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Undirected Gaussian Graphical Models 
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•  Undirected Markov properties correspond 
to sparse inverse covariance matrices 

•  For connected Gaussian MRFs, covariance 
is usually dense (all pairs correlated) 

•  Number of parameters, and thus learning 
complexity, reduced from O(N2

) to O(N)



Duality in Gaussian Distributions 

Marginals: 

Conditionals: 
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Ø Moment parameters: 
trivial marginalization, 
conditioning requires 
computation 

Ø Canonical parameters: 
trivial conditioning, 
marginalization requires 
computation 



Linear Gaussian Systems 

Marginal Likelihood: 

Posterior Distribution: 
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Directed Gaussian Graphical Models 

•  Sequence of locally normalized conditional 
distributions of each D-dimensional node: 

As
xs

•  Linear state space model is a widely used special case: 

  

State Space Models

   Dynamics:

Same as,

Process
Noise

xt+1 ⇠ N (Atxt, Qt)

yt ⇠ N (Ctxt, Rt)

•  Dimensionality reduction:  State smaller than observed vectors 
•  Rich temporal dynamics:  State larger than observed vectors 
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Probabilistic PCA & Factor Analysis 

C. Bishop, Pattern Recognition & Machine Learning 
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•  Both Models:   Data is a linear function of low-dimensional 
latent coordinates, plus Gaussian noise 

•  Factor analysis:       is a general diagonal matrix 
•  Probabilistic PCA:                    is a multiple of identity matrix 
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low rank covariance 
parameterization 



Expectation Maximization (EM) 

•  Initialization: Randomly select starting parameters 
•  E-Step: Given parameters, find posterior of hidden data 

 
 

•  M-Step: Given posterior distributions, find likely parameters 
 
 

•  Iteration: Alternate E-step & M-step until convergence 

✓(0)

q(t) = argmax

q
L(q, ✓(t�1)

)

✓(t) = argmax

✓
L(q(t), ✓)

ln p(x | ✓) = ln

✓Z

z
p(x, z | ✓) dz

◆

ln p(x | ✓) �
Z

z
q(z) ln p(x, z | ✓) dz �

Z

z
q(z) ln q(z) dz , L(q, ✓)



EM: Expectation Step 

q(t) = argmax
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•  General solution, for any probabilistic model: 

•  For factor analysis and probabilistic PCA these are Gaussian: 

q

(t)(z) = p(z | x, ✓(t�1)) posterior distribution 
given current parameters 
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PCA versus Probabilistic PCA 

Standard PCA 
(orthogonal projection) 

Probabilistic PCA 
(shrunk towards mean) 

•  Maximum likelihood estimates of probabilistic PCA parameters 
are equal to the classic PCA eigenvector solution 

•  For classical PCA, optimal embedding is orthogonal projection 
•  For PPCA, latent coordinates are biased towards mean (zero) 

p(zi | xi,W, µ, ) = N (zi | ⌃iW
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EM: Maximization Step 

•  Unlike E-step, no simplified general solution 
•  For factor analysis and probabilistic PCA, these reduce 

to weighted linear regression problems 
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EM Algorithm for Probabilistic PCA 

C. Bishop, Pattern Recognition & Machine Learning 
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True Principal Components 



EM Algorithm for Probabilistic PCA 
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(b)

!2 0 2

!2

0

2

E-Step #1 (Projection) 



EM Algorithm for Probabilistic PCA 
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M-Step #1 (Regression) 



EM Algorithm for Probabilistic PCA 
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E-Step #2 (Projection) 



EM Algorithm for Probabilistic PCA 
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M-Step #2 (Regression) 



EM Algorithm for Probabilistic PCA 

C. Bishop, Pattern Recognition & Machine Learning 
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EM for Linear State Space Models 

  

Correspondence With
Factor Analysis

Factor Analysis: State Space:

Factor Analysis or PPCA Linear-Gaussian State Space Model 

E-Step: 
Ø  Independently find Gaussian 

posteriors for each observation 

M-Step: 

Ø  Weighted linear regression to 
map embeddings to observations 

Ø  Determine posterior marginals via 
Gaussian BP (Kalman smoother) 

E-Step: 

M-Step: 
Ø  Observation regression identical 

to factor analysis M-step 
Ø  Separate dynamics regression 



Linear State Space Models 

•  States & observations jointly Gaussian: 
Ø  All marginals & conditionals Gaussian 
Ø  Linear transformations remain Gaussian 



Simple Linear Dynamics 

Time Time 

Brownian Motion Constant Velocity 



Constant Velocity Tracking 
Kalman Filter Kalman Smoother 

(K. Murphy, 1998) 



Nonlinear State Space Models 

•  State dynamics and measurements given by 
potentially complex nonlinear functions 

•  Noise sampled from non-Gaussian distributions 



Examples of Nonlinear Models 

Dynamics implicitly determined 
by geophysical simulations 

Observed image is a complex 
function of the 3D pose, other 

nearby objects & clutter, lighting 
conditions, camera calibration, etc. 



Nonlinear Filtering 

Prediction: 

Update: 



Approximate Nonlinear Filters 

•  No direct represention of continuous functions, 
or closed form for the prediction integral 

•  Big literature on approximate filtering: 
Ø  Histogram filters 
Ø  Extended & unscented Kalman filters 
Ø  Particle filters 
Ø  … 



Nonlinear Filtering Taxonomy 
Histogram Filter: 
Ø Evaluate on fixed discretization grid 
Ø Only feasible in low dimensions 
Ø Expensive or inaccurate 

Extended/Unscented Kalman Filter: 
Ø Approximate posterior as Gaussian 

via linearization, quadrature, … 
Ø Inaccurate for multimodal  

posterior distributions 

Particle Filter: 
Ø Dynamically evaluate states 

with highest probability 
Ø Monte Carlo approximation 



Monte Carlo Methods 

•  Unbiased for any sample size 
•  Variance inversely proportional to sample size 

(and independent of dimension of space) 
•  Weak law of large numbers 
•  Strong law of large numbers 
•  Problem:  Drawing samples from complex distributions… 

Provably good if L sufficiently large: 

Alternatives for hard problems: 
•  Importance sampling 
•  Markov chain Monte Carlo (MCMC) 
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Estimation of expected model properties via simulation 


