mathcal{E}(\mathcal{C})} \psi_{c d}\left(z_{c}, z_{d}\right)
$$

- For each clique c, define a variable z_{c} which enumerates joint configurations of dependent variables
- Add potentials enforcing consistency between some subset of pairs of cliques, taking advantage of transitivity of equality:

$$
x_{a}=x_{b}, x_{b}=x_{c} \rightarrow x_{a}=x_{c}
$$

Question: How many edges are needed for global consistency? When can we build a tree-structured clique graph?

Clique Trees and Junction Trees

- This clique tree has the junction tree property: the clique nodes containing any variable from the original model form a connected subtree
- We can exactly represent the distribution ignoring redundant constraints
- Note that not all clique trees are junction trees:

Finding a Junction Tree

The junction tree property. A clique tree possesses the junction tree property if for every pair of cliques V and W, all cliques on the (unique) path between V and W contain $V \cap W$.

- Given a set of cliques, how can we efficiently find a clique tree with the junction tree (running intersection) property?
- How can we be sure that at least one junction tree exists?
- Strategy: Augment the graph with additional edges
> Cliques of original graph are always subsets of cliques of the augmented graph, so original distribution still factorizes appropriately
> As cliques grow, will eventually be able to construct a junction tree
Question: Which undirected graphs have junction trees?

Junction Trees and Triangulation

The junction tree property. A clique tree possesses the junction tree property if for every pair of cliques V and W, all cliques on the (unique) path between V and W contain $V \cap W$.

- A chord is an edge connecting two non-adjacent nodes in some cycle
- A cycle is chordless if it contains no chords
- A graph is triangulated if it contains no chordless cycles

Theorem: The maximal cliques of a graph have a corresponding junction tree if and only if that undirected graph is triangulated
Lemma 2 Let $\mathcal{G}=(V, E)$ be a noncomplete triangulated graph with at least three nodes. Then there exists a decomposition of V into disjoint sets A, B and S such that S separates A and B and S is complete.
$>$ Key induction argument in constructing junction tree from triangulation
> Implies existence of elimination ordering which introduces no new edges

Constructing a Junction Tree

Theorem: A clique tree is a junction tree if and only if it is a maximal spanning tree of the weighted clique intersection graph
$>$ Graph: Fully connected with nodes corresponding to maximal cliques
$>$ Edge weights: Cardinality of separator set (intersection) of cliques
$>$ Computational complexity: Quadratic in number of maximal cliques
Junction Tree Algorithms for General-Purpose Inference

1. Triangulate the target undirected graphical model
$>$ Any elimination ordering generates a valid triangulation
> Optimal triangulation is NP-hard (in multiple ways)
2. Arrange triangulated cliques into a junction tree
3. Execute variant of sum-product algorithm on junction tree

Sum-Product for Junction Trees

$$
m_{t s}\left(x_{s}\right) \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)
$$ with pairwise equality constraints among intersections:

Messages are functions of the separating sets (variables shared among cliques):

$$
\begin{aligned}
\mu_{j i}\left(x_{S_{j i}}\right) & \propto \sum_{x_{R_{j}}} \psi_{C_{j}}\left(x_{C_{j}}\right) \prod_{k \neq j} \mu_{k j}\left(x_{S_{k j}}\right) \\
R_{j} & =C_{j} \backslash S_{i j}
\end{aligned}
$$

Shafer-Shenoy Junction Tree Algorithm

Undirected Graphical Models

$$
\begin{aligned}
p(x \mid \theta) & =\frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f} \mid \theta_{f}\right) \\
Z(\theta) & =\sum_{x} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f} \mid \theta_{f}\right)
\end{aligned}
$$

$\mathcal{F} \longrightarrow \quad$ set of hyperedges linking subsets of nodes $f \subseteq \mathcal{V}$
$\mathcal{V} \longrightarrow$ set of N nodes or vertices, $\{1,2, \ldots, N\}$

- Assume an exponential family representation of each factor:

$$
\begin{aligned}
p(x \mid \theta) & =\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f}\right)-A(\theta)\right\} \\
\psi_{f}\left(x_{f} \mid \theta_{f}\right) & =\exp \left\{\theta_{f}^{T} \phi_{f}\left(x_{f}\right)\right\} \quad A(\theta)=\log Z(\theta)
\end{aligned}
$$

- Partition function globally couples the local factor parameters

Learning for Undirected Models

- Undirected graph encodes dependencies within a single training example:

$$
p(\mathcal{D} \mid \theta)=\prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f, n} \mid \theta_{f}\right) \quad \mathcal{D}=\left\{x_{\mathcal{V}, 1}, \ldots, x_{\mathcal{V}, N}\right\}
$$

- Given N independent, identically distributed, completely observed samples:

$$
\begin{gathered}
\log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta) \\
p(x \mid \theta)=\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f}\right)-A(\theta)\right\} \\
\psi_{f}\left(x_{f} \mid \theta_{f}\right)=\exp \left\{\theta_{f}^{T} \phi_{f}\left(x_{f}\right)\right\} \quad A(\theta)=\log Z(\theta)
\end{gathered}
$$

- Partition function globally couples the local factor parameters

Learning for Undirected Models

- Undirected graph encodes dependencies within a single training example:

$$
p(\mathcal{D} \mid \theta)=\prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f, n} \mid \theta_{f}\right) \quad \mathcal{D}=\left\{x_{\mathcal{V}, 1}, \ldots, x_{\mathcal{V}, N}\right\}
$$

- Given N independent, identically distributed, completely observed samples:

$$
\log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta)
$$

- Take gradient with respect to parameters for a single factor:

$$
\nabla_{\theta_{f}} \log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \phi_{f}\left(x_{f, n}\right)\right]-N \mathbb{E}_{\theta}\left[\phi_{f}\left(x_{f}\right)\right]
$$

- Must be able to compute marginal distributions for factors in current model:
> Tractable for tree-structured factor graphs via sum-product
> For general graphs, use the junction tree algorithm to compute

