## Probabilistic Graphical Models

## Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

## Lecture 12:

Gaussian Belief Propagation,
State Space Models and Kalman Filters
Guest Kalman Filter Lecture by Jason Pacheco

Some figures courtesy Michael Jordan's draft textbook,
An Introduction to Probabilistic Graphical Models

## Pairwise Markov Random Fields

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

- Simple parameterization, but still expressive and widely used in practice
- Guaranteed Markov with respect to graph
- Any jointly Gaussian distribution can be
 represented by only pairwise potentials
$\mathcal{E} \longrightarrow$ set of undirected edges $(s, t)$ linking pairs of nodes
$\mathcal{V} \longrightarrow \quad$ set of $N$ nodes or vertices, $\{1,2, \ldots, N\}$
$Z \longrightarrow$ normalization constant (partition function)


## Belief Propagation (Integral-Product)

BELIEFS: Posterior marginals


$$
\begin{gathered}
\hat{p}_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right) \\
\Gamma(t)
\end{gathered} \longrightarrow_{\substack{\text { neighborhood of node } \mathrm{t} \\
\text { (adiacent nodes) }}}
$$

MESSAGES: Sufficient statistics


## Gaussian Distributions



$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

- Simplest joint distribution that can capture arbitrary mean \& covariance
- Justifications from central limit theorem and maximum entropy criterion
- Probability density above assumes covariance is positive definite
- ML parameter estimates are sample mean \& sample covariance


## Gaussian Conditionals \& Marginals




For any joint multivariate Gaussian distribution, all marginal distributions are Gaussians, and all conditional distributions are Gaussians

## Partitioned Gaussian Distributions

$p(\mathbf{x})=\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{ll}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{array}\right), \quad \boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}=\left(\begin{array}{ll}\boldsymbol{\Lambda}_{11} & \boldsymbol{\Lambda}_{12} \\ \boldsymbol{\Lambda}_{21} & \boldsymbol{\Lambda}_{22}\end{array}\right)$
Marginals:

$$
\begin{aligned}
& p\left(\mathbf{x}_{1}\right)=\mathcal{N}\left(\mathbf{x}_{1} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right) \\
& p\left(\mathbf{x}_{2}\right)=\mathcal{N}\left(\mathbf{x}_{2} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22}\right)
\end{aligned}
$$

Conditionals: $\quad p\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right)=\mathcal{N}\left(\mathbf{x}_{1} \mid \boldsymbol{\mu}_{1 \mid 2}, \boldsymbol{\Sigma}_{1 \mid 2}\right)$

$$
\begin{aligned}
\boldsymbol{\mu}_{1 \mid 2} & =\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right) \\
& =\boldsymbol{\mu}_{1}-\boldsymbol{\Lambda}_{11}^{-1} \boldsymbol{\Lambda}_{12}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right) \\
& =\boldsymbol{\Sigma}_{1 \mid 2}\left(\boldsymbol{\Lambda}_{11} \boldsymbol{\mu}_{1}-\boldsymbol{\Lambda}_{12}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right)\right) \\
\boldsymbol{\Sigma}_{1 \mid 2} & =\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}=\boldsymbol{\Lambda}_{11}^{-1}
\end{aligned}
$$

Intuition:
$p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \propto \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)+\frac{1}{2}\left(x_{2}-\mu_{2}\right)^{T} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right\}$

## Gaussian Conditionals \& Marginals




$$
\begin{aligned}
& \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right) \quad p\left(x_{1}\right)=\mathcal{N}\left(x_{1} \mid \mu_{1}, \sigma_{1}^{2}\right) \\
& p\left(x_{1} \mid x_{2}\right)=\mathcal{N}\left(x_{1} \left\lvert\, \mu_{1}+\frac{\rho \sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu_{2}\right)\right., \sigma_{1}^{2}\left(1-\rho^{2}\right)\right)
\end{aligned}
$$

## Gaussian Graphical Models



$$
\psi_{s, t}\left(x_{s}, x_{t}\right)=\exp \left\{-\frac{1}{2}\left[\begin{array}{ll}
x_{s}^{T} & x_{t}^{T}
\end{array}\right]\left[\begin{array}{cc}
J_{s(t)} & J_{s, t} \\
J_{t, s} & J_{t(s)}
\end{array}\right]\left[\begin{array}{l}
x_{s} \\
x_{t}
\end{array}\right]\right\}
$$

## Gaussian Potentials

$$
\begin{aligned}
& p(x)=\frac{1}{Z} \exp \left\{-\frac{1}{2} x^{T} P^{-1} x\right\}=\frac{1}{Z} \prod_{s=1}^{N} \prod_{t=1}^{N} \exp \left\{-\frac{1}{2} x_{s}^{T} J_{s, t} x_{t}\right\}= \\
& \frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \exp \left\{-\frac{1}{2}\left[\begin{array}{ll}
x_{s}^{T} & x_{t}^{T}
\end{array}\right]\left[\begin{array}{ll}
J_{s(t)} & J_{s, t} \\
J_{t, s} & J_{t(s)}
\end{array}\right]\left[\begin{array}{c}
x_{s} \\
x_{t} \\
x_{t}
\end{array}\right\}=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s, t}\left(x_{\left.s, x_{t}\right)}\right.\right. \\
& Z=\left((2 \pi)^{N} \operatorname{det} P\right)^{1 / 2} \\
& p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s, t}\left(x_{s}, x_{t}\right) \quad \sum_{t \in N(s)} J_{s(t)}=J_{s, s} \\
& \psi_{s, t}\left(x_{s}, x_{t}\right)=\exp \left\{-\frac{1}{2}\left[\begin{array}{ll}
x_{s}^{T} & x_{t}^{T}
\end{array}\right]\left[\begin{array}{cc}
J_{s(t)} & J_{s, t} \\
J_{t, s} & J_{t(s)}
\end{array}\right]\left[\begin{array}{c}
x_{s} \\
x_{t}
\end{array}\right]\right\}
\end{aligned}
$$

## Interpreting GMRF Parameters

$$
\begin{aligned}
& p(x)=\frac{1}{Z} \exp \left\{-\frac{1}{2} x^{T} P^{-1} x\right\}=\frac{1}{Z} \prod_{s=1}^{N} \prod_{t=1}^{N} \exp \left\{-\frac{1}{2} x_{s}^{T} J_{s, t} x_{t}\right\}= \\
& \frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \exp \left\{-\frac{1}{2}\left[x_{s}^{T} x_{t}^{T}\right]\left[\begin{array}{cc}
J_{s(t)} & J_{s, t} \\
J_{t, s} & J_{t(s)}
\end{array}\right]\left[\begin{array}{c}
x_{s} \\
x_{t}
\end{array}\right]\right\}=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s, t}\left(x_{s}, x_{t}\right) \\
& Z=\left((2 \pi)^{N} \operatorname{det} P\right)^{1 / 2} \\
& \operatorname{var}\left(x_{s} \mid x_{N(s)}\right)=\left(J_{s, s}\right)^{-1} \\
& \rho_{s t \mid N(s, t)} \triangleq \frac{\operatorname{cov}\left(x_{s}, x_{t} \mid x_{N(s, t)}\right)}{\sqrt{\operatorname{var}\left(x_{s} \mid x_{N(s, t)}\right) \operatorname{var}\left(x_{t} \mid x_{N(s, t)}\right)}}=\frac{-J_{s, t}}{\sqrt{J_{s, s} J_{t, t}}}
\end{aligned}
$$

## Gaussian Markov Properties



Theorem 2.2. Let $x \sim \mathcal{N}(0, P)$ be a Gaussian stochastic process which is Markov with respect to an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. Assume that $x$ is not Markov with respect to any $\mathcal{G}^{\prime}=\left(\mathcal{V}, \mathcal{E}^{\prime}\right)$ such that $\mathcal{E}^{\prime} \subsetneq \mathcal{E}$, and partition $J=P^{-1}$ into a $|\mathcal{V}| \times|\mathcal{V}|$ grid according to the dimensions of the node variables. Then for any $s, t \in \mathcal{V}$ such that $s \neq t, J_{s, t}=J_{t, s}^{T}$ will be nonzero if and only if $(s, t) \in \mathcal{E}$.

## Inference with Gaussian Observations



$$
\begin{array}{rl}
y_{s}=C_{s} x_{s}+v_{s} & p(y \mid x)=\prod_{s=1}^{N} p\left(y_{s} \mid x_{s}\right) \\
v_{s} \sim \mathcal{N}\left(0, R_{s}\right) & C=\operatorname{diag}\left(C_{1}, C_{2}, \ldots, C_{N}\right)
\end{array}
$$

$$
p\left(x_{s} \mid y\right) \sim \mathcal{N}\left(\widehat{x}_{s}, \widehat{P}_{s}\right)
$$

$$
R=\operatorname{diag}\left(R_{1}, R_{2}, \ldots, R_{N}\right)
$$

## Linear Gaussian Systems

$$
p(\mathbf{x})=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right) \quad p(\mathbf{y} \mid \mathbf{x})=\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \boldsymbol{\Sigma}_{y}\right)
$$

Marginal Likelihood:

$$
p(\mathbf{y})=\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \boldsymbol{\mu}_{x}+\mathbf{b}, \boldsymbol{\Sigma}_{y}+\mathbf{A} \boldsymbol{\Sigma}_{x} \mathbf{A}^{T}\right)
$$

Posterior Distribution:

$$
\begin{aligned}
p(\mathbf{x} \mid \mathbf{y}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{x \mid y}, \boldsymbol{\Sigma}_{x \mid y}\right) \\
\boldsymbol{\Sigma}_{x \mid y}^{-1} & =\boldsymbol{\Sigma}_{x}^{-1}+\mathbf{A}^{T} \boldsymbol{\Sigma}_{y}^{-1} \mathbf{A} \\
\boldsymbol{\mu}_{x \mid y} & =\boldsymbol{\Sigma}_{x \mid y}\left[\mathbf{A}^{T} \boldsymbol{\Sigma}_{y}^{-1}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Sigma}_{x}^{-1} \boldsymbol{\mu}_{x}\right]
\end{aligned}
$$

Gaussian BP: Complexity linear, not cubic, in number of nodes

## Belief Propagation (Integral-Product)

BELIEFS: Posterior marginals


$$
\begin{gathered}
\hat{p}_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right) \\
\Gamma(t)
\end{gathered} \longrightarrow_{\substack{\text { neighborhood of node } \mathrm{t} \\
\text { (adiacent nodes) }}}
$$

MESSAGES: Sufficient statistics


## Gaussian Belief Propagation

- The natural, canonical, or information parameterization of a Gaussian distribution arises from quadratic form:

$$
\begin{array}{ll}
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} \\
\mathcal{N}(x \mid \vartheta, \Lambda) \propto \exp \left\{-\frac{1}{2} x^{T} \Lambda x+\vartheta^{T} x\right\} & \vartheta=\Sigma^{-1} \mu \\
& \Lambda=\Sigma^{-1}
\end{array}
$$

- Gaussian BP represents messages and marginals as:

$$
m_{t s}\left(x_{s}\right)=\alpha \mathcal{N}^{-1}\left(\vartheta_{t s}, \Lambda_{t s}\right) \quad p\left(x_{s} \mid y\right)=\mathcal{N}^{-1}\left(\vartheta_{s}, \Lambda_{s}\right)
$$

## Gaussian Belief Propagation



- Gaussian BP represents messages and marginals as:

$$
m_{t s}\left(x_{s}\right)=\alpha \mathcal{N}^{-1}\left(\vartheta_{t s}, \Lambda_{t s}\right) \quad p\left(x_{s} \mid y\right)=\mathcal{N}^{-1}\left(\vartheta_{s}, \Lambda_{s}\right)
$$

- Gaussian BP belief updates then have a simple form:

$$
\begin{array}{ll}
p\left(x_{s} \mid y_{s}^{n}\right)=\alpha p\left(y_{s} \mid x_{s}\right) \prod_{t \in N(s)} m_{t s}^{n}\left(x_{s}\right) & \vartheta_{s}^{n}=C_{s}^{T} R_{s}^{-1} y_{s}+\sum_{t \in N(s)} \vartheta_{t s}^{n} \\
p\left(y_{s} \mid x_{s}\right)=\alpha \mathcal{N}^{-1}\left(C_{s}^{T} R_{s}^{-1} y_{s}, C_{s}^{T} R_{s}^{-1} C_{s}\right) & \Lambda_{s}^{n}=C_{s}^{T} R_{s}^{-1} C_{s}+\sum_{t \in N(s)} \Lambda_{t s}^{n}
\end{array}
$$

## Gaussian Belief Propagation

$$
\begin{aligned}
& m_{t s}^{n}\left(x_{s}\right)=\alpha \int_{x_{t}} \psi_{s, t}\left(x_{s}, x_{t}\right) p\left(y_{t} \mid x_{t}\right) \prod_{u \in N(t) \backslash s} m_{u t}^{n-1}\left(x_{t}\right) d x_{t} \\
& \psi_{s, t}\left(x_{s}, x_{t}\right) p\left(y_{t} \mid x_{t}\right) \prod_{u \in N(t) \backslash s} m_{u t}^{n-1}\left(x_{t}\right) \propto \mathcal{N}^{-1}(\bar{\vartheta}, \bar{\Lambda}) \\
& \bar{\vartheta}=\left[\begin{array}{c}
0 \\
C_{t}^{T} R_{t}^{-1} y_{t}+\sum_{u \in N(t) \backslash s} \vartheta_{u t}^{n-1}
\end{array}\right] \bar{\Lambda}=\left[\begin{array}{ll}
J_{s(t)} & J_{t, s} \\
J_{t(s)}+C_{t}^{T} R_{t}^{-1} C_{t}+\sum_{u \in N(t) \backslash s} \Lambda_{u t}^{n-1}
\end{array}\right]
\end{aligned}
$$

## Gaussian Belief Propagation



Matrix Inversion Lemma: $\quad M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$

$$
\begin{aligned}
M^{-1} & =\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
\end{aligned}
$$

## Gaussian Belief Propagation

$$
\begin{aligned}
& m_{t s}^{n}\left(x_{s}\right)=\alpha \int_{x_{t}} \psi_{s, t}\left(x_{s}, x_{t}\right) p\left(y_{t} \mid x_{t}\right) \prod_{u \in N(t) \backslash s} m_{u t}^{n-1}\left(x_{t}\right) d x_{t} \\
& \vartheta_{t s}^{n}=-J_{s, t}\left(J_{t(s)}+C_{t}^{T} R_{t}^{-1} C_{t}+\sum_{u \in N(t) \backslash s} \Lambda_{u t}^{n-1}\right)^{-1}\left(C_{t}^{T} R_{t}^{-1} y_{t}+\sum_{u \in N(t) \backslash s} \vartheta_{u t}^{n-1}\right) \\
& \Lambda_{t s}^{n}=J_{s(t)}-J_{s, t}\left(J_{t(s)}+C_{t}^{T} R_{t}^{-1} C_{t}+\sum_{u \in N(t) \backslash s} \Lambda_{u t}^{n-1}\right)^{-1} J_{t, s}
\end{aligned}
$$

## State Space Models



Like HMM, but over continuous variables...
Plant Equations:

$$
\begin{aligned}
x_{t+1} & =A x_{t}+G w_{t} \\
y_{t} & =C x_{t}+v_{t}
\end{aligned}
$$

## State Space Models



Dynamics: $x_{t+1}=A x_{t}+G w_{t}$

$$
w_{t} \sim N(0, Q) \quad \begin{gathered}
\text { Process } \\
\text { Noise }
\end{gathered}
$$

Same as, $p\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1} \mid A x_{t}, G Q G^{T}\right)$

## State Space Models



Measurement: $\quad y_{t}=C x_{t}+v_{t}$

$$
v_{t} \sim N(0, R)^{\text {a }} \quad \text { Noise }
$$

Same as, $p\left(y_{t+1} \mid x_{t+1}\right)=N\left(y_{t+1} \mid C x_{t+1}, R\right)$
This is known as the Linear Gaussian assumption.

## Example: Target Tracking

$$
\begin{gathered}
\text { Target State } \\
x_{t}=\binom{p_{t}^{4}}{\dot{p}_{t}^{4}} \quad \text { Velocity }
\end{gathered} \quad \begin{aligned}
& \text { Measurement } \\
& y_{t}=p_{t}
\end{aligned}
$$

- Constant velocity dynamics (1st order diffeq)

$$
\begin{array}{r}
p_{t}=p_{t-1}+\dot{p}_{t} \quad \quad \dot{p}_{t}=\dot{p}_{t-1} \\
x_{t}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) x_{t-1}+w_{t-1}
\end{array}
$$

- Lower-dimensional measurement

$$
y_{t}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) x_{t}+v_{t}
$$

## Example: Target Tracking



## Correspondence With Factor Analysis

Factor Analysis:


$$
x_{t} \sim N(0, I)
$$

$$
y_{t} \mid x_{t} \sim N\left(F x_{t}, \Phi\right)
$$

State Space:


$$
\begin{aligned}
x_{t} \mid x_{t-1} & \sim N\left(A x_{t-1}, G Q G^{T}\right) \\
y_{t} \mid x_{t} & \sim N\left(C x_{t}, R\right)
\end{aligned}
$$

## Inference for State Space Model

- Broken into 2 parts
- Filtering (Forward pass):

$$
p\left(x_{t} \mid y_{0}, y_{1}, \ldots, y_{t}\right)
$$

- Smoothing (Backward pass)

$$
p\left(x_{t} \mid y_{0}, y_{1}, \ldots, y_{T}\right)
$$

- Why "filter"?
- From signal processing
- "Filters" out system noise to produce an estimate


## Conditional Moments

- Everything is Gaussian

$$
p\left(x_{t} \mid y_{0}, \ldots, y_{t}\right)=N\left(x_{t} \mid \hat{x}_{t \mid t}, P_{t \mid t}\right)
$$

- Can focus on mean / variance computations , Conditional Mean

$$
\begin{aligned}
& \hat{x}_{t \mid t} \triangleq E\left[x_{t} \mid y_{0}, \ldots, y_{t}\right] \\
& P_{t \mid t} \triangleq E\left[\left(x_{t}-\hat{x}_{t \mid t}\right)\left(x_{t}-\hat{x}_{t \mid t}\right)^{T} \mid y_{0}, \ldots, y_{t}\right] \\
& \text { Conditional Variance }
\end{aligned}
$$

## Kalman Filter

## Two recursive updates:

1) Time update:

- best guess before seeing measurement)

$$
P\left(x_{t} \mid y_{0}, \ldots, y_{t}\right) \rightarrow P\left(x_{t+1} \mid y_{0}, \ldots, y_{t}\right)
$$

2) Measurement Update:

- after measurement

$$
P\left(x_{t+1} \mid y_{0}, \ldots, y_{t}\right) \rightarrow P\left(x_{t+1} \mid y_{0}, \ldots, y_{t+1}\right)
$$

## Kalman Filter

1) Time update:

$$
\begin{aligned}
\hat{x}_{t+1 \mid t} & =A \hat{x}_{t \mid t} \\
P_{t+1 \mid t} & =A P_{t \mid t} A^{T}+G Q G^{T}
\end{aligned}
$$

2) Measurement Update:

$$
\begin{aligned}
K_{t+1} & \triangleq P_{t+1 \mid t} C^{T}\left(C P_{t+1 \mid t} C^{T}+R\right)^{-1} \\
\hat{x}_{t+1 \mid t+1} & =\hat{x}_{t+1 \mid t}+K_{t+1}\left(y_{t+1}-C \hat{x}_{t+1 \mid t}\right) \\
P_{t+1 \mid t+1} & =P_{t+1 \mid t}-K_{t+1} C P_{t+1 \mid t}
\end{aligned}
$$

## Kalman Filter: Time Update

Recall that,

$$
\hat{x}_{t+1 \mid t} \triangleq E\left[x_{t+1} \mid y_{0}, \ldots, y_{t}\right]
$$

so the conditional mean recursion is,

$$
\begin{aligned}
\hat{x}_{t+1} & =E\left[A x_{t}+G w_{t}\right] \\
& =A \hat{x}_{t \mid t} \quad \substack{\text { Zero Noise } \\
\text { In Expectation }}
\end{aligned}
$$

Similar for covariance,

$$
\begin{aligned}
& P_{t+1 \mid t}=E\left[\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)^{T} \mid y_{0}, \ldots, y_{t}\right] \\
& =E\left[\left(A x_{t}+G w_{t}-A \hat{x}_{t \mid t}\right)\left(A x_{t}+G w_{t}-A \hat{x}_{t \mid t}\right)^{T} \mid y_{0}, \ldots, y_{t}\right] \\
& =A P_{t \mid t} A^{T}+G Q G^{T}
\end{aligned}
$$

## Gaussian Conditionals



For any joint multivariate Gaussian distribution, all conditional distributions are Gaussians

## Gaussian Conditionals

## Gaussian joint distributic $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$

Inverse Covariance
$\mathbf{x}=\binom{\mathbf{x}_{a}}{\mathbf{x}_{b}}, \quad \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}\begin{array}{|c|}\boldsymbol{\Lambda}_{a a} \\ \boldsymbol{\Lambda}_{b a}\end{array} & \boldsymbol{\Lambda}_{a b} \\ \boldsymbol{\Lambda}_{b b}\end{array}\right) \equiv \boldsymbol{\Sigma}^{-1}$

Conditional
Covariance
Conditional is Gaussian with parameters,

$$
\begin{aligned}
p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{a \mid b}, \boldsymbol{\Lambda}_{a a}^{-1}\right)^{\wedge} \\
\boldsymbol{\mu}_{a \mid b} & =\boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a a}^{-1} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)
\end{aligned}
$$

## Kalman Filter: Measurement Update

Form the joint over $x_{t+1}, y_{t+1}$ as,

$$
\frac{p\left(x_{t+1} \mid y_{0}, \ldots, y_{t}\right)}{p} \frac{\left.p y_{t+1} \mid x_{t+1}\right)}{\text { Time Update }}
$$

Compute conditional,

$$
\begin{aligned}
p\left(x_{t+1}\right. & \left.\mid y_{0}, \ldots, y_{t+1}\right) \\
& =N\left(x_{t+1} \mid \hat{x}_{t+1 \mid t+1}, P_{t+1 \mid t+1}\right)
\end{aligned}
$$

## Kalman Filter: Measurement Update

$$
\begin{aligned}
K_{t+1} & \triangleq P_{t+1 \mid t} C^{T}\left(C P_{t+1 \mid t} C^{T}+R\right)^{-1} \\
\hat{x}_{t+1 \mid t+1} & =\hat{x}_{t+1 \mid t}+K_{t+1}\left(y_{t+1}-C \hat{x}_{t+1 \mid t}\right) \\
P_{t+1 \mid t+1} & =P_{t+1 \mid t}-K_{t+1} C P_{t+1 \mid t}
\end{aligned}
$$

- Quantity $K_{t+1}$ called the Kalman Gain Matrix
- Because it multiplies observation, i.e. produces "gain"
- Update takes linear combination of predicted mean and observation, weighted by predicted covariance


## Kalman Filter

Consider the covariance updates,

$$
\begin{aligned}
P_{t+1 \mid t} & =A P_{t \mid t} A^{T}+G Q G^{T} \\
P_{t+1 \mid t+1} & =P_{t+1 \mid t}-K_{t+1} C P_{t+1 \mid t}
\end{aligned}
$$

- Independent of observed measurements
- This is a property of Gaussians in general
- Only depend on process and measurement noise
- Can be computed offline


## Kalman Filter



## Information Filter

- Recall Gaussian has equivalent canonical parameterization
- Sometimes called Information form

Inverse Covariance

$$
\begin{aligned}
S_{t+1 \mid t} & =P_{t+1 \mid t}^{-1} & \hat{\xi}_{t+1 \mid t} & =P_{t+1 \mid t}^{-1} \hat{x}_{t+1 \mid t} \\
S_{t+1 \mid t+1} & =P_{t+1 \mid t+1}^{-1} & \hat{\xi}_{t+1 \mid t+1} & =P_{t+1 \mid t+1}^{-1} \hat{x}_{t+1 \mid t+1}
\end{aligned}
$$

- Recursive updates follow definitions
- Matrix condition is reciprocal of condition of its inverse


## Information Filter

- Define $H \triangleq G Q G^{T}$, focus on precision update

$$
\begin{aligned}
S_{t+1 \mid t} & =P_{t+1 \mid t}^{-1} \\
& =\left(A P_{t \mid t} A^{T}+H\right)^{-1} \longrightarrow \begin{array}{c}
\text { Matrix Inversion } \\
\text { Lemma }
\end{array} \\
& =H^{-1}-H^{-1} A\left(S_{t \mid t}+A^{T} H^{-1} A\right)^{-1} A^{T} H^{-1}
\end{aligned}
$$

- Measurement update

$$
S_{t+1 \mid t+1}=C^{T} R^{-1} C+S_{t+1 \mid t}
$$

- Wait a minute...this looks familiar...


## Gaussian Belief Propagation

## Message Update:

$$
\begin{aligned}
& m_{t s}^{n}\left(x_{s}\right)=\alpha \mathcal{N}^{-1}\left(\vartheta_{t s}^{n}, \Lambda_{t s}^{n}\right) \\
& \Lambda_{t s}^{n}=J_{s(t)}-J_{s, t}\left(J_{t(s)}+C_{t}^{T} R_{t}^{-1} C_{t}+\sum_{u \in N(t) \backslash s} \Lambda_{u t}^{n-1}\right)^{-1} J_{t, s}
\end{aligned}
$$

## Belief Update:

$$
\begin{aligned}
& p\left(x_{s} \mid y\right)=\mathcal{N}^{-1}\left(\vartheta_{s}, \Lambda_{s}\right) \\
& \Lambda_{s}^{n}=C_{s}^{T} R_{s}^{-1} C_{s}+\sum_{t \in N(s)} \Lambda_{t s}^{n}
\end{aligned}
$$



## Gaussian BP => Kalman Filter

Time Update:

$$
\begin{aligned}
& S_{t+1 \mid t}=H^{-1}-H^{-1} A\left(S_{t \mid t}+A^{T} H^{-1} A\right)^{-1} A^{T} H^{-1} \\
& \Lambda_{t s}^{n}=J_{s(t)}-J_{s, t}\left(J_{t(s)}+C_{t}^{T} R_{t}^{-1} C_{t}+\sum_{u \in N(t) \backslash s} \Lambda_{u t}^{n-1}\right)^{-1} J_{t, s}
\end{aligned}
$$

Measurement Update:

$$
\begin{aligned}
S_{t+1 \mid t+1} & =C^{T} R^{-1} C+S_{t+1 \mid t} \\
\Lambda_{s}^{n} & =C_{s}^{T} R_{s}^{-1} C_{s}+\sum_{t \in N(s)} \Lambda_{t s}^{n}
\end{aligned}
$$

## Smoother

- Combines forward and backward probabilities

$$
\begin{aligned}
& p\left(x_{t} \mid y_{1}^{\prime}, \ldots, y_{t}\right) p\left(x_{t}^{\prime} \mid y_{t+1}, \ldots, y_{T}\right) \\
& \propto p\left(x_{t} \mid y_{1}, \ldots, y_{T}\right)
\end{aligned}
$$

to produce full marginal posterior.

- Similar to inference on an HMM (forwardbackward algorithm)


## Smoother

- Can we just invert the dynamics,

$$
x_{t}=A^{-1} x_{t+1}-A^{-1} G w_{t}
$$

and run Kalman filter backwards?


- No, $w_{t}$ is no longer independent of the "past" state (e.g. $x_{t+1}, \ldots, x_{T}$ )


## Unconditional Distribution

- Marginal distributions of a Gaussian are Gaussian

$$
p\left(x_{t}\right)=N\left(0, \Sigma_{t}\right)
$$

From zero-mean
noise assumption
Where,

$$
\Sigma_{t}=A \Sigma_{t-1} A^{T}+G Q G^{T}
$$

- Covariance computed recursively
- Does not depend on means


## Smoother

Given the unconditional marginal,

$$
\begin{gathered}
p\left(x_{t}\right)=N\left(0, \Sigma_{t}\right) \\
\Sigma_{t+1}=A \Sigma_{t} A^{T}+G Q G^{T}
\end{gathered}
$$

- Form the unconditional over $x_{t}, x_{t+1}$
- Solve for reverse dynamics

$$
x_{t}=\widetilde{A} x_{t+1}+\widetilde{G} \widetilde{w}_{t+1}
$$

- Run filter backwards with new dynamics


## Smoother



## Smoother

Forward Conditional Backward Conditional

$$
N\left(x_{t} \mid \hat{x}_{t \mid t}, P_{t \mid t}\right) N\left(x_{t} \mid \hat{\mu}_{t \mid t}, S_{t \mid t}\right)
$$

- Gaussian closed under multiplication
- Multiply to produce full "smoothed" marginal

$$
N\left(x_{t} \mid \hat{x}_{t}, P_{t}\right)
$$

- Kalman filter + smoother equivalent to Gaussian BP


## Summary

- Kalman filter is optimal filter for Linear Gaussian State Space model
- Smoother provides full marginal inference
- Gaussian BP produces equivalent algorithm
- Correspondence clearly shown in Information form of the filter

