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Review: MCMC Methods

Construct a biased random walk that explores a target dist.
Markov steps, x(5) ~ T(gj(s) H;{;(S—l))

MCMC gives approximate,
correlated samples

Gibbs sampling: T;(x"«x) = P (2} X)) 0(X); — Xj4)



Combining MCMC Transition Proposals

A sequence of operators, each with P* invariant:

rg ~ P*(x)

r1 ~ To(x1 4 T0) P(x1) = ZxoTa(xlFiUO)P*(iUO) = P*(z1)
xro ~ Ty(xo—x1) P(z2) = ), To(ra—z1)P*(21) = P*(22)
r3 ~ To(x3x2) P(zs) = >, Te(ws—x2)P*(22) = P*(x3)

— Combination 1.7, T, leaves P* invariant

— If they can reach any x, T. 1T, is a valid MCMC operator
— Individually T, T and T, need not be ergodic



Gibbs Samplers

< >

A method with no rejections:

— Initialize x to some value
— Pick each variable in turn or randomly |
and resample P(x;|x;;)

|
At equilibrium can assume x ~ P(x) /\ .

Figure from PRML, Bishop (2006)

Consistent with Xt ™ P(Xj;,gi), XLy P(I’L’X]#’L)

Proof of validity: a) check detailed balance for component update.
b) Metropolis—Hastings ‘proposals’ P(z;|x;-;) = accept with prob. 1
Apply a series of these operators. Don't need to check acceptance.



Gibbs Sampling Implementation

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

e Conditionals with a few discrete settings can be explicitly normalized:

P(ZCZ"XJ'#Z') X P(.CCZ',Xj;éi)
P(x’bxj#i)

- wa_ P(ZU;;,X:,‘;AZ') < this sum is small and easy
Lo (T

e Continuous conditionals only univariate
= amenable to standard sampling methods.

> Inverse CDF sampling
» Rejection sampling

» Slice sampling

> ...




Undirected Graphical Models

Graph Separation

|

B Conditional
Independence

A C

p(xa,zc | xp) =p(za | 2B)p(TC | TB)
* This global Markov property implies a local Markov property:

p(% | 33‘V\7;) = p(ﬂ?z‘ | $F(i))
* Practical benefits of Gibbs sampling algorithm:
» Model and algorithm have same modular structure
» Conditionals can often be evaluated quickly, because they
depend only on the neighboring nodes
» Exponential families offer further efficiency improvements,
by caching and recursively updating sufficient statistics



Gibbs Sampling as Message Passing

« Consider a pairwise undirected graphical model:

p) =5 T wuleez) T] se)

(s,t)eE seV

—> ( \— —(\—

7 N 2

qi(zi) o< i(wi) |[ myiles) mij(2;) o thij(Zi, ;)

JeL(?)
B: o (:U ) Draw single sample Use sample to extract a
i~ il from marginal “slice” of pairwise potential

 Valid for discrete and continuous variables, although sampling
step may be harder for continuous models
« General factor graphs have similar form



MCMC Implementation & Application

e The samples aren’t independent. Should we thin,
only keep every Kth sample?

e Arbitrary initialization means starting iterations are bad.
Should we discard a “burn-in" period?

e Maybe we should perform multiple runs?

e How do we know if we have run for long enough?



Estimating Moments from Samples

Approximately independent samples can be obtained by thinning.
However, all the samples can be used.

Use the simple Monte Carlo estimator on MCMC samples. It is:
— consistent

— unbiased if the chain has “burned in”

S
1 S
Brlf] ~ 23 )
s=1
The correct motivation to thin: if computing f(x(*)) is expensive

Thinned Sampling

All Samples after Burn-in




Probabilistic Mixture Models

0.5}
7 ~ Dir(«) O
Op ~ H(A) Ok = {26} o 05 I

p(z; | m) = Cat(z; | m)



Mixture Sampler Pseudocode

Given mixture weights 7(!1) and cluster parameters {9](:_1)}?:1 from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x; to one of the K clusters by sampling
the indicator variables z = {2}, from the following multinomial distributions:

2! ~ Zw“ D f (i | 677)6(zk) Zi = Zw“ Vf [ 677)
2. Sample new mixture weights according to the following Dlrlchlet dlstrlbution'
7® ~ Dir(N; + a/K,...,Ng + a/K) Z (2 k

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

0 ~ p(Ox | {wi | 2" =k} )
When A defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

Proposition 2.1.4. Let p(x | 0) denote an exponential family with canonical param-
eters 0, and p(0 | \) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(@}f:l, the posterior distribution remains in the same family:

For each mixture p(@ 2D, ..z X)) =p(0]A) (2.31)

component, posterior ’ ) I 0
given assigned data )y = )y + L Ay = 2200 T );TL%(SU ) a€ A (2.32)
0




Mixture Sampler Pseudocode

Given mixture weights 7(!1) and cluster parameters {(9](:_1)}?:1 from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points z; to one of the K clusters by sampling
the indicator variables z = {2}, from the following multinomial distributions:

2D ~ Zw(t Df(as |08 7)8(z, k) Z; —Zw(t V(e |00V
2. Sample new mixture weights according to the following Dlrlchlet dlstrlbution'
7™ ~ Dir(N; + a/K, ..., Nk + a/K) Z 5(z\" k

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

0 ~ p(Ox | {wi | 2" =k} )
When A defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

Compared to the EM algorithm for finite mixture models:

» Form same assignment indicator distributions as in E-step,
but then draw a single sample from each distribution

» Sample, rather than taking mode, of parameter distributions



Initialization A

Initialization B

Snapshots of Mixture Gibbs Sampler

log p(x | T, 8) = -539.17

log p(x | T, 6) = -404.18

log p(x | w, ©) = -397.40

log p(x | &, ©) = -497.77

2 Ilterations

log p(x | T, ©) = -454.15
10 Iterations

log p(x | T, ©) = -442 .89

50 lterations




autocovariance coefficient
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Small autocovariances are necessary,
but not sufficient, to demonstrate
mixing to the target distribution
Fairly reliable for unimodal posteriors,
but very misleading more generally



MCMC & Computational Resources
(1)

Best practical option:
(2) A few (> 1) initializations
for as many iterations as possible

(3)



Rao-Blackwellized Estimation

« Basic Monte Carlo estimation for joint distribution of x, z:

(29, 2 ~ p(z, 2) ¢t=1,2,...,L
f(z, 2)] //fxz (2,2)drdz ~ — Zf (0, 29y Esf(z, 2)]

« But suppose that the conditional distribution p(x | z) is tractable:

(2, 2)] //fa:'z p(2) dz dz
:/Z[/Xfaz,sz 2) dz| p(2) d2

1 L
~ 72 /X [z, 2)p(x | 29) doe = BB, [f (2, 2) | 2]]
/=1

« Should we expect this estimator to be more accurate?



Conditional vs Unconditional Variance

« The Rao-Blackwell Theorem, which was classically used to
reduce the variance of estimators, is based on this identity:

Theorem 2.4.1 (Rao-Blackwell). Let x and z be dependent random variables, and
f(x, 2) a scalar statistic. Consider the marginalized statistic E,[f(x,z) | z], which is a

function solely of z. The unconditional variance Varg,[f(z, z)] is then related to the
vartance of the marginalized statistic as follows:

Var,.[f(x, z)] = Var,[E;[f(x, 2) | 2]] + E.[Var,[f(z, 2) | 2]] (2.159)
> Var, [E;[f(x, 2) | 2]] (2.160)
Basic estimator RB estimator non-negative

* Applications in Monte Carlo methods:
» Given output of any “standard” MCMC method,
process to produce more efficient estimators
» Analytically marginalize, or collapse, some
variables from the model and derive Gibbs
sampler for this collapsed representation



Collapsed Sampling Algorithms

N

B

Conjugate priors allow
exact marginalization of
parameters, to make an

equivalent model with

fewer variables




Mixture Sampler Pseudocode

Given previous cluster assignments z(*~1, sequentially sample new assignments as follows:
1. Sample a random permutation 7(-) of the integers {1,..., N}.

2. Set z = 2=V, For each i € {r(1),...,7(N)}, sequentially resample z; as follows:

(a) For each of the K clusters, determine the predictive likelihood
fe(@i) =plzi [{z; | 25 =k, j # i}, A)
This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.

(b) Sample a new cluster assignment z; from the following multinomial distribution:
K K
1

k=1 k=1
N, " is the number of other observations assigned to cluster k (see eq. (2.162)).
(c) Update cached sufficient statistics to reflect the assignment of x; to cluster z;.

3. Set z(" = z. Optionally, mixture parameters may be sampled via steps 2-3 of Alg. 2.1.

p0 ] 2W, . 2B N =p(0| N) (2.31)

_ Moda 20 Gala?)

X=X+ L Ao
0 0+ o+ L

ac A (2.32)

Integrating over ©, the log—likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

L
logp(zM, ... 2B | \) = Q) —Q(\) + Z log v(z9) (2.33)
/=1




Gibbs: Representation and Mixing
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Standard Gibbs: Alternatively sample assignments, parameters
Collapsed Gibbs: Marginalize parameters, sample assignments



