
Probabilistic 
Graphical Models 

Brown University CSCI 2950-P, Spring 2013 
Prof. Erik Sudderth 

Lecture 17: 
Collapsed Gibbs Samplers, 

MCMC Mixing and Diagnostics 

Some slides and figures courtesy Iain Murray’s tutorial, 
Markov Chain Monte Carlo, MLSS 2009 



Review: MCMC Methods Quick review
Construct a biased random walk that explores a target dist.

Markov steps, x(s) ∼ T
(
x(s)←x(s−1)

)

MCMC gives approximate,
correlated samples

EP [f ] ≈ 1

S

S∑

s=1

f(x(s))

Example transitions:

Metropolis–Hastings: T (x′←x) = Q(x′;x) min

(
1,

P (x′) Q(x;x′)

P (x) Q(x′;x)

)

Gibbs sampling: Ti(x
′←x) = P (x′i |xj #=i) δ(x′j #=i − xj #=i)



Combining MCMC Transition Proposals 
Combining operators

A sequence of operators, each with P ! invariant:

x0 ∼ P !(x)

x1 ∼ Ta(x1←x0)

x2 ∼ Tb(x2←x1)

x3 ∼ Tc(x3←x2)

· · ·

P (x1) =
∑

x0
Ta(x1←x0)P !(x0) = P !(x1)

P (x2) =
∑

x1
Tb(x2←x1)P !(x1) = P !(x2)

P (x3) =
∑

x1
Tc(x3←x2)P !(x2) = P !(x3)

· · ·

— Combination TcTbTa leaves P ! invariant

— If they can reach any x, TcTbTa is a valid MCMC operator

— Individually Tc, Tb and Ta need not be ergodic



Gibbs Samplers 
Gibbs sampling

A method with no rejections:

– Initialize x to some value
– Pick each variable in turn or randomly

and resample P (xi|xj !=i)

z1

z2

L

l

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.
b) Metropolis–Hastings ‘proposals’ P (xi|xj !=i)⇒ accept with prob. 1
Apply a series of these operators. Don’t need to check acceptance.
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Gibbs sampling

Alternative explanation:

Chain is currently at x

At equilibrium can assume x ∼ P (x)

Consistent with xj !=i ∼ P (xj !=i), xi ∼ P (xi |xj !=i)

Pretend xi was never sampled and do it again.

This view may be useful later for non-parametric applications



Gibbs Sampling Implementation 
“Routine” Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

P (xi|xj !=i) ∝ P (xi,xj !=i)

=
P (xi,xj !=i)∑
x′i

P (x′i,xj !=i) ← this sum is small and easy

• Continuous conditionals only univariate
⇒ amenable to standard sampling methods.

WinBUGS and OpenBUGS sample graphical models using these tricks

Ø  Inverse CDF sampling 
Ø  Rejection sampling 
Ø  Slice sampling 
Ø  … 



Undirected Graphical Models 
Graph Separation 

Conditional 
Independence 

•  This global Markov property implies a local Markov property: 
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xg are independent conditioned on the variables xh in any separating set:

p(xf , xg | xh) = p(xf | xh) p(xg | xh) if h separates f from g (2.69)

This property generalizes temporal Markov processes, for which the past and future
are independent conditioned on the present. For example, the undirected graph of
Fig. 2.5(a) implies the following conditional independencies, among others:

p(x1, x2, x5 | x3, x4) = p(x1, x2 | x3, x4) p(x5 | x3)

p(x1, x4, x5 | x2, x3) = p(x1 | x2, x3) p(x4 | x2, x3) p(x5 | x3)

An important special case of eq. (2.69) guarantees that conditioned on its immediate
neighbors, the random variable at any node is independent of the rest of the process:

p
(
xi | xV\i

)
= p

(
xi | xΓ(i)

)
(2.70)

As we discuss in later sections, this local Markov property plays an important role in
the design of efficient learning and inference algorithms.

The following theorem, due to Hammersley and Clifford, shows that Markov random
fields are naturally parameterized via potential functions defined on the cliques of the
corresponding undirected graph.

Theorem 2.2.1 (Hammersley-Clifford). Let C denote the set of cliques of an undi-
rected graph G. A probability distribution defined as a normalized product of non-
negative potential functions on those cliques is then always Markov with respect to G:

p(x) ∝
∏

c∈C

ψc(xc) (2.71)

Conversely, any strictly positive density (p(x) > 0 for all x) which is Markov with
respect to G can be represented in this factored form.

Proof. There are a variety of ways to prove this result; see [26, 35, 43] for examples and
further discussion. For a degenerate Markov distribution which cannot be factored as
in eq. (2.71), see Lauritzen [177].

Comparing eq. (2.71) to eq. (2.66), we see that Markov random fields can always be
represented by a factor graph with one hyperedge for each of the graph’s cliques [175,
339]. This representation is also known as the clique hypergraph corresponding to
G [177]. Note that it is possible, but not necessary, to restrict this factorization to
maximal cliques which are not a strict subset of any other clique (see Fig. 2.5(c)).

In practice, Markov properties are used in two complementary ways. If a stochastic
process is known to satisfy certain conditional independencies, the Hammersley–Clifford
Theorem then motivates models parameterized by local sufficient statistics. Conversely,

p(xA, xC | xB) = p(xA | xB)p(xC | xB)

•  Practical benefits of Gibbs sampling algorithm: 
Ø Model and algorithm have same modular structure 
Ø Conditionals can often be evaluated quickly, because they 

depend only on the neighboring nodes 
Ø Exponential families offer further efficiency improvements, 

by caching and recursively updating sufficient statistics 



Gibbs Sampling as Message Passing Sec. 2.3. Variational Methods and Message Passing Algorithms 67

xi

y

xi

y

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) mij(xj) ∝ exp

{
−

∫

Xi

φji(xj , xi) qi(xi) dxi

}

Figure 2.12. Message passing implementation of the naive mean field method. Left: Approximate
marginal densities are determined from the normalized product of the local observation potential with
messages sent from neighboring nodes. Right: Given an updated marginal estimate, new messages are
calculated and transmitted to all neighbors.

Here, γ̄i is a constant chosen to satisfy the marginalization constraint. Due to the
pairwise relationships in the free energy of eq. (2.104), the marginal qi(xi) at node i
depends directly on the corresponding marginals at neighboring nodes Γ(i). Thus, even
though Q is fully factorized, the corresponding mean field solution desirably propagates
information from local potentials throughout the graph.

To implement the mean field method, we must have a tractable representation
for the marginal densities qi(xi), and a corresponding algorithm for updating these
marginals. Consider the following decomposition of the mean field fixed point equation
(eq. (2.106)):

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) i ∈ V (2.107)

mji(xi) ∝ exp

{
−

∫

Xj

φij(xi, xj) qj(xj) dxj

}
j ∈ Γ(i) (2.108)

We interpret mji(xi) as a message sent from j to its neighboring node i. As illustrated
in Fig. 2.12, mean field algorithms alternate between updating a local marginal estimate
(eq. (2.107)), and using this new marginal to calculate an updated message for each
neighbor (eq. (2.108)). If marginals are updated sequentially, the mean field algorithm
is a form of coordinate descent which converges to a local minimum of the free energy
(eq. (2.104)). Parallel updates are also possible, but do not guarantee convergence.

If Xi takes K discrete values, we can represent messages and marginals by K–
dimensional vectors. The integration of eq. (2.108) then becomes a summation, allowing
direct message computation in O(K2) operations. For hidden variables defined on

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

•  Consider a pairwise undirected graphical model: 

qi(xi) /  i(xi)
Y

j2�(i)

mji(xi)

x̂i ⇠ qi(xi)
Draw single sample 
from marginal 

mij(xj) /  ij(x̂i, xj)

Use sample to extract a 
“slice” of pairwise potential 

•  Valid for discrete and continuous variables, although sampling 
step may be harder for continuous models 

•  General factor graphs have similar form 



MCMC Implementation & Application 
How should we run MCMC?

• The samples aren’t independent. Should we thin,
only keep every Kth sample?

• Arbitrary initialization means starting iterations are bad.
Should we discard a “burn-in” period?

• Maybe we should perform multiple runs?

• How do we know if we have run for long enough?



Quick review
Construct a biased random walk that explores a target dist.

Markov steps, x(s) ∼ T
(
x(s)←x(s−1)

)

MCMC gives approximate,
correlated samples

EP [f ] ≈ 1

S

S∑

s=1

f(x(s))

Example transitions:

Metropolis–Hastings: T (x′←x) = Q(x′;x) min

(
1,

P (x′) Q(x;x′)

P (x) Q(x′;x)

)

Gibbs sampling: Ti(x
′←x) = P (x′i |xj #=i) δ(x′j #=i − xj #=i)

Estimating Moments from Samples 

Forming estimates

Approximately independent samples can be obtained by thinning.
However, all the samples can be used.

Use the simple Monte Carlo estimator on MCMC samples. It is:
— consistent
— unbiased if the chain has “burned in”

The correct motivation to thin: if computing f(x(s)) is expensive

Quick review
Construct a biased random walk that explores a target dist.

Markov steps, x(s) ∼ T
(
x(s)←x(s−1)

)

MCMC gives approximate,
correlated samples

EP [f ] ≈ 1

S

S∑

s=1

f(x(s))

Example transitions:

Metropolis–Hastings: T (x′←x) = Q(x′;x) min

(
1,

P (x′) Q(x;x′)

P (x) Q(x′;x)

)

Gibbs sampling: Ti(x
′←x) = P (x′i |xj #=i) δ(x′j #=i − xj #=i)

Thinned Sampling 

All Samples after Burn-in 



Probabilistic Mixture Models 

(a)
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p(xi | zi, µ,⌃) = N (xi | µzi ,⌃zi)

p(zi | ⇡) = Cat(zi | ⇡)
✓k = {µk,⌃k}

⇡ ⇠ Dir(↵)

✓k ⇠ H(�)
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Given mixture weights π(t−1) and cluster parameters {θ(t−1)
k }K

k=1 from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points xi to one of the K clusters by sampling
the indicator variables z = {zi}N

i=1 from the following multinomial distributions:

z(t)
i ∼ 1

Zi

K∑

k=1

π(t−1)
k f(xi | θ(t−1)

k ) δ(zi, k) Zi =
K∑

k=1

π(t−1)
k f(xi | θ(t−1)

k )

2. Sample new mixture weights according to the following Dirichlet distribution:

π(t) ∼ Dir(N1 + α/K, . . . , NK + α/K) Nk =
N∑

i=1

δ(z(t)
i , k)

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

θ(t)
k ∼ p(θk | {xi | z(t)

i = k} ,λ)

When λ defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

Algorithm 2.1. Direct Gibbs sampler for a K component exponential family mixture model, as
defined in Fig. 2.9. Each iteration resamples the cluster assignments for all N observations x = {xi}N

i=1

once, and uses these updated assignments to choose new mixture parameters.

Assuming α is the precision of a symmetric Dirichlet prior, the posterior distribution of
the mixture weights π is also Dirichlet (see eq. (2.45)), with hyperparameters determined
by the number of observations Nk currently assigned to each cluster:

p(π | z, α) = Dir(N1 + α/K, . . . , NK + α/K) Nk =
N∑

i=1

δ(zi, k) (2.152)

Standard methods may then be used to sample new cluster weights [107]. Intuitively,
eq. (2.151) shows that the posterior distribution of the kth cluster’s parameters θk de-
pends only on those observations currently assigned to it. If λ parameterizes a conjugate
prior, Prop. 2.1.4 provides a closed form for this posterior. For example, when clusters
are Gaussian, θk = (µk, Λk) follows a normal–inverse–Wishart density (see Sec. 2.1.4).

Algorithm 2.1 summarizes the Gibbs sampler implied by these conditional distri-
butions. We initialize the mixture parameters according to their priors π(0) ∼ Dir(α),
θ(0)
k ∼ H(λ). At each iteration, O(NK) operations are needed to resample all N in-

dicator variables. Note that because these indicators are mutually independent given
known parameters, the order of this resampling is unimportant. To allow fast parame-
ter resampling, we cache sufficient statistics (as in Thm. 2.1.2) of the data assigned to
each cluster, and recursively update these statistics as assignments change.

In Fig. 2.18, we use the Gibbs sampler of Alg. 2.1 to fit a mixture of K = 4 two–
dimensional Gaussians to N = 300 observations. Each Gaussian cluster is assigned a
weakly informative normal–inverse–Wishart prior, so that the posterior distribution of
θk = (µk, Λk) can be determined as described in Sec. 2.1.4. The columns of Fig. 2.18
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}

(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(!)}L

!=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
!=1 φa(x(!))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

!=1

log ν(x(!)) (2.33)

For each mixture 
component, posterior 
given assigned data 
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Given mixture weights π(t−1) and cluster parameters {θ(t−1)
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k=1 from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points xi to one of the K clusters by sampling
the indicator variables z = {zi}N

i=1 from the following multinomial distributions:

z(t)
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Zi

K∑

k=1

π(t−1)
k f(xi | θ(t−1)

k ) δ(zi, k) Zi =
K∑

k=1

π(t−1)
k f(xi | θ(t−1)

k )

2. Sample new mixture weights according to the following Dirichlet distribution:

π(t) ∼ Dir(N1 + α/K, . . . , NK + α/K) Nk =
N∑

i=1

δ(z(t)
i , k)

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

θ(t)
k ∼ p(θk | {xi | z(t)

i = k} ,λ)

When λ defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

Algorithm 2.1. Direct Gibbs sampler for a K component exponential family mixture model, as
defined in Fig. 2.9. Each iteration resamples the cluster assignments for all N observations x = {xi}N

i=1

once, and uses these updated assignments to choose new mixture parameters.

Assuming α is the precision of a symmetric Dirichlet prior, the posterior distribution of
the mixture weights π is also Dirichlet (see eq. (2.45)), with hyperparameters determined
by the number of observations Nk currently assigned to each cluster:

p(π | z, α) = Dir(N1 + α/K, . . . , NK + α/K) Nk =
N∑

i=1

δ(zi, k) (2.152)

Standard methods may then be used to sample new cluster weights [107]. Intuitively,
eq. (2.151) shows that the posterior distribution of the kth cluster’s parameters θk de-
pends only on those observations currently assigned to it. If λ parameterizes a conjugate
prior, Prop. 2.1.4 provides a closed form for this posterior. For example, when clusters
are Gaussian, θk = (µk, Λk) follows a normal–inverse–Wishart density (see Sec. 2.1.4).

Algorithm 2.1 summarizes the Gibbs sampler implied by these conditional distri-
butions. We initialize the mixture parameters according to their priors π(0) ∼ Dir(α),
θ(0)
k ∼ H(λ). At each iteration, O(NK) operations are needed to resample all N in-

dicator variables. Note that because these indicators are mutually independent given
known parameters, the order of this resampling is unimportant. To allow fast parame-
ter resampling, we cache sufficient statistics (as in Thm. 2.1.2) of the data assigned to
each cluster, and recursively update these statistics as assignments change.

In Fig. 2.18, we use the Gibbs sampler of Alg. 2.1 to fit a mixture of K = 4 two–
dimensional Gaussians to N = 300 observations. Each Gaussian cluster is assigned a
weakly informative normal–inverse–Wishart prior, so that the posterior distribution of
θk = (µk, Λk) can be determined as described in Sec. 2.1.4. The columns of Fig. 2.18

Compared to the EM algorithm for finite mixture models: 
Ø  Form same assignment indicator distributions as in E-step, 

but then draw a single sample from each distribution 
Ø Sample, rather than taking mode, of parameter distributions 



Snapshots of Mixture Gibbs Sampler 
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MCMC: Mixing Diagnostics 
Empirical diagnostics

Rasmussen (2000)

Recommendations

For diagnostics:
Standard software packages like R-CODA

For opinion on thinning, multiple runs, burn in, etc.

Practical Markov chain Monte Carlo
Charles J. Geyer, Statistical Science. 7(4):473–483, 1992.
http://www.jstor.org/stable/2246094

Trace Plot:  Value of some 
“interesting” summary statistic, 

versus MCMC iteration 

Autocovariance:  Empirical 
covariance of values produced 

by MCMC method, versus 
iteration lag (spacing) 

•  Small autocovariances are necessary, 
but not sufficient, to demonstrate 
mixing to the target distribution 

•  Fairly reliable for unimodal posteriors, 
but very misleading more generally 

How should we run MCMC?

• The samples aren’t independent. Should we thin,
only keep every Kth sample?

• Arbitrary initialization means starting iterations are bad.
Should we discard a “burn-in” period?

• Maybe we should perform multiple runs?

• How do we know if we have run for long enough?



MCMC & Computational Resources 

Best practical option: 
A few (> 1) initializations 
for as many iterations as possible 



Rao-Blackwellized Estimation 
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compare two different random initializations. Because we use vague priors, the data
log–likelihood provides a reasonable convergence measure:

log p(x | π, θ1, . . . , θK) =
N∑

i=1

log

(
K∑

k=1

πkf(xi | θk)

)

(2.153)

We see that the Gibbs sampler effectively implements a random walk, which grad-
ually moves towards parameters with higher posterior probability. Although the in-
duced Markov chain may converge quickly (left column), it sometimes remains trapped
in locally optimal regions of the parameter space for many iterations (right column).
Fig. 2.20 compares this behavior to a more sophisticated Rao–Blackwellized sampler
developed in the following section.

! 2.4.4 Rao–Blackwellized Sampling Schemes

In models which impose structured dependencies on multiple latent variables, we can
often construct tractable Monte Carlo procedures which improve on the basic estimator
of eq. (2.139). Let p(x, z) denote a target distribution on two random variables x ∈ X ,
z ∈ Z. Given L independent samples {(x(!), z(!))}L

!=1 from this joint distribution, the
simplest approximation of a statistic f(x, z) equals

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x, z) dx dz (2.154)

≈ 1

L

L∑

!=1

f(x(!), z(!)) = Ep̃[f(x, z)] (2.155)

Suppose, however, that the conditional density p(x | z) has a tractable analytic form.
In this case, we can consider the following alternative estimator:

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x | z) p(z) dx dz (2.156)

=

∫

Z

[∫

X
f(x, z)p(x | z) dx

]
p(z) dz (2.157)

≈ 1

L

L∑

!=1

∫

X
f(x, z(!))p(x | z(!)) dx = Ep̃[Ep[f(x, z) | z]] (2.158)

The estimators of eqs. (2.155) and (2.158) are both unbiased, and converge to Ep[f(x, z)]
almost surely as L → ∞. Intuitively, however, the marginalized estimate of eq. (2.158)
should be more reliable [9, 39, 106], because the underlying sample space Z is smaller
than the original space X × Z.

In classical statistics, the Rao–Blackwell Theorem [167, 242] establishes the impor-
tance of sufficient statistics in parameter estimation. In particular, it allows minimum
variance unbiased estimators to be designed by conditioning simpler estimators with

(x(`)
, z

(`)) ⇠ p(x, z)

•  Basic Monte Carlo estimation for joint distribution of x, z: 
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often construct tractable Monte Carlo procedures which improve on the basic estimator
of eq. (2.139). Let p(x, z) denote a target distribution on two random variables x ∈ X ,
z ∈ Z. Given L independent samples {(x(!), z(!))}L

!=1 from this joint distribution, the
simplest approximation of a statistic f(x, z) equals

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x, z) dx dz (2.154)

≈ 1

L

L∑

!=1

f(x(!), z(!)) = Ep̃[f(x, z)] (2.155)

Suppose, however, that the conditional density p(x | z) has a tractable analytic form.
In this case, we can consider the following alternative estimator:

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x | z) p(z) dx dz (2.156)

=

∫

Z

[∫

X
f(x, z)p(x | z) dx

]
p(z) dz (2.157)

≈ 1

L

L∑

!=1

∫

X
f(x, z(!))p(x | z(!)) dx = Ep̃[Ep[f(x, z) | z]] (2.158)

The estimators of eqs. (2.155) and (2.158) are both unbiased, and converge to Ep[f(x, z)]
almost surely as L → ∞. Intuitively, however, the marginalized estimate of eq. (2.158)
should be more reliable [9, 39, 106], because the underlying sample space Z is smaller
than the original space X × Z.

In classical statistics, the Rao–Blackwell Theorem [167, 242] establishes the impor-
tance of sufficient statistics in parameter estimation. In particular, it allows minimum
variance unbiased estimators to be designed by conditioning simpler estimators with

` = 1, 2, . . . , L

•  But suppose that the conditional distribution             is tractable: p(x | z)
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compare two different random initializations. Because we use vague priors, the data
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)
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We see that the Gibbs sampler effectively implements a random walk, which grad-
ually moves towards parameters with higher posterior probability. Although the in-
duced Markov chain may converge quickly (left column), it sometimes remains trapped
in locally optimal regions of the parameter space for many iterations (right column).
Fig. 2.20 compares this behavior to a more sophisticated Rao–Blackwellized sampler
developed in the following section.

! 2.4.4 Rao–Blackwellized Sampling Schemes

In models which impose structured dependencies on multiple latent variables, we can
often construct tractable Monte Carlo procedures which improve on the basic estimator
of eq. (2.139). Let p(x, z) denote a target distribution on two random variables x ∈ X ,
z ∈ Z. Given L independent samples {(x(!), z(!))}L

!=1 from this joint distribution, the
simplest approximation of a statistic f(x, z) equals

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x, z) dx dz (2.154)

≈ 1

L

L∑

!=1

f(x(!), z(!)) = Ep̃[f(x, z)] (2.155)

Suppose, however, that the conditional density p(x | z) has a tractable analytic form.
In this case, we can consider the following alternative estimator:

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x | z) p(z) dx dz (2.156)

=

∫

Z

[∫

X
f(x, z)p(x | z) dx

]
p(z) dz (2.157)

≈ 1

L

L∑

!=1

∫

X
f(x, z(!))p(x | z(!)) dx = Ep̃[Ep[f(x, z) | z]] (2.158)

The estimators of eqs. (2.155) and (2.158) are both unbiased, and converge to Ep[f(x, z)]
almost surely as L → ∞. Intuitively, however, the marginalized estimate of eq. (2.158)
should be more reliable [9, 39, 106], because the underlying sample space Z is smaller
than the original space X × Z.

In classical statistics, the Rao–Blackwell Theorem [167, 242] establishes the impor-
tance of sufficient statistics in parameter estimation. In particular, it allows minimum
variance unbiased estimators to be designed by conditioning simpler estimators with

•  Should we expect this estimator to be more accurate? 



Conditional vs Unconditional Variance 
•  The Rao-Blackwell Theorem, which was classically used to 

reduce the variance of estimators, is based on this identity: 
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respect to appropriate statistics. The Rao–Blackwell Theorem is derived from the fol-
lowing relationship between conditional and unconditional variance, which is also more
broadly applicable.

Theorem 2.4.1 (Rao-Blackwell). Let x and z be dependent random variables, and
f(x, z) a scalar statistic. Consider the marginalized statistic Ex[f(x, z) | z], which is a
function solely of z. The unconditional variance Varxz[f(x, z)] is then related to the
variance of the marginalized statistic as follows:

Varxz[f(x, z)] = Varz[Ex[f(x, z) | z]] + Ez[Varx[f(x, z) | z]] (2.159)

≥ Varz[Ex[f(x, z) | z]] (2.160)

Proof. Using the iterated expectations [229, 242] induced by the conditional factoriza-
tion p(x, z) = p(x | z) p(z), the unconditional variance of f(x, z) equals

Varxz[f(x, z)] = Exz
[
f(x, z)2

]
− Exz[f(x, z)]2

= Ez
[
Ex

[
f(x, z)2 | z

]]
− Ez[Ex[f(x, z) | z]]2

Subtracting and adding Ez[Ex[f(x, z) | z]2] and regrouping terms, we may then verify
eq. (2.159). Equation (2.160) follows from the non–negativity of Varx[f(x, z) | z].

As established by eq. (2.160), analytic marginalization of some variables from a joint
distribution always reduces the variance of later estimates. Applying this result, the so–
called Rao–Blackwellized Monte Carlo estimator [9, 39] of eq. (2.158) has lower variance
than the direct estimator of eq. (2.155). Intuitively, eq. (2.159) shows that marginal-
ization of x is most useful when the average conditional variance of x is large.

Rao–Blackwellization also plays an important role in other, more sophisticated
Monte Carlo methods. In particular, the variance inequality of Thm. 2.4.1 can be gen-
eralized to bound the variance of marginalized importance estimators (see Sec. 2.4.1).
As we discuss in Chap. 3, this approach has been used to design Rao–Blackwellized
improvements of standard particle filters [71, 73]. Similarly, Rao–Blackwellization may
dramatically improve the efficiency and accuracy of Gibbs samplers [39, 106, 185]. In
particular, for hierarchical models based on conjugate priors, Prop. 2.1.4 can often
be used to integrate over latent parameters in closed form. Importantly, the variance
reduction guaranteed by Thm. 2.4.1 generalizes to estimates based on the correlated
samples produced by a Gibbs sampler [185].

Rao–Blackwellized Gibbs Sampling for Finite Mixtures

To illustrate the design of Rao–Blackwellized samplers, we revisit the mixture model
Gibbs sampler summarized in Alg. 2.1. Given fixed cluster indicators z, we show that
conjugate priors allow mixture weights π and parameters {θk}K

k=1 to be analytically
marginalized. We may then directly determine the predictive distribution of zi given
the other cluster assignments z\i, and construct a more efficient sampler.

Z 

X 

non-negative RB estimator Basic estimator 

•  Applications in Monte Carlo methods: 
Ø Given output of any “standard” MCMC method, 

process to produce more efficient estimators 
Ø Analytically marginalize, or collapse, some 

variables from the model and derive Gibbs 
sampler for this collapsed representation 



Collapsed Sampling Algorithms 

zi ⇠ Cat(⇡)

⇡ ⇠ Dir(↵)

xi ⇠ F (✓zi)

✓k ⇠ G(�)
Conjugate priors allow 

exact marginalization of 
parameters, to make an 
equivalent model with 

fewer variables 
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Given previous cluster assignments z(t−1), sequentially sample new assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , N}.
2. Set z = z(t−1). For each i ∈ {τ(1), . . . , τ(N)}, sequentially resample zi as follows:

(a) For each of the K clusters, determine the predictive likelihood

fk(xi) = p(xi | {xj | zj = k, j "= i} ,λ)

This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.

(b) Sample a new cluster assignment zi from the following multinomial distribution:

zi ∼
1

Zi

K∑

k=1

(N−i
k + α/K)fk(xi)δ(zi, k) Zi =

K∑

k=1

(N−i
k + α/K)fk(xi)

N−i
k is the number of other observations assigned to cluster k (see eq. (2.162)).

(c) Update cached sufficient statistics to reflect the assignment of xi to cluster zi.

3. Set z(t) = z. Optionally, mixture parameters may be sampled via steps 2–3 of Alg. 2.1.

Algorithm 2.2. Rao–Blackwellized Gibbs sampler for a K component exponential family mixture
model, as defined in Fig. 2.9. Each iteration sequentially resamples the cluster assignments for all N
observations x = {xi}N

i=1 in a different random order. Mixture parameters are integrated out of the
sampling recursion using cached sufficient statistics of the parameters assigned to each cluster.
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Figure 2.20. Comparison of standard (Alg. 2.1, dark blue) and Rao–Blackwellized (Alg. 2.2, light red)
Gibbs samplers for a mixture of K = 4 two–dimensional Gaussians. We compare data log–likelihoods at
each of 1000 iterations for the single N = 300 point dataset of Figs. 2.18 and 2.19. Left: Log–likelihood
sequences for 20 different random initializations of each algorithm. Right: From 100 different random
initializations, we show the median (solid), 0.25 and 0.75 quantiles (thick dashed), and 0.05 and 0.95
quantiles (thin dashed) of the resulting log–likelihood sequences. The Rao–Blackwellized sampler has
superior typical performance, but occasionally remains trapped in local optima for many iterations.

optima for many iterations (see right columns of Figs. 2.18 and 2.19). These results
suggest that while Rao–Blackwellization can usefully accelerate mixing, convergence
diagnostics are still important.
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}

(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(!)}L

!=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
!=1 φa(x(!))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

!=1

log ν(x(!)) (2.33)



Gibbs: Representation and Mixing 

Quantiles of 100 Chains Multiple Initializations 

Standard Gibbs:  Alternatively sample assignments, parameters 
Collapsed Gibbs:  Marginalize parameters, sample assignments 


