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Monte Carlo Methods
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Estimation of expected model properties via simulation

Provably good if L sufficiently large:

« Unbiased for any sample size

 Variance inversely proportional to sample size
(and independent of dimension of space)

« Laws of large numbers, central limit theorem, ...

PROBLEM: Sampling from complex distributions

« Exact sampling: Closed form and iterative methods
 Importance sampling

« Sequential importance sampling & particle filters

« Markov chain Monte Carlo (MCMC)



Monte Carlo Estimators
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« EXxpectation estimated from empirical distribution of L samples:
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* The Dirac delta function is only well-defined within integrals:
[ @@ d=f@ [ o) d-1we a)

X A

* For any L this estimator, a random variable, is unbiased.
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Monte Carlo Asymptotics
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« Variance is inversely proportional to the number of samples:

Varlfy] = 7 Var(f] = TEI(f(2) - 1

* Even if true variance is infinite, have laws of large numbers:

Weak im Pr(’fL _ ,U‘ < e) =1, for any € > 0
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« If the true variance is finite, also have cenfral limit theorem:

VI(fu—n) = N(0,Var|f]



Random Number Generation

Cumulative Distribution:
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Applying Inverse CDF:
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« Chaotic dynamical systems are used to generate sequences of
pseudo-random numbers approximately distributed uniformly on [0,1]
« Simplest examples are linear congruential generators,
but try to use more sophisticated methods! 1
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Among other conditions, ¢ and m should be relatively prime
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Rejection Sampling

(a) B

4

Target Distribution: Proposal Distribution: ' '
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« Can sample by drawing uniformly

from region under a density function:
p(z,u) = p(x)p(u | x) = p(z)Unif(u | 0,p"(z))

* Arejection sampler requires an
envelope proposal distribution:

cq” (x) > p*(x) for all x

* The rejection sampling algorithm is:

. Ahjvays produces a )
L~ Q(x)a U~ Unlf((), 1) valid sample, but
p* (x) running time is a

» Accept this sample if u < cr(z) random variable.
» Otherwise, reject and q The constant ¢
repeat until a sample is accepted must be known!



High-Dimensional Rejection Sampling

 Consider N-dimensional multivariate Gaussian distributions:

Target Distribution:
2
p(z) =N(z | 0,0pIN)
Proposal Distribution:

q(x) = N(z | 0,0‘é]N)
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* The tightest envelope matches densities at the origin:
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* Even small mismatch can lead to tiny acceptance probabilities:

N = 1000 For normalized densities,

72 — 1.01 e —1
op ¢ = exp(10) ~ 20,000 acceptance probability is ¢



Importance Sampling

Target Distribution: Proposal Distribution:
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« Estimate target moments via importance weighted samples:
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. Alternatlve estimator when normalization constants unknown:
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Optimal Proposal Distributions

Target Distribution: Proposal Distribution:
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« This estlmator is always unbiased: E,[fr] = E,[f] = u
* We can choose proposal distribution to minimize variance:
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* Applying similar analysis with unknown normalizatlon constants:
* The importance estimator is asympftotically unbiased
* The optimal, minimum variance proposal distribution is

" (x) = |f(2)|p(z) G(z) o< [f(z)|p()



Rare Event Simulation

L
Standard Monte Carlo: 1 / ),
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Simulate usual system execution, and count the number of “extreme” events.
But what if such events are very rare?

Contours of g(x) a T, (x)p(x)

Contours of p(x)

Importance Sampling:
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*
Bias simulations towards extreme events, but ~ , ,* (z) = p*()
use importance weights to correct probabilities.



Selecting Proposal Distributions

* For a toy one-dimensional, heavy-tailed target distribution:
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Empirical variance of weights may not predict estimator variance
« Always (asymptotically) unbiased, but variance of estimator
can be enormous unless weight function bounded above:
: : 1 p(z)

E,[fu] = Ep[f]  Varg[fL] = ZVarq[f(x)w(ﬂ?)] w(x) = @



Selecting Proposal Distributions

AN

Target Distribution

Good Proposal

Kernel or Parzen window estimators X L (0 (0
interpolate for nonparametric p(x) = Z w N (52, A)
density prediction

Poor Proposal
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