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Pairwise Markov Random Fields 
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  Simple parameterization, but still 
expressive and widely used in practice 

•  Guaranteed Markov with respect to graph 
•  Any jointly Gaussian distribution can be 

represented by only pairwise potentials 



Belief Propagation (Integral-Product) 
BELIEFS:  Posterior marginals 

MESSAGES:  Sufficient statistics 
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Gaussian Distributions 

•  Simplest joint distribution that can capture arbitrary mean & covariance 
•  Justifications from central limit theorem and maximum entropy criterion 
•  Probability density above assumes covariance is positive definite 
•  ML parameter estimates are sample mean & sample covariance 



Gaussian Conditionals & Marginals 

For any joint multivariate Gaussian distribution, 
all marginal distributions are Gaussians, 

and all conditional distributions are Gaussians 



Partitioned Gaussian Distributions 

Marginals: 

Conditionals: 

Intuition: 
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Gaussian Conditionals & Marginals 
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Gaussian Graphical Models 

J = ⌃�1

x ⇠ N (µ,⌃)



Gaussian Potentials 



Interpreting GMRF Parameters 

ingly, in the Gaussian case, the Markov properties of G constrain the structure of

the inverse covariance matrix P−1. Most efficient inference algorithms for Gaussian

graphical models, including those developed in this thesis, depend fundamentally on

the exploitation of this structure.

Suppose the inverse covariance matrix J ! P−1 is partitioned into an N ×N grid

of submatrices, where the submatrix sizes are chosen to match the dimensions of the

node variables {xs}N
s=1. Denote the (s, t)th block of J by Js,t, so that Js,t is a matrix of

size ds×dt. Also, let {λi (A)} and {σi (A)} denote the sets of eigenvalues and singular

values, respectively, of a matrix A. The following proposition, which is proved for

the special case of scalar variables in [48], provides a statistical interpretation of the

inverse covariance entries:

Proposition 2.1. For any s ∈ V, the conditional covariance matrix var
(
xs

∣∣xN(s)

)

may be directly calculated from the corresponding block diagonal entry of J = P−1:

var
(
xs

∣∣xN(s)

)
= (Js,s)

−1 (2.10)

In addition, for any s, t ∈ V, the conditional canonical correlation coefficients of xs

and xt, conditioned on their local neighborhood xN(s,t), may be calculated from

{
σi

(
var
(
xs

∣∣xN(s,t)

)− 1
2 cov

(
xs, xt

∣∣xN(s,t)

)
var
(
xt

∣∣xN(s,t)

)− 1
2

)}

=
{
σi

(
(Js,s)

− 1
2 Js,t (Jt,t)

− 1
2

)}
(2.11)

Proof. See Appendix B.2.3.

For an introduction to canonical correlations analysis, see Appendix B.2. For scalar

xs and xt, equation (2.11) may be specialized to show that the conditional correlation

coefficient ρst|N(s,t) is given by

ρst|N(s,t) ! cov
(
xs, xt

∣∣xN(s,t)

)
√

var
(
xs

∣∣xN(s,t)

)
var
(
xt

∣∣xN(s,t)

) =
−Js,t√
Js,sJt,t

(2.12)
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Gaussian Markov Properties 

J = ⌃�1

x ⇠ N (µ,⌃)

Combining Proposition 2.1 with the Markov properties implied by equations (2.8, 2.9),

we may show that the inverse covariance matrix has the following structure [48, 69]:

Theorem 2.2. Let x ∼ N (0, P ) be a Gaussian stochastic process which is Markov

with respect to an undirected graph G = (V , E). Assume that x is not Markov with

respect to any G ′ = (V , E ′) such that E ′ ! E , and partition J = P−1 into a |V|× |V|

grid according to the dimensions of the node variables. Then for any s, t ∈ V such

that s $= t, Js,t = JT
t,s will be nonzero if and only if (s, t) ∈ E .

Proof. Consider any s, t ∈ V such that s $= t. Combining equation (2.11) with basic

properties of the singular value decomposition, we see that Js,t will be nonzero if and

only if cov
(
xs, xt

∣∣xN(s,t)

)
$= 0. Since xs and xt are jointly Gaussian, it follows that

Js,t will be zero if and only if xs and xt are conditionally independent given xN(s,t).

Suppose that (s, t) $∈ E , then N(s, t) separates nodes s and t, and by the Markov

properties of G, xs and xt must be conditionally independent. This in turn implies

Js,t = 0. Alternatively, if (s, t) ∈ E , then N(s, t) does not separate s and t. By

assumption, x is not Markov with respect to the subgraph created by removing edge

(s, t), so xs and xt must be conditionally dependent, and therefore Js,t $= 0.

Figure 2-2 illustrates Theorem 2.2 for a small sample graph. In most graphical models,

each node is only connected to a small subset of the other nodes. Theorem 2.2 then

shows that P−1 will be a sparse matrix with a small (relative to N) number of

nonzero entries in each row and column. This sparsity is the fundamental reason for

the existence of the efficient inference algorithms discussed in §2.3.

2.2.3 Parameterization of Gaussian Markov Random Fields

The sparse structure exhibited by the inverse covariance matrix of a Gaussian Markov

random field is a manifestation of the constraints which the Markov properties dis-

cussed in §2.2.1 place on p (x). Similar constraints also hold for more general undi-

rected graphical models. In particular, the Hammersley–Clifford Theorem relates the

Markov properties implied by G to a factorization of the probability distribution p (x).
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Inference with Gaussian Observations 



Linear Gaussian Systems 

Marginal Likelihood: 

Posterior Distribution: 

Gaussian BP:  Complexity linear, not cubic, in number of nodes 



Belief Propagation (Integral-Product) 
BELIEFS:  Posterior marginals 

MESSAGES:  Sufficient statistics 

neighborhood of node t 
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Gaussian Belief Propagation 
•  The natural, canonical, or information parameterization of a 

Gaussian distribution arises from quadratic form: 

⇤ = ⌃�1
# = ⌃�1µ

•  Gaussian BP represents messages and marginals as: 

with mean µ and covariance P, the information parameters are defined by

ϑ = P−1µ Λ = P−1 (2.28)

We use the notation N−1(ϑ, Λ) to indicate a Gaussian probability distribution with

information parameters ϑ and Λ. For a more detailed introduction to information

parameters, see Appendix B.1. We will denote the information parameters of the BP

messages and conditional marginal distributions as

mn
ts (xs) = αN−1(ϑn

ts, Λ
n
ts) p (xs | yn

s ) = N−1(ϑn
s , Λ

n
s ) (2.29)

mts (xs) = αN−1(ϑts, Λts) p (xs | y) = N−1(ϑs, Λs) (2.30)

where equation (2.29) gives the values at iteration n, and equation (2.30) gives the

corresponding steady–state values. The moment parameters of p (xs | y) ∼ N
(
x̂s, P̂s

)

are then related to the information parameters as follows:

x̂s = (Λs)
−1ϑs P̂s = (Λs)

−1 (2.31)

Notice that Λ’s are used to denote the inverse covariance parameters of messages and

beliefs, while J ’s denote elements of the inverse covariance of the prior model.

To derive the Gaussian BP equations, we must determine the information param-

eterizations of all of the terms appearing in the general BP equations (2.25, 2.26).

The pairwise clique potentials are already expressed in an information form by equa-

tion (2.15). Using Bayes’ rule, we can write the local observation terms as

p (ys | xs) = α
p (xs | ys)

p (xs)
(2.32)

Clearly, because x ∼ N (0, P ), p (xs) = N−1
(
0, P−1

s,s

)
. Combining the information

form of the normal equations (2.6, 2.7) with the local measurement model (2.18), we

find that p (xs | ys) = N−1
(
CT

s R−1
s ys, P−1

s,s + CT
s R−1

s Cs

)
. Then, taking the quotient

40
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Gaussian Belief Propagation 
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of these terms using equations (B.8, B.9) gives

p (ys | xs) = αN−1
(
CT

s R−1
s ys, C

T
s R−1

s Cs

)
(2.33)

Note that because the update equations employ likelihoods p (ys | xs) rather than

conditional densities p (xs | ys), we are able to avoid explictly computing the marginal

variances Ps,s of the prior model.

Now consider the belief update equation (2.26). By repeated application of the

rules for combining products of Gaussian densities (see equations (B.8, B.9)), we see

immediately that p (xs | yn
s ) = N−1(ϑn

s , Λ
n
s ) is given by

ϑn
s = CT

s R−1
s ys +

∑

t∈N(s)

ϑn
ts (2.34)

Λn
s = CT

s R−1
s Cs +

∑

t∈N(s)

Λn
ts (2.35)

The message update equation (2.25) is slightly more complicated. By repeated ap-

plication of the product formulas, we find that

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mn−1
ut (xt) ∝ N−1

(
ϑ, Λ

)
(2.36)

where

ϑ =



 0

CT
t R−1

t yt +
∑

u∈N(t)\s ϑ
n−1
ut



 (2.37)

Λ =



 Js(t) Js,t

Jt,s Jt(s) + CT
t R−1

t Ct +
∑

u∈N(t)\s Λn−1
ut



 (2.38)

and ψs,t (xs, xt) is parameterized as in equation (2.15). Applying the marginalization

equations (B.6, B.7) to perform the integration over xt, we find the following parallel
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D of G, the messages will converge to the unique fixed point of the message update

equation (2.25), so that mD
ts (xs) = mts (xs). This in turn allows p (xs | y) to be

exactly calculated for all s ∈ V. Even prior to convergence, however, the message

values mn
ts (xs) provide useful information. Let yn

s be the set of observations that are

separated from s in G by at most n edges, as illustrated in Figure 2-4(b). Then,

assuming m0
ts (xs) = 1, we have

p (xs | yn
s ) = αp (ys | xs)

∏

t∈N(s)

mn
ts (xs) (2.26)

Thus, the parallel BP message updates effectively compute a series of approximations

{p (xs | yn
s )} to p (xs | y), each of which optimally incorporates all measurements in

an expanding domain of observation.

While intuitively appealing, the parallel BP algorithm is inefficient if implemented

directly on a serial computer. In fact, if the message updates (2.25) are scheduled in

the proper order, each individual message must only be calculated once, and the exact

marginals may be found with only O(N) such updates. One example of an efficient

message scheduling begins by choosing a particular node to be the root of the tree.

This induces a partial ordering of the nodes in scale according to their distance from

the root. Each node, besides the root, then has a unique neighboring parent node

which is closer to the root; the other neighbors are called child nodes. The inference

procedure begins with an upward sweep which calculates all of the messages from child

to parent nodes, starting with the most distant scales and proceeding recursively to

the root. Then, a downward sweep calculates all of the parent to child messages

starting from the root and proceeding outward. For more details, see [20].

The BP update equations (2.25, 2.26) will, in principle, calculate the correct

marginals p (xs | y) for an arbitrary tree–structured Markov random field. In practice,

however, the message update integral (2.25) is intractable for many distributions p (x).

Fortunately, there exist two general classes of tractable distributions. If the hidden

variables xs take values from a discrete set of dimension m, the integrals become sums

which can be calculated in O(m2) operations per message update. Alternatively,
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•  Gaussian BP belief updates then have a simple form: 
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Figure 2-4: Subsets of the observation nodes used by the BP algorithm. (a) Conditioned on the
hidden variable x1, the observation sets y2\1, y3\1, y4\1, and y1 become independent. (b) At iteration
n, the BP messages may be combined to compute p (x1 | yn

1 ).

sion with a complementary reverse–time recursion [44]. Discrete–valued hidden nodes

lead to the forward–backward (or α − β) algorithm commonly employed in speech

processing algorithms [60]. By generalizing the dynamic programming [10] recursions

underlying these time–series algorithms to the partial ordering naturally provided by

a tree, one can directly extend them to any graph without cycles. In this section,

we derive a particular form of the exact tree–based inference recursions known as the

belief propagation (BP) algorithm [59]. For alternate, but equivalent, frameworks for

inference on graphs, see [2, 20, 47].

For any tree–structured graphical model, it is straightforward to verify that the

prior distribution p (x) may be factorized in a symmetric form as

p (x) =
∏

(s,t)∈E

p (xs, xt)

p (xs) p (xt)

∏

s∈V

p (xs) (2.19)

where p (xs) and p (xs, xt) are exact marginal distributions. Equation (2.19) shows

that, for graphs without cycles, it is possible to factor p (x) using pairwise clique po-

tentials which are simple functions of the local marginal distributions at neighboring

nodes. However, such a factorization does not generally exist for graphs with cycles.

For any s ∈ V and any t ∈ N(s), let ys\t be the set of all observation nodes in the

tree rooted at node s, excluding those in the subtree rooted at node t. Figure 2-4(a)

provides a graphical illustration of this set. Then, using Bayes’ rule and the Markov

35



Gaussian Belief Propagation 
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xtxs

equivalent representations of the same joint distribution p (x). Thus, it is straightfor-

ward to show that the integral (2.22) which correctly computes p (xs | y) will also be

produced by the following analogs of equations (2.20, 2.21):

p (xs | y) = αp (ys | xs)
∏

t∈N(s)

mts (xs) (2.23)

mts (xs) = α

∫

xt

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mut (xt) dxt (2.24)

For non–canonical factorizations of p (x), the mts (xs) terms will in general not equal

the conditional likelihoods p
(
yt\s | xs

)
. Conceptually, however, mts (xs) may still be

interpreted as a sufficient statistic of yt\s for the purpose of calculating p (xs | y).

Equations (2.23, 2.24) show that the dependencies between the desired conditional

marginal distributions p (xs | y) and sufficient statistics mts (xs) may be expressed

using only local relationships between neighboring nodes. This naturally suggests

the development of algorithms which solve these equations using a distributed set of

local computations. The belief propagation (BP) algorithm begins by associating the

sufficient statistic mts (xs) with a message that we would like node t to send to node

s. This message provides all of the information about xs which is available from yt\s,

the subset of observations upon which xs depends only through its correlation with

xt. Given an algorithm which efficiently calculates all of the messages, the marginal

distributions p (xs | y), or “beliefs,” are easily found from equation (2.23).

Belief propagation is typically described as a parallel algorithm in which equa-

tion (2.24) is iteratively applied, generating a sequence of messages {mn
ts (xs)} which

converge to mts (xs) as n → ∞. In particular, for all t ∈ V and s ∈ N(t), we initialize

m0
ts (xs) to some arbitrary initial value, typically m0

ts (xs) = 1, and then iteratively

apply the following message update equation:

mn
ts (xs) = α

∫

xt

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mn−1
ut (xt) dxt (2.25)

It is straightforward to show that, after a number of iterations equal to the diameter
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of these terms using equations (B.8, B.9) gives

p (ys | xs) = αN−1
(
CT

s R−1
s ys, C

T
s R−1

s Cs

)
(2.33)

Note that because the update equations employ likelihoods p (ys | xs) rather than

conditional densities p (xs | ys), we are able to avoid explictly computing the marginal

variances Ps,s of the prior model.

Now consider the belief update equation (2.26). By repeated application of the

rules for combining products of Gaussian densities (see equations (B.8, B.9)), we see

immediately that p (xs | yn
s ) = N−1(ϑn

s , Λ
n
s ) is given by

ϑn
s = CT

s R−1
s ys +

∑

t∈N(s)

ϑn
ts (2.34)

Λn
s = CT

s R−1
s Cs +

∑

t∈N(s)

Λn
ts (2.35)

The message update equation (2.25) is slightly more complicated. By repeated ap-

plication of the product formulas, we find that

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mn−1
ut (xt) ∝ N−1

(
ϑ, Λ

)
(2.36)

where

ϑ =



 0

CT
t R−1

t yt +
∑

u∈N(t)\s ϑ
n−1
ut



 (2.37)

Λ =



 Js(t) Js,t

Jt,s Jt(s) + CT
t R−1

t Ct +
∑

u∈N(t)\s Λn−1
ut



 (2.38)

and ψs,t (xs, xt) is parameterized as in equation (2.15). Applying the marginalization

equations (B.6, B.7) to perform the integration over xt, we find the following parallel
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Figure 2-4: Subsets of the observation nodes used by the BP algorithm. (a) Conditioned on the
hidden variable x1, the observation sets y2\1, y3\1, y4\1, and y1 become independent. (b) At iteration
n, the BP messages may be combined to compute p (x1 | yn

1 ).

sion with a complementary reverse–time recursion [44]. Discrete–valued hidden nodes

lead to the forward–backward (or α − β) algorithm commonly employed in speech

processing algorithms [60]. By generalizing the dynamic programming [10] recursions

underlying these time–series algorithms to the partial ordering naturally provided by

a tree, one can directly extend them to any graph without cycles. In this section,

we derive a particular form of the exact tree–based inference recursions known as the

belief propagation (BP) algorithm [59]. For alternate, but equivalent, frameworks for

inference on graphs, see [2, 20, 47].

For any tree–structured graphical model, it is straightforward to verify that the

prior distribution p (x) may be factorized in a symmetric form as

p (x) =
∏

(s,t)∈E

p (xs, xt)

p (xs) p (xt)

∏

s∈V

p (xs) (2.19)

where p (xs) and p (xs, xt) are exact marginal distributions. Equation (2.19) shows

that, for graphs without cycles, it is possible to factor p (x) using pairwise clique po-

tentials which are simple functions of the local marginal distributions at neighboring

nodes. However, such a factorization does not generally exist for graphs with cycles.

For any s ∈ V and any t ∈ N(s), let ys\t be the set of all observation nodes in the

tree rooted at node s, excluding those in the subtree rooted at node t. Figure 2-4(a)

provides a graphical illustration of this set. Then, using Bayes’ rule and the Markov

35

xtxs

Appendix A

Linear Algebraic Identities

A.1 Inversion of Partitioned Matrices

When working with Gaussian random variables, it is often necessary to calculate the

inverse of a partitioned matrix. Consider the 2 × 2 block matrix

M =



 A B

C D



 (A.1)

which is assumed to be invertible. Assuming that the matrices A and D are square

and invertible, the following equations can be verified by direct calculation:

M−1 =



 (A − BD−1C)−1 − (A − BD−1C)−1 BD−1

−D−1C (A − BD−1C)−1 D−1 + D−1C (A − BD−1C)−1 BD−1



 (A.2)

=



 A−1 + A−1B (D − CA−1B)−1 CA−1 −A−1B (D − CA−1B)−1

− (D − CA−1B)−1 CA−1 (D − CA−1B)−1



 (A.3)

By equating entries in equations (A.2) and (A.3), we may also derive the following

expressions:

(
A − BD−1C

)−1
= A−1 + A−1B

(
D − CA−1B

)−1
CA−1 (A.4)

(
A − BD−1C

)−1
BD−1 = A−1B

(
D − CA−1B

)−1
(A.5)
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sion with a complementary reverse–time recursion [44]. Discrete–valued hidden nodes

lead to the forward–backward (or α − β) algorithm commonly employed in speech

processing algorithms [60]. By generalizing the dynamic programming [10] recursions

underlying these time–series algorithms to the partial ordering naturally provided by

a tree, one can directly extend them to any graph without cycles. In this section,

we derive a particular form of the exact tree–based inference recursions known as the

belief propagation (BP) algorithm [59]. For alternate, but equivalent, frameworks for

inference on graphs, see [2, 20, 47].
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∏
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where p (xs) and p (xs, xt) are exact marginal distributions. Equation (2.19) shows

that, for graphs without cycles, it is possible to factor p (x) using pairwise clique po-

tentials which are simple functions of the local marginal distributions at neighboring

nodes. However, such a factorization does not generally exist for graphs with cycles.

For any s ∈ V and any t ∈ N(s), let ys\t be the set of all observation nodes in the

tree rooted at node s, excluding those in the subtree rooted at node t. Figure 2-4(a)

provides a graphical illustration of this set. Then, using Bayes’ rule and the Markov
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equivalent representations of the same joint distribution p (x). Thus, it is straightfor-

ward to show that the integral (2.22) which correctly computes p (xs | y) will also be

produced by the following analogs of equations (2.20, 2.21):

p (xs | y) = αp (ys | xs)
∏

t∈N(s)

mts (xs) (2.23)

mts (xs) = α

∫

xt

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mut (xt) dxt (2.24)

For non–canonical factorizations of p (x), the mts (xs) terms will in general not equal

the conditional likelihoods p
(
yt\s | xs

)
. Conceptually, however, mts (xs) may still be

interpreted as a sufficient statistic of yt\s for the purpose of calculating p (xs | y).

Equations (2.23, 2.24) show that the dependencies between the desired conditional

marginal distributions p (xs | y) and sufficient statistics mts (xs) may be expressed

using only local relationships between neighboring nodes. This naturally suggests

the development of algorithms which solve these equations using a distributed set of

local computations. The belief propagation (BP) algorithm begins by associating the

sufficient statistic mts (xs) with a message that we would like node t to send to node

s. This message provides all of the information about xs which is available from yt\s,

the subset of observations upon which xs depends only through its correlation with

xt. Given an algorithm which efficiently calculates all of the messages, the marginal

distributions p (xs | y), or “beliefs,” are easily found from equation (2.23).

Belief propagation is typically described as a parallel algorithm in which equa-

tion (2.24) is iteratively applied, generating a sequence of messages {mn
ts (xs)} which

converge to mts (xs) as n → ∞. In particular, for all t ∈ V and s ∈ N(t), we initialize

m0
ts (xs) to some arbitrary initial value, typically m0

ts (xs) = 1, and then iteratively

apply the following message update equation:

mn
ts (xs) = α

∫

xt

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mn−1
ut (xt) dxt (2.25)

It is straightforward to show that, after a number of iterations equal to the diameter
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update equations for the BP messages mn
ts (xs) = αN−1(ϑn

ts, Λ
n
ts):

ϑn
ts = −Js,t



Jt(s) + CT
t R−1

t Ct +
∑

u∈N(t)\s

Λn−1
ut




−1

CT
t R−1

t yt +
∑

u∈N(t)\s

ϑn−1
ut



(2.39)

Λn
ts = Js(t) − Js,t



Jt(s) + CT
t R−1

t Ct +
∑

u∈N(t)\s

Λn−1
ut




−1

Jt,s (2.40)

These equations are the Gaussian form of the parallel BP message update equa-

tion (2.25). The initial conditions ϑ0
ts and Λ0

ts may be arbitrarily chosen; typically,

one sets ϑ0
ts = 0 and Λ0

ts = 0. Note that these updates may be easily adapted to other,

more efficient message schedules as discussed in §2.3.1. Due to the matrix inversion,

the cost of computing the message update at node t is O(d3
t ). Upon convergence, the

information parameters of p (xs | y) may be found from equations (2.34, 2.35).

Equations (2.39, 2.40), which represent the standard form of the Gaussian BP

message updates, appear to depend on the chosen factorization of the inverse covari-

ance matrix J into clique potentials. Consider, however, the matrix which is inverted

in each of the update equations. Each incoming message Λut is a linear combina-

tion of Jt(u) with some other terms. Looking at these Jt(u) together with the locally

contributed Jt(s) term, we find that

Jt(s) +
∑

u∈N(t)\s

Jt(u) =
∑

u∈N(t)

Jt(u) = Jt,t (2.41)

where the last equality follows from the consistency condition (2.16). From this, we see

that although the BP messages themselves depend on the choice of clique potentials,

the calculated marginal distributions (or beliefs) do not. In fact, one may define an

alternate sequence of messages whose update depends directly on the (unfactorized)

42



  

State Space Models

Like HMM, but over continuous variables...

Plant Equations:



  

State Space Models

   Dynamics:

Same as,

Process
Noise



  

State Space Models

Measurement:

Same as,

This is known as the Linear Gaussian assumption.

Measurement
Noise



  

Example: Target Tracking

● Constant velocity dynamics (1st order diffeq)

● Lower-dimensional measurement

Position

Velocity

Target State Measurement



  

Example: Target Tracking



  

Correspondence With
Factor Analysis

Factor Analysis: State Space:



  

Inference for State Space Model

● Broken into 2 parts

● Filtering (Forward pass):

● Smoothing (Backward pass)

● Why “filter”?

● From signal processing

● “Filters” out system noise to produce an estimate



  

Conditional Moments

● Everything is Gaussian

● Can focus on mean / variance computations
Conditional Mean

Conditional Variance



  

Kalman Filter

Two recursive updates:
1) Time update:

● best guess before seeing measurement)

2) Measurement Update:

● after measurement



  

Kalman Filter

1) Time update:

2) Measurement Update:



  

Kalman Filter: 
Time Update

Recall that,

so the conditional mean recursion is,

Similar for covariance,

Zero Noise
In Expectation



Gaussian Conditionals

For any joint multivariate Gaussian distribution,

all conditional distributions are Gaussians



Gaussian Conditionals

Gaussian joint distribution                  ,

Conditional is Gaussian with parameters,

Inverse Covariance

Conditional
Covariance



  

Kalman Filter: 
Measurement Update

Form the joint over                      as,

Compute conditional,

Time Update Measurement
Equation



  

Kalman Filter:
Measurement Update

● Quantity           called the Kalman Gain Matrix

● Because it multiplies observation, i.e. produces “gain”

● Update takes linear combination of predicted mean 
and observation, weighted by predicted covariance



  

Kalman Filter

Consider the covariance updates,

● Independent of observed measurements

● This is a property of Gaussians in general

● Only depend on process and measurement noise

● Can be computed offline



  

Kalman Filter



  

Information Filter

● Recall Gaussian has equivalent canonical 
parameterization

● Sometimes called Information form

● Recursive updates follow definitions

● Matrix condition is reciprocal of condition of its inverse

Inverse Covariance Canonical Mean



  

Information Filter

● Define                   to , focus on precision update

● Measurement update

● Wait a minute...this looks familiar...

Matrix Inversion
Lemma



Gaussian Belief Propagation

Message Update:

Belief Update:



  

Gaussian BP => Kalman Filter

Time Update:

Measurement Update:



  

Smoother

● Combines forward  and backward probabilities

to produce full marginal posterior.  

● Similar to inference on an HMM (forward-
backward algorithm)



  

Smoother

● Can we just invert the dynamics,

and run Kalman filter backwards?

● No, w
t
 is no longer independent of the “past” state 

(e.g. x
t+1

, …, x
T
)

x
T

x
T-1

x
T-2

x
1 ...

y
T

y
T-1

y
T-2

y
1



  

Unconditional Distribution

● Marginal distributions of a Gaussian are 
Gaussian

Where,

● Covariance computed recursively

● Does not depend on means 

From zero-mean
noise assumption



  

Smoother

Given the unconditional marginal,

● Form the unconditional over

● Solve for reverse dynamics

● Run filter backwards with new dynamics



  

Smoother

x
T

x
T-1

x
T-2

x
1

...

y
T

y
T-1

y
T-2

y
1



  

Smoother

● Gaussian closed under multiplication

● Multiply to produce full “smoothed” marginal

● Kalman filter + smoother equivalent to Gaussian 
BP

Forward Conditional Backward Conditional



  

Summary

● Kalman filter is optimal filter for Linear Gaussian 
State Space model

● Smoother provides full marginal inference

● Gaussian BP produces equivalent algorithm 

● Correspondence clearly shown in Information 
form of the filter


