
Probabilistic
Graphical Models

Brown University CSCI 2950-P, Spring 2013
Prof. Erik Sudderth

Lecture 14:
Monte Carlo Methods,

Rejection Sampling, Importance Sampling

Monte Carlo Methods

•  Unbiased for any sample size
•  Variance inversely proportional to sample size

(and independent of dimension of space)
•  Laws of large numbers, central limit theorem, …

Provably good if L sufficiently large:

PROBLEM: Sampling from complex distributions
•  Exact sampling: Closed form and iterative methods
•  Importance sampling
•  Sequential importance sampling & particle filters
•  Markov chain Monte Carlo (MCMC)

Estimation of expected model properties via simulation

E[f] =
Z

f(x)p(x) dx ⇡ 1

L

LX

`=1

f(x(`)) x

(`) ⇠ p(x)

Monte Carlo Estimators

•  Expectation estimated from empirical distribution of L samples:

•  The Dirac delta function is only well-defined within integrals:

•  For any L this estimator, a random variable, is unbiased:

µ , E[f] =
Z

f(x)p(x) dx ⇡ 1

L

LX

`=1

f(x(`)) , f̂L

p̂

L

(x) =
1

L

LX

`=1

�

x

(`)(x) x

(`) ⇠ p(x)

Z

X
�

x̄

(x)f(x) dx = f(x̄)
Z

A

�

x̄

(x) dx = I(x̄ 2 A)

E[f̂L] =
1

L

LX

`=1

E[f(x(`))] = E[f]

Monte Carlo Asymptotics

•  Variance is inversely proportional to the number of samples:

•  Even if true variance is infinite, have laws of large numbers:

lim

L!1
Pr(| ˆfL � µ| < ✏) = 1, for any ✏ > 0

Pr
⇣

lim
L!1

f̂L = µ
⌘
= 1

Weak
Law

Strong
Law

•  If the true variance is finite, also have central limit theorem:
p
L
⇣
f̂L � µ

⌘
=)
L!1

N (0,Var[f])

µ , E[f] =
Z

f(x)p(x) dx ⇡ 1

L

LX

`=1

f(x(`)) , f̂L

Var[f̂L] =
1

L

Var[f] =
1

L

E[(f(x)� µ)2]

Random Number Generation

p(y)

h(y)

y0

1

u(`) ⇠ Unif(0, 1)

Cumulative Distribution:

Applying Inverse CDF:

•  Chaotic dynamical systems are used to generate sequences of
pseudo-random numbers approximately distributed uniformly on [0,1]

•  Simplest examples are linear congruential generators,
but try to use more sophisticated methods!

Among other conditions, c and m should be relatively prime
ū(`+1)

= (aū(`)
+ c) mod m

u(`) =
1

m
ū(`)

h(x) =

Z
x

�1
p(z) dz

x

(`) = h

�1(u(`))

x

(`) ⇠ P (x)

Rejection Sampling
cQ*(x)

x

P*(x) cQ*(x)

x

u

x

P*(x)
Target Distribution:

p(x) =
1

Z

p

⇤(x)

Proposal Distribution:

q(x) =
1

Z

0 q
⇤(x)

•  Can sample by drawing uniformly
from region under a density function:

cQ*(x)

x

P*(x) cQ*(x)

x

u

x

P*(x)
p(x, u) = p(x)p(u | x) = p(x)Unif(u | 0, p⇤(x))
•  A rejection sampler requires an

envelope proposal distribution:
cq

⇤
(x) > p

⇤
(x) for all x

•  The rejection sampling algorithm is:

Ø Accept this sample if
Ø Otherwise, reject and

repeat until a sample is accepted

x ⇠ q(x), u ⇠ Unif(0, 1)

u <

p

⇤(x)

cq

⇤(x)

Always produces a
valid sample, but
running time is a
random variable.
The constant c
must be known!

High-Dimensional Rejection Sampling

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

p(x) = N (x | 0,�2
P IN)

Target Distribution:

Proposal Distribution:

q(x) = N (x | 0,�2
QIN)

•  Consider N-dimensional multivariate Gaussian distributions:

�Q > �P

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

•  The tightest envelope matches densities at the origin:

•  Even small mismatch can lead to tiny acceptance probabilities:

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

For normalized densities,
acceptance probability is c�1

Importance Sampling
Target Distribution:

p(x) =
1

Z

p

⇤(x)

Proposal Distribution:

q(x) =
1

Z

0 q
⇤(x)

E[f] =
Z

f(x)p(x) dx =

Z
f(x)w(x)q(x) dx

q(x) > 0 where p(x) > 0

w(x) =
p(x)

q(x)

f̂L =
1

L

LX

`=1

f(x(`))w(x(`))

•  Estimate target moments via importance weighted samples:

x

(`) ⇠ q(x)

•  Alternative estimator when normalization constants unknown:

E[f] =
Z

f(x)p(x) dx =
Z

0

Z

Z
f(x)w⇤(x)q(x) dx

w

⇤(x) =
p

⇤(x)

q

⇤(x)

f̂L =
LX

`=1

w`f(x
(`)) w` =

w

⇤(x(`))
PL

m=1 w
⇤(x(m))

x

(`) ⇠ q(x)

Optimal Proposal Distributions
Target Distribution:

p(x) =
1

Z

p

⇤(x)

Proposal Distribution:

q(x) =
1

Z

0 q
⇤(x)

q(x) > 0 where p(x) > 0

f̂L =
1

L

LX

`=1

f(x(`))w(x(`))

•  This estimator is always unbiased:
•  We can choose proposal distribution to minimize variance:

x

(`) ⇠ q(x) w(x) =
p(x)

q(x)

Varq[f(x)w(x)] = Eq[f
2(x)w2(x)]� µ

2

Eq[f̂L] = Ep[f] , µ

Eq[f
2(x)w2(x)] �

⇣
Eq[|f(x)|w(x)]

⌘2
=

⇣Z
|f(x)|p(x) dx

⌘2 Jensen’s
Inequality

•  Applying similar analysis with unknown normalization constants:
•  The importance estimator is asymptotically unbiased
•  The optimal, minimum variance proposal distribution is

q̂

⇤(x) = |f(x)|p(x) q̂(x) / |f(x)|p(x)

Rare Event Simulation

INTRODUCTION 11

bound

Eq(x)(f 2(x)w2(x)) ≥
(

Eq(x)(| f (x)|w(x))
)2 =

(
∫

| f (x)|p(x) dx
)2

This lower bound is attained when we adopt the following optimal importance distribution

q!(x) = | f (x)|p(x)
∫

| f (x)|p(x) dx

The optimal proposal is not very useful in the sense that it is not easy to sample from
| f (x)|p(x). However, it tells us that high sampling efficiency is achieved when we focus
on sampling from p(x) in the important regions where | f (x)|p(x) is relatively large; hence
the name importance sampling.

This result implies that importance sampling estimates can be super-efficient. That is,
for a a given function f (x), it is possible to find a distribution q(x) that yields an estimate
with a lower variance than when using a perfect Monte Carlo method, i.e. with q(x) = p(x).
This property is often exploited to evaluate the probability of rare events in communication
networks (Smith, Shafi, & Gao, 1997). There the quantity of interest is a tail probability
(bit error rate) and hence f (x) = IE (x) where IE (x) = 1 if x ∈ E and 0 otherwise (see
figure 3). One could estimate the bit error rate more efficiently by sampling according to
q(x) ∝ IE (x)p(x) than according to q(x) = p(x). That is, it is wasteful to propose candidates
in regions of no utility. In many applications, the aim is usually different in the sense that

Figure 3. Importance sampling: one should place more importance on sampling from the state space regions that
matter. In this particular example one is interested in computing a tail probability of error (detecting infrequent
abnormalities).

INTRODUCTION 11

bound

Eq(x)(f 2(x)w2(x)) ≥
(

Eq(x)(| f (x)|w(x))
)2 =

(
∫

| f (x)|p(x) dx
)2

This lower bound is attained when we adopt the following optimal importance distribution

q!(x) = | f (x)|p(x)
∫

| f (x)|p(x) dx

The optimal proposal is not very useful in the sense that it is not easy to sample from
| f (x)|p(x). However, it tells us that high sampling efficiency is achieved when we focus
on sampling from p(x) in the important regions where | f (x)|p(x) is relatively large; hence
the name importance sampling.

This result implies that importance sampling estimates can be super-efficient. That is,
for a a given function f (x), it is possible to find a distribution q(x) that yields an estimate
with a lower variance than when using a perfect Monte Carlo method, i.e. with q(x) = p(x).
This property is often exploited to evaluate the probability of rare events in communication
networks (Smith, Shafi, & Gao, 1997). There the quantity of interest is a tail probability
(bit error rate) and hence f (x) = IE (x) where IE (x) = 1 if x ∈ E and 0 otherwise (see
figure 3). One could estimate the bit error rate more efficiently by sampling according to
q(x) ∝ IE (x)p(x) than according to q(x) = p(x). That is, it is wasteful to propose candidates
in regions of no utility. In many applications, the aim is usually different in the sense that

Figure 3. Importance sampling: one should place more importance on sampling from the state space regions that
matter. In this particular example one is interested in computing a tail probability of error (detecting infrequent
abnormalities).

x

(`) ⇠ p(x)êL =
1

L

LX

`=1

IE(x(`))
Standard Monte Carlo:

Simulate usual system execution, and count the number of “extreme” events.
But what if such events are very rare?

Importance Sampling:

w

⇤(x) =
p

⇤(x)

q

⇤(x)

w` =
w

⇤(x(`))
PL

m=1 w
⇤(x(m))

x

(`) ⇠ q(x)
êL =

LX

`=1

w`IE(x(`))

Bias simulations towards extreme events, but
use importance weights to correct probabilities.

Selecting Proposal Distributions

-7.2

-7

-6.8

-6.6

-6.4

-6.2

10 100 1000 10000 100000 1000000

-7.2

-7

-6.8

-6.6

-6.4

-6.2

10 100 1000 10000 100000 1000000

•  For a toy one-dimensional, heavy-tailed target distribution:

Gaussian Proposal Cauchy (Student’s-t) Proposal

Empirical variance of weights may not predict estimator variance
•  Always (asymptotically) unbiased, but variance of estimator

can be enormous unless weight function bounded above:

Varq[f̂L] =
1

L

Varq[f(x)w(x)] w(x) =
p(x)

q(x)
Eq[f̂L] = Ep[f]

Selecting Proposal Distributions

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

Target Distribution Good Proposal Poor Proposal

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

Sec. 2.4. Monte Carlo Methods 85

the poorly matched proposal distribution of Fig. 2.17(e) causes many samples to have
negligible weight, greatly reducing the effective sample size. Heavy–tailed proposal dis-
tributions, which are more dispersed than the target density, typically provide greater
robustness [107, 192]. For high–dimensional problems, however, designing good propos-
als is extremely challenging, since even minor discrepancies can produce widely varying
importance weights. In graphical models, importance sampling is thus typically used
as a building block within more sophisticated Monte Carlo methods.

! 2.4.2 Kernel Density Estimation

In some applications of Monte Carlo methods, an explicit estimate p̂(x) of the target
density p(x) is desired, rather than a summary statistic as in eq. (2.138). Nonparametric
density estimators avoid choosing a particular form for p̂(x), and allow the complexity
of the estimated density to grow as more samples are observed. Given L independent
samples {x(!)}L

!=1, the corresponding kernel or Parzen window density estimate [230,
263] can be written as follows:

p̂(x) =
L∑

!=1

w(!)N (x; x(!), Λ) (2.142)

This estimator uses a Gaussian kernel function to smooth the raw sample set, intuitively
placing more probability mass in regions with many samples. Other kernel functions
may also be considered [263], but we focus on the Gaussian case. If these samples are
drawn from the target density p(x), the weights are set uniformly to w(!) = 1/L. More
generally, they could come from an importance sampling scheme [220] as in eq. (2.141).

The kernel density estimate of eq. (2.142) depends on the bandwidth or covariance
Λ of the Gaussian kernel function. There is an extensive literature on methods for
automatic bandwidth selection [263]. For example, the simple “rule of thumb” method
combines a robust covariance estimate with an asymptotic formula which assumes the
target density is Gaussian. While fast to compute, it often oversmooths multimodal
distributions. In such cases, more sophisticated cross–validation schemes can improve
performance [263]. Fig. 2.17 illustrates kernel density estimates constructed from three
different proposal distributions, with bandwidth automatically selected via likelihood
cross–validation. Note that inaccurate importance densities produce less reliable density
estimators (compare Fig. 2.17(d) and Fig. 2.17(f)).

! 2.4.3 Gibbs Sampling

We now describe a family of iterative, Markov chain Monte Carlo (MCMC) methods
which draw samples from an otherwise intractable target density p(x). Starting from
some initial global configuration x(0) ∈ X , subsequent states are determined via a first–
order Markov process:

x(t) ∼ q(x | x(t−1)) t = 1, 2, . . . (2.143)

Kernel or Parzen window estimators
interpolate for nonparametric

density prediction

