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Graphical Models, Inference, Learning 
Graphical Model:  A factorized probability representation 
•  Directed:  Sequential, causal structure for generative process 
•  Undirected:  Associate features with edges, cliques, or factors 
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

Inference:  Given model, find marginals of hidden variables  
•  Standardize:  Convert directed to equivalent undirected form 
•  Sum-product BP:  Exact for any tree-structured graph 
•  Junction tree:  Convert loopy graph to consistent clique tree 



Undirected Inference Algorithms 
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•  A junction tree is a clique tree with special properties: 
Ø Consistency:  Clique nodes corresponding to any variable 

from the original model form a connected subtree 
Ø Construction:  Triangulations and elimination orderings 



Graphical Models, Inference, Learning 
Graphical Model:  A factorized probability representation 
•  Directed:  Sequential, causal structure for generative process 
•  Undirected:  Associate features with edges, cliques, or factors 
Inference:  Given model, find marginals of hidden variables  
•  Standardize:  Convert directed to equivalent undirected form 
•  Sum-product BP:  Exact for any tree-structured graph 
•  Junction tree:  Convert loopy graph to consistent clique tree 
Learning:  Given a set of complete observations of all variables 
•  Directed:  Decomposes to independent learning problems: 

Predict the distribution of each child given its parents 
•  Undirected:  Global normalization globally couples parameters: 

Gradients computable by inferring clique/factor marginals 
Learning:  Given a set of partial observations of some variables 
•  E-Step:  Infer marginal distributions of hidden variables 
•  M-Step:  Optimize parameters to match E-step and data stats 



Learning for Undirected Models 
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•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}
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Learning for Undirected Models 
•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 
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•  Take gradient with respect to parameters for a single factor: 
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•  Must be able to compute marginal distributions for factors in current model: 
Ø  Tractable for tree-structured factor graphs via sum-product 
Ø  For general graphs, use the junction tree algorithm to compute 
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Undirected Optimization Strategies 
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Gradient Ascent:  Quasi-Newton methods like PCG, L-BGFS, … 
•  Gradients:  Difference between statistics of observed data, 

and inferred statistics for the model at the current iteration 
•  Objective:  Explicitly compute log-normalization (variant of BP) 
Coordinate Ascent:  Maximize objective with respect to the 
parameters of a single factor, keeping all other factors fixed 
•  Simple closed form depending on ratio between factor marginal 

for current model, and empirical marginal from data 
•  Iterative proportional fitting (IPF) and  

generalized iterative scaling algorithms 
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p
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Advanced Topics on the Horizon 
Graph Structure Learning 
•  Setting factor parameters to zero implicitly removes from model  
•  Feature selection:  Search-based, sparsity-inducing priors, … 
•  Topologies:  Tree-structured, directed, bounded treewidth, … 

 f (xf | ✓f ) = exp{✓Tf �f (xf )}

Approximate Inference:  What if junction tree is intractable? 
•  Simulation-based (Monte Carlo) approximations 
•  Optimization-based (variational) approximations 
•  Inner loop of algorithms for approximate learning… 
Alternative Objectives 
•  Max-Product:  Global MAP configuration of hidden variables 
•  Discriminative learning:  CRF, max-margin Markov network,… 
Inference with Continuous Variables 
•  Gaussian:  Closed form mean and covariance recursions 
•  Non-Gaussian:  Variational and Monte Carlo approximations… 



Pairwise Markov Random Fields 

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

set of N nodes or vertices,  

set of undirected edges  (s,t)  linking pairs of nodes 

{1, 2, . . . , N}V
E

normalization constant (partition function) Z
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For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  Simple parameterization, but still 
expressive and widely used in practice 

•  Guaranteed Markov with respect to graph 
•  Any jointly Gaussian distribution can be 

represented by only pairwise potentials 



Inference in Undirected Trees 

p(x) =
1

Z

Y
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 st(xs, xt)
Y

s2V
 s(xs)

•  For a tree, the maximal cliques are always pairs of nodes: 



Belief Propagation (Integral-Product) 
BELIEFS:  Posterior marginals 

MESSAGES:  Sufficient statistics 

neighborhood of node t 
(adjacent nodes) 

I)  Message Product 
II) Message Propagation 
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BP for Continuous Variables 
Is there a finitely 
parameterized, 
closed form for 

the message and 
marginal 

functions? 

Is there an analytic 
formula for the 

message integral, 
phrased as an 

update of these 
parameters? 



Covariance and Correlation 
Covariance: 

⌃ 2 Rd⇥d

uT
⌃u � 0 for any u 2 Rd⇥1, u 6= 0

uT
⌃u > 0 for any u 2 Rd⇥1, u 6= 0

positive semidefinite: 

positive definite: 

Always 

Often 

Correlation: 

Independence: 



Gaussian Distributions 

•  Simplest joint distribution that can capture arbitrary mean & covariance 
•  Justifications from central limit theorem and maximum entropy criterion 
•  Probability density above assumes covariance is positive definite 
•  ML parameter estimates are sample mean & sample covariance 



Two-Dimensional Gaussians 
diagonal
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Gaussian Geometry 
•  Eigenvalues and eigenvectors: 

•  For a symmetric matrix: 

•  For a positive semidefinite matrix: 

•  For a positive definite matrix: 

⌃ui = �iui, i = 1, . . . , d
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Probabilistic PCA & Factor Analysis 

C. Bishop, Pattern Recognition & Machine Learning 
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•  Both Models:   Data is a linear function of low-dimensional 
latent coordinates, plus Gaussian noise 

•  Factor analysis:       is a general diagonal matrix 
•  Probabilistic PCA:                    is a multiple of identity matrix 

p(zi | ✓) = N (zi | 0, I)p(xi | zi, ✓) = N (xi | Wzi + µ, )

p(xi | ✓) = N (xi | µ,WW

T + )

 
 = �2I

low rank covariance 
parameterization 



Gaussian Graphical Models 

J = ⌃�1

x ⇠ N (µ,⌃)



Gaussian Potentials 


