Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 11:
Inference \& Learning Overview, Gaussian Graphical Models

Some figures courtesy Michael Jordan's draft textbook,
An Introduction to Probabilistic Graphical Models

Graphical Models, Inference, Learning

Graphical Model: A factorized probability representation

- Directed: Sequential, causal structure for generative process
- Undirected: Associate features with edges, cliques, or factors

Inference: Given model, find marginals of hidden variables

- Standardize: Convert directed to equivalent undirected form
- Sum-product BP: Exact for any tree-structured graph
- Junction tree: Convert loopy graph to consistent clique tree

Undirected Inference Algorithms One Marginal All Marginals

elimination applied recursively to leaves of tree
elimination algorithm

belief propagation or sum-product algorithm
junction tree algorithm:
belief propagation on a junction tree

- A junction tree is a clique tree with special properties:
$>$ Consistency: Clique nodes corresponding to any variable from the original model form a connected subtree
$>$ Construction: Triangulations and elimination orderings

Graphical Models, Inference, Learning

Graphical Model: A factorized probability representation

- Directed: Sequential, causal structure for generative process
- Undirected: Associate features with edges, cliques, or factors

Inference: Given model, find marginals of hidden variables

- Standardize: Convert directed to equivalent undirected form
- Sum-product BP: Exact for any tree-structured graph
- Junction tree: Convert loopy graph to consistent clique tree

Learning: Given a set of complete observations of all variables

- Directed: Decomposes to independent learning problems: Predict the distribution of each child given its parents
- Undirected: Global normalization globally couples parameters: Gradients computable by inferring clique/factor marginals
Learning: Given a set of partial observations of some variables
- E-Step: Infer marginal distributions of hidden variables
- M-Step: Optimize parameters to match E-step and data stats

Learning for Undirected Models

- Undirected graph encodes dependencies within a single training example:

$$
p(\mathcal{D} \mid \theta)=\prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f, n} \mid \theta_{f}\right) \quad \mathcal{D}=\left\{x_{\mathcal{V}, 1}, \ldots, x_{\mathcal{V}, N}\right\}
$$

- Given N independent, identically distributed, completely observed samples:

$$
\begin{gathered}
\log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta) \\
p(x \mid \theta)=\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f}\right)-A(\theta)\right\} \\
\psi_{f}\left(x_{f} \mid \theta_{f}\right)=\exp \left\{\theta_{f}^{T} \phi_{f}\left(x_{f}\right)\right\} \quad A(\theta)=\log Z(\theta)
\end{gathered}
$$

Learning for Undirected Models

- Undirected graph encodes dependencies within a single training example:

$$
p(\mathcal{D} \mid \theta)=\prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f, n} \mid \theta_{f}\right) \quad \mathcal{D}=\left\{x_{\mathcal{V}, 1}, \ldots, x_{\mathcal{V}, N}\right\}
$$

- Given N independent, identically distributed, completely observed samples:

$$
\log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta)
$$

- Take gradient with respect to parameters for a single factor:

$$
\nabla_{\theta_{f}} \log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \phi_{f}\left(x_{f, n}\right)\right]-N \mathbb{E}_{\theta}\left[\phi_{f}\left(x_{f}\right)\right]
$$

- Must be able to compute marginal distributions for factors in current model:
> Tractable for tree-structured factor graphs via sum-product
> For general graphs, use the junction tree algorithm to compute

Undirected Optimization Strategies

$$
\begin{aligned}
\log p(\mathcal{D} \mid \theta) & =\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta) \\
\nabla_{\theta_{f}} \log p(\mathcal{D} \mid \theta) & =\left[\sum_{n=1}^{N} \phi_{f}\left(x_{f, n}\right)\right]-N \mathbb{E}_{\theta}\left[\phi_{f}\left(x_{f}\right)\right]
\end{aligned}
$$

Gradient Ascent: Quasi-Newton methods like PCG, L-BGFS, ...

- Gradients: Difference between statistics of observed data, and inferred statistics for the model at the current iteration
- Objective: Explicitly compute log-normalization (variant of BP)

Coordinate Ascent: Maximize objective with respect to the parameters of a single factor, keeping all other factors fixed

- Simple closed form depending on ratio between factor marginal for current model, and empirical marginal from data
- Iterative proportional fitting (IPF) and $\psi_{f}^{(t+1)}\left(x_{f}\right)=\psi_{f}^{(t)}\left(x_{f}\right) \frac{\tilde{p}\left(x_{f}\right)}{p_{f}^{(t)}\left(x_{f}\right)}$ generalized iterative scaling algorithms

Advanced Topics on the Horizon

Graph Structure Learning $\quad \psi_{f}\left(x_{f} \mid \theta_{f}\right)=\exp \left\{\theta_{f}^{T} \phi_{f}\left(x_{f}\right)\right\}$

- Setting factor parameters to zero implicitly removes from model
- Feature selection: Search-based, sparsity-inducing priors, ...
- Topologies: Tree-structured, directed, bounded treewidth, ...

Approximate Inference: What if junction tree is intractable?

- Simulation-based (Monte Carlo) approximations
- Optimization-based (variational) approximations
- Inner loop of algorithms for approximate learning...

Alternative Objectives

- Max-Product: Global MAP configuration of hidden variables
- Discriminative learning: CRF, max-margin Markov network,... Inference with Continuous Variables
- Gaussian: Closed form mean and covariance recursions
- Non-Gaussian: Variational and Monte Carlo approximations...

Pairwise Markov Random Fields

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

- Simple parameterization, but still expressive and widely used in practice
- Guaranteed Markov with respect to graph
- Any jointly Gaussian distribution can be
 represented by only pairwise potentials
$\mathcal{E} \longrightarrow$ set of undirected edges (s, t) linking pairs of nodes
$\mathcal{V} \longrightarrow \quad$ set of N nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow$ normalization constant (partition function)

Inference in Undirected Trees

- For a tree, the maximal cliques are always pairs of nodes:

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

Belief Propagation (Integral-Product)

BELIEFS: Posterior marginals

$$
\begin{aligned}
\hat{p}_{t}\left(x_{t}\right) & \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right) \\
\Gamma(t) & \longrightarrow \begin{array}{c}
\text { neighborhood of node } \mathrm{t} \\
\text { (adiacent nodes) }
\end{array}
\end{aligned}
$$

MESSAGES: Sufficient statistics

BP for Continuous Variables

Is there a finitely parameterized, closed form for the message and marginal functions?

Is there an analytic formula for the message integral, phrased as an update of these parameters?

$$
\begin{aligned}
& p\left(x_{1}\right) \propto \iiint \psi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) d x_{4} d x_{3} d x_{2} \\
& \propto \psi_{1}\left(x_{1}\right) \iiint \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) d x_{4} d x_{3} d x_{2} \\
& \propto \psi_{1}\left(x_{1}\right) \int \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right)\left[\iint \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) d x_{4} d x_{3}\right] d x_{2} \\
& \propto \psi_{1}\left(x_{1}\right) \int \psi_{12}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{2}\right) \underbrace{\left[\int \psi_{23}\left(x_{2}, x_{3}\right) \psi_{3}\left(x_{3}\right) d x_{3}\right]}_{m_{32}\left(x_{2}\right)} \cdot \underbrace{\left[\int \psi_{24}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{4}\right) d x_{4}\right] d x_{2}}_{m_{42}\left(x_{2}\right)}
\end{aligned}
$$

Covariance and Correlation

Covariance:

$$
\operatorname{cov}[X, Y] \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

$\operatorname{cov}[\mathbf{x}] \triangleq \mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{T}\right]=\left(\begin{array}{cccc}\operatorname{var}\left[X_{1}\right] & \operatorname{cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{cov}\left[X_{1}, X_{d}\right] \\ \operatorname{cov}\left[X_{2}, X_{1}\right] & \operatorname{var}\left[X_{2}\right] & \cdots & \operatorname{cov}\left[X_{2}, X_{d}\right] \\ \vdots & \vdots & \ddots & \vdots \\ \quad \Sigma & \in \mathbb{R}^{d \times d} & \\ \operatorname{cov}\left[X_{d}, X_{1}\right] & \operatorname{cov}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{var}\left[X_{d}\right]\end{array}\right)$
Always positive semidefinite: $u^{T} \Sigma u \geq 0$ for any $u \in \mathbb{R}^{d \times 1}, u \neq 0$
Often positive definite: $u^{T} \Sigma u>0$ for any $u \in \mathbb{R}^{d \times 1}, u \neq 0$
Correlation:

$$
\operatorname{corr}[X, Y] \triangleq \frac{\operatorname{cov}[X, Y]}{\sqrt{\operatorname{var}[X] \operatorname{var}[Y]}} \quad-1 \leq \operatorname{corr}[X, Y] \leq 1
$$

Independence:

$$
\mathbf{R}=\left(\begin{array}{cccc}
\operatorname{corr}\left[X_{1}, X_{1}\right] & \operatorname{corr}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{1}, X_{d}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{corr}\left[X_{d}, X_{1}\right] & \operatorname{corr}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{d}, X_{d}\right]
\end{array}\right)
$$

$$
p(X, Y)=p(X) p(Y) \quad \operatorname{cov}[X, Y]=0 \quad \Longleftrightarrow \quad \operatorname{corr}[X, Y]=0
$$

Gaussian Distributions

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

- Simplest joint distribution that can capture arbitrary mean \& covariance
- Justifications from central limit theorem and maximum entropy criterion
- Probability density above assumes covariance is positive definite
- ML parameter estimates are sample mean \& sample covariance

Two-Dimensional Gaussians

Gaussian Geometry

- Eigenvalues and eigenvectors:

$$
\Sigma u_{i}=\lambda_{i} u_{i}, i=1, \ldots, d
$$

- For a symmetric matrix:

$$
\begin{gathered}
\lambda_{i} \in \mathbb{R} \quad u_{i}^{T} u_{i}=1 \quad u_{i}^{T} u_{j}=0 \\
\Sigma=U \Lambda U^{T}=\sum_{i=1}^{d} \lambda_{i} u_{i} u_{i}^{T}
\end{gathered}
$$

- For a positive semidefinite matrix:

$$
\lambda_{i} \geq 0
$$

- For a positive definite matrix:

$$
\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})
$$

$$
\begin{aligned}
\lambda_{i} & >0 \\
\Sigma^{-1} & =U \Lambda^{-1} U^{T}=\sum_{i=1}^{d} \frac{1}{\lambda_{i}} u_{i} u_{i}^{T}
\end{aligned}
$$

$$
\Delta^{2}=\sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}}
$$

$$
y_{i}=u_{i}^{T}(x-\mu)
$$

Probabilistic PCA \& Factor Analysis

- Both Models: Data is a linear function of low-dimensional latent coordinates, plus Gaussian noise

$$
\begin{aligned}
p\left(x_{i} \mid z_{i}, \theta\right) & =\mathcal{N}\left(x_{i} \mid W z_{i}+\mu, \Psi\right) \quad p\left(z_{i} \mid \theta\right)=\mathcal{N}\left(z_{i} \mid 0, I\right) \\
p\left(x_{i} \mid \theta\right) & =\mathcal{N}\left(x_{i} \mid \mu, W W^{T}+\Psi\right) \quad \begin{array}{c}
\text { low rank covariance } \\
\text { parameterization }
\end{array}
\end{aligned}
$$

- Factor analysis: Ψ is a general diagonal matrix
- Probabilistic PCA: $\Psi=\sigma^{2} I$ is a multiple of identity matrix

Gaussian Graphical Models

$$
\psi_{s, t}\left(x_{s}, x_{t}\right)=\exp \left\{-\frac{1}{2}\left[\begin{array}{ll}
x_{s}^{T} & x_{t}^{T}
\end{array}\right]\left[\begin{array}{cc}
J_{s(t)} & J_{s, t} \\
J_{t, s} & J_{t(s)}
\end{array}\right]\left[\begin{array}{l}
x_{s} \\
x_{t}
\end{array}\right]\right\}
$$

Gaussian Potentials

$$
\begin{aligned}
& p(x)=\frac{1}{Z} \exp \left\{-\frac{1}{2} x^{T} P^{-1} x\right\}=\frac{1}{Z} \prod_{s=1}^{N} \prod_{t=1}^{N} \exp \left\{-\frac{1}{2} x_{s}^{T} J_{s, t} x_{t}\right\}= \\
& \frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \exp \left\{-\frac{1}{2}\left[\begin{array}{ll}
x_{s}^{T} & x_{t}^{T}
\end{array}\right]\left[\begin{array}{ll}
J_{s(t)} & J_{s, t} \\
J_{t, s} & J_{t(s)}
\end{array}\right]\left[\begin{array}{c}
x_{s} \\
x_{t} \\
x_{t}
\end{array}\right\}=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s, t}\left(x_{\left.s, x_{t}\right)}\right.\right. \\
& Z=\left((2 \pi)^{N} \operatorname{det} P\right)^{1 / 2} \\
& p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s, t}\left(x_{s}, x_{t}\right) \quad \sum_{t \in N(s)} J_{s(t)}=J_{s, s} \\
& \psi_{s, t}\left(x_{s}, x_{t}\right)=\exp \left\{-\frac{1}{2}\left[\begin{array}{ll}
x_{s}^{T} & x_{t}^{T}
\end{array}\right]\left[\begin{array}{cc}
J_{s(t)} & J_{s, t} \\
J_{t, s} & J_{t(s)}
\end{array}\right]\left[\begin{array}{c}
x_{s} \\
x_{t}
\end{array}\right]\right\}
\end{aligned}
$$

