Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

> Lecture 17: Collapsed Gibbs Samplers, MCMC Mixing and Diagnostics

> > Some slides and figures courtesy lain Murray's tutorial, Markov Chain Monte Carlo, MLSS 2009

Review: MCMC Methods

Construct a biased random walk that explores a target dist.

Markov steps,
$$x^{(s)} \sim T \left(x^{(s)} \leftarrow x^{(s-1)} \right)$$

MCMC gives approximate, correlated samples

$$\mathbb{E}_P[f] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)})$$

Example transitions:

Metropolis–Hastings:
$$T(x' \leftarrow x) = Q(x';x) \min\left(1, \frac{P(x')Q(x;x')}{P(x)Q(x';x)}\right)$$

Gibbs sampling: $T_i(\mathbf{x}' \leftarrow \mathbf{x}) = P(x'_i | \mathbf{x}_{j \neq i}) \, \delta(\mathbf{x}'_{j \neq i} - \mathbf{x}_{j \neq i})$

Combining MCMC Transition Proposals

A sequence of operators, each with P^{\star} invariant:

- $x_{0} \sim P^{\star}(x)$ $x_{1} \sim T_{a}(x_{1} \leftarrow x_{0}) \qquad P(x_{1}) = \sum_{x_{0}} T_{a}(x_{1} \leftarrow x_{0})P^{\star}(x_{0}) = P^{\star}(x_{1})$ $x_{2} \sim T_{b}(x_{2} \leftarrow x_{1}) \qquad P(x_{2}) = \sum_{x_{1}} T_{b}(x_{2} \leftarrow x_{1})P^{\star}(x_{1}) = P^{\star}(x_{2})$ $x_{3} \sim T_{c}(x_{3} \leftarrow x_{2}) \qquad P(x_{3}) = \sum_{x_{1}} T_{c}(x_{3} \leftarrow x_{2})P^{\star}(x_{2}) = P^{\star}(x_{3})$ \cdots
 - Combination $T_cT_bT_a$ leaves P^{\star} invariant
 - If they can reach any x, $T_cT_bT_a$ is a valid MCMC operator
 - Individually T_c , T_b and T_a need not be ergodic

Gibbs Samplers

A method with no rejections:

– Initialize \mathbf{x} to some value

– Pick each variable in turn or randomly and resample $P(x_i | \mathbf{x}_{j \neq i})$

At equilibrium can assume $\mathbf{x} \sim P(\mathbf{x})$

Figure from PRML, Bishop (2006)

Consistent with $\mathbf{x}_{j\neq i} \sim P(\mathbf{x}_{j\neq i}), \quad x_i \sim P(x_i | \mathbf{x}_{j\neq i})$

Proof of validity: a) check detailed balance for component update. b) Metropolis–Hastings 'proposals' $P(x_i | \mathbf{x}_{j \neq i}) \Rightarrow$ accept with prob. 1 Apply a series of these operators. Don't need to check acceptance.

Gibbs Sampling Implementation

Gibbs sampling benefits from few free choices and convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

$$P(x_i | \mathbf{x}_{j \neq i}) \propto P(x_i, \mathbf{x}_{j \neq i})$$

=
$$\frac{P(x_i, \mathbf{x}_{j \neq i})}{\sum_{x'_i} P(x'_i, \mathbf{x}_{j \neq i})} \leftarrow \text{this sum is small and easy}$$

 Y_6

Y₅

 Y_1

Y2

- Continuous conditionals only univariate
 - \Rightarrow amenable to standard sampling methods.
 - Inverse CDF sampling
 - Rejection sampling
 - Slice sampling

▶ ...

Undirected Graphical Models

 $p(x_A, x_C \mid x_B) = p(x_A \mid x_B)p(x_C \mid x_B)$

• This global Markov property implies a local Markov property:

$$p(x_i \mid x_{\mathcal{V}\setminus i}) = p(x_i \mid x_{\Gamma(i)})$$

- Practical benefits of Gibbs sampling algorithm:
 - Model and algorithm have same modular structure
 - Conditionals can often be evaluated quickly, because they depend only on the neighboring nodes
 - Exponential families offer further efficiency improvements, by caching and recursively updating sufficient statistics

Gibbs Sampling as Message Passing

• Consider a pairwise undirected graphical model:

- Valid for discrete and continuous variables, although sampling step may be harder for continuous models
- General factor graphs have similar form

MCMC Implementation & Application

- The samples aren't independent. Should we **thin**, only keep every *K*th sample?
- Arbitrary initialization means starting iterations are bad. Should we discard a **"burn-in" period**?
- Maybe we should perform multiple runs?
- How do we know if we have run for **long enough?**

Estimating Moments from Samples

Approximately independent samples can be obtained by *thinning*. However, **all the samples can be used**.

Use the simple Monte Carlo estimator on MCMC samples. It is:

— consistent

- unbiased if the chain has "burned in"

$$\mathbb{E}_P[f] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)})$$

The correct motivation to thin: if computing $f(\mathbf{x}^{(s)})$ is expensive

Thinned Sampling

• • • • • • • • • • •

All Samples after Burn-in

Probabilistic Mixture Models

Mixture Sampler Pseudocode

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\{\theta_k^{(t-1)}\}_{k=1}^K$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x_i to one of the K clusters by sampling the indicator variables $z = \{z_i\}_{i=1}^N$ from the following multinomial distributions:

$$z_i^{(t)} \sim \frac{1}{Z_i} \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)}) \,\delta(z_i, k) \qquad \qquad Z_i = \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)})$$

2. Sample new mixture weights according to the following Dirichlet distribution:

For each mixture

$$\pi^{(t)} \sim \operatorname{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K) \qquad N_k = \sum_{i=1}^N \delta(z_i^{(t)}, k)$$

3. For each of the K clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

$$\theta_k^{(t)} \sim p(\theta_k \mid \{x_i \mid z_i^{(t)} = k\}, \lambda)$$

When λ defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

Proposition 2.1.4. Let $p(x \mid \theta)$ denote an exponential family with canonical parameters θ , and $p(\theta \mid \lambda)$ a family of conjugate priors defined as in eq. (2.28). Given L independent samples $\{x^{(\ell)}\}_{\ell=1}^{L}$, the posterior distribution remains in the same family:

$$p(\theta \mid x^{(1)}, \dots, x^{(L)}, \lambda) = p(\theta \mid \bar{\lambda})$$
(2.31)

component, posterior given assigned data $\bar{\lambda}_0 = \lambda_0 + L$ $\bar{\lambda}_a = \frac{\lambda_0 \lambda_a + \sum_{\ell=1}^L \phi_a(x^{(\ell)})}{\lambda_0 + L}$ $a \in \mathcal{A}$ (2.32)

Mixture Sampler Pseudocode

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\{\theta_k^{(t-1)}\}_{k=1}^K$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x_i to one of the K clusters by sampling the indicator variables $z = \{z_i\}_{i=1}^N$ from the following multinomial distributions:

$$z_i^{(t)} \sim \frac{1}{Z_i} \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)}) \,\delta(z_i, k) \qquad \qquad Z_i = \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)})$$

2. Sample new mixture weights according to the following Dirichlet distribution:

$$\pi^{(t)} \sim \operatorname{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K) \qquad N_k = \sum_{i=1}^N \delta(z_i^{(t)}, k)$$

3. For each of the K clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

$$\theta_k^{(t)} \sim p(\theta_k \mid \{x_i \mid z_i^{(t)} = k\}, \lambda)$$

When λ defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

 Compared to the EM algorithm for finite mixture models:
 Form same assignment indicator distributions as in E-step, but then draw a single sample from each distribution

Sample, rather than taking mode, of parameter distributions

Snapshots of Mixture Gibbs Sampler

MCMC: Mixing Diagnostics

Autocovariance: Empirical covariance of values produced by MCMC method, versus iteration lag (spacing) Trace Plot: Value of some "interesting" summary statistic, versus MCMC iteration

- Small autocovariances are necessary, but not sufficient, to demonstrate mixing to the target distribution
- Fairly reliable for unimodal posteriors, but *very misleading more generally*

MCMC & Computational Resources

Best practical option: A few (> 1) initializations for as many iterations as possible

(1)

Rao-Blackwellized Estimation

• Basic Monte Carlo estimation for joint distribution of *x*, *z*:

$$(x^{(\ell)}, z^{(\ell)}) \sim p(x, z) \qquad \ell = 1, 2, \dots, L$$
$$\mathbb{E}_p[f(x, z)] = \int_{\mathcal{Z}} \int_{\mathcal{X}} f(x, z) p(x, z) \, dx \, dz \approx \frac{1}{L} \sum_{\ell=1}^L f(x^{(\ell)}, z^{(\ell)}) = \mathbb{E}_{\tilde{p}}[f(x, z)]$$

- But suppose that the conditional distribution $p(x \mid z)$ is tractable: $\mathbb{E}_p[f(x, z)] = \int_{\mathcal{Z}} \int_{\mathcal{X}} f(x, z) p(x \mid z) p(z) dx dz$ $= \int_{\mathcal{Z}} \left[\int_{\mathcal{X}} f(x, z) p(x \mid z) dx \right] p(z) dz$ $\approx \frac{1}{L} \sum_{\ell=1}^{L} \int_{\mathcal{X}} f(x, z^{(\ell)}) p(x \mid z^{(\ell)}) dx = \mathbb{E}_{\tilde{p}}[\mathbb{E}_p[f(x, z) \mid z]]$
- Should we expect this estimator to be more accurate?

Conditional vs Unconditional Variance

• The Rao-Blackwell Theorem, which was classically used to reduce the variance of estimators, is based on this identity:

Theorem 2.4.1 (Rao-Blackwell). Let x and z be dependent random variables, and f(x, z) a scalar statistic. Consider the marginalized statistic $\mathbb{E}_x[f(x, z) | z]$, which is a function solely of z. The unconditional variance $\operatorname{Var}_{xz}[f(x, z)]$ is then related to the variance of the marginalized statistic as follows:

$$\operatorname{Var}_{xz}[f(x,z)] = \operatorname{Var}_{z}[\mathbb{E}_{x}[f(x,z) \mid z]] + \mathbb{E}_{z}[\operatorname{Var}_{x}[f(x,z) \mid z]]$$
(2.159)

$$\geq \operatorname{Var}_{z}[\mathbb{E}_{x}[f(x,z) \mid z]] \tag{2.160}$$

Basic estimator

RB estimator non-negative

- Applications in Monte Carlo methods:
 - Given output of any "standard" MCMC method, process to produce more efficient estimators
 - Analytically marginalize, or collapse, some variables from the model and derive Gibbs sampler for this collapsed representation

Collapsed Sampling Algorithms

Conjugate priors allow exact marginalization of parameters, to make an equivalent model with fewer variables

Mixture Sampler Pseudocode

Given previous cluster assignments $z^{(t-1)}$, sequentially sample new assignments as follows:

- 1. Sample a random permutation $\tau(\cdot)$ of the integers $\{1, \ldots, N\}$.
- 2. Set $z = z^{(t-1)}$. For each $i \in \{\tau(1), \ldots, \tau(N)\}$, sequentially resample z_i as follows:
 - (a) For each of the K clusters, determine the predictive likelihood

$$f_k(x_i) = p(x_i \mid \{x_j \mid z_j = k, j \neq i\}, \lambda)$$

This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4. (b) Sample a new cluster assignment z_i from the following multinomial distribution:

$$z_i \sim \frac{1}{Z_i} \sum_{k=1}^K (N_k^{-i} + \alpha/K) f_k(x_i) \delta(z_i, k) \qquad \qquad Z_i = \sum_{k=1}^K (N_k^{-i} + \alpha/K) f_k(x_i)$$

N_k⁻ⁱ is the number of other observations assigned to cluster k (see eq. (2.162)).
(c) Update cached sufficient statistics to reflect the assignment of x_i to cluster z_i.
3. Set z^(t) = z. Optionally, mixture parameters may be sampled via steps 2–3 of Alg. 2.1.

$$p(\theta \mid x^{(1)}, \dots, x^{(L)}, \lambda) = p(\theta \mid \bar{\lambda})$$
(2.31)

$$\bar{\lambda}_0 = \lambda_0 + L \qquad \bar{\lambda}_a = \frac{\lambda_0 \lambda_a + \sum_{\ell=1}^L \phi_a(x^{(\ell)})}{\lambda_0 + L} \qquad a \in \mathcal{A}$$
(2.32)

Integrating over Θ , the log-likelihood of the observations can then be compactly written using the normalization constant of eq. (2.29):

$$\log p(x^{(1)}, \dots, x^{(L)} \mid \lambda) = \Omega(\bar{\lambda}) - \Omega(\lambda) + \sum_{\ell=1}^{L} \log \nu(x^{(\ell)})$$
(2.33)

Gibbs: Representation and Mixing

Standard Gibbs: Alternatively sample assignments, parameters **Collapsed Gibbs:** Marginalize parameters, sample assignments