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Gibbs Sampling 
“Routine” Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

P (xi|xj !=i) ∝ P (xi,xj !=i)

=
P (xi,xj !=i)∑
x′i

P (x′i,xj !=i) ← this sum is small and easy

• Continuous conditionals only univariate
⇒ amenable to standard sampling methods.

WinBUGS and OpenBUGS sample graphical models using these tricks

Ø  Inverse CDF sampling 
Ø  Rejection sampling 
Ø  Slice sampling 
Ø  … 



Gibbs Sampling as Message Passing Sec. 2.3. Variational Methods and Message Passing Algorithms 67
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qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) mij(xj) ∝ exp

{
−

∫

Xi

φji(xj , xi) qi(xi) dxi

}

Figure 2.12. Message passing implementation of the naive mean field method. Left: Approximate
marginal densities are determined from the normalized product of the local observation potential with
messages sent from neighboring nodes. Right: Given an updated marginal estimate, new messages are
calculated and transmitted to all neighbors.

Here, γ̄i is a constant chosen to satisfy the marginalization constraint. Due to the
pairwise relationships in the free energy of eq. (2.104), the marginal qi(xi) at node i
depends directly on the corresponding marginals at neighboring nodes Γ(i). Thus, even
though Q is fully factorized, the corresponding mean field solution desirably propagates
information from local potentials throughout the graph.

To implement the mean field method, we must have a tractable representation
for the marginal densities qi(xi), and a corresponding algorithm for updating these
marginals. Consider the following decomposition of the mean field fixed point equation
(eq. (2.106)):

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) i ∈ V (2.107)

mji(xi) ∝ exp

{
−

∫

Xj

φij(xi, xj) qj(xj) dxj

}
j ∈ Γ(i) (2.108)

We interpret mji(xi) as a message sent from j to its neighboring node i. As illustrated
in Fig. 2.12, mean field algorithms alternate between updating a local marginal estimate
(eq. (2.107)), and using this new marginal to calculate an updated message for each
neighbor (eq. (2.108)). If marginals are updated sequentially, the mean field algorithm
is a form of coordinate descent which converges to a local minimum of the free energy
(eq. (2.104)). Parallel updates are also possible, but do not guarantee convergence.

If Xi takes K discrete values, we can represent messages and marginals by K–
dimensional vectors. The integration of eq. (2.108) then becomes a summation, allowing
direct message computation in O(K2) operations. For hidden variables defined on

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

•  Consider a pairwise undirected graphical model: 

qi(xi) /  i(xi)
Y

j2�(i)

mji(xi)

x̂i ⇠ qi(xi)
Draw single sample 
from marginal 

mij(xj) /  ij(x̂i, xj)

Use sample to extract a 
“slice” of pairwise potential 

•  Valid for discrete and continuous variables, although sampling 
step may be harder for continuous models 

•  General factor graphs have similar form 



Rao-Blackwellized Estimation 
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compare two different random initializations. Because we use vague priors, the data
log–likelihood provides a reasonable convergence measure:

log p(x | π, θ1, . . . , θK) =
N∑

i=1

log

(
K∑

k=1

πkf(xi | θk)

)

(2.153)

We see that the Gibbs sampler effectively implements a random walk, which grad-
ually moves towards parameters with higher posterior probability. Although the in-
duced Markov chain may converge quickly (left column), it sometimes remains trapped
in locally optimal regions of the parameter space for many iterations (right column).
Fig. 2.20 compares this behavior to a more sophisticated Rao–Blackwellized sampler
developed in the following section.

! 2.4.4 Rao–Blackwellized Sampling Schemes

In models which impose structured dependencies on multiple latent variables, we can
often construct tractable Monte Carlo procedures which improve on the basic estimator
of eq. (2.139). Let p(x, z) denote a target distribution on two random variables x ∈ X ,
z ∈ Z. Given L independent samples {(x(!), z(!))}L

!=1 from this joint distribution, the
simplest approximation of a statistic f(x, z) equals

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x, z) dx dz (2.154)

≈ 1

L

L∑

!=1

f(x(!), z(!)) = Ep̃[f(x, z)] (2.155)

Suppose, however, that the conditional density p(x | z) has a tractable analytic form.
In this case, we can consider the following alternative estimator:

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x | z) p(z) dx dz (2.156)

=

∫

Z

[∫

X
f(x, z)p(x | z) dx

]
p(z) dz (2.157)

≈ 1

L

L∑

!=1

∫

X
f(x, z(!))p(x | z(!)) dx = Ep̃[Ep[f(x, z) | z]] (2.158)

The estimators of eqs. (2.155) and (2.158) are both unbiased, and converge to Ep[f(x, z)]
almost surely as L → ∞. Intuitively, however, the marginalized estimate of eq. (2.158)
should be more reliable [9, 39, 106], because the underlying sample space Z is smaller
than the original space X × Z.

In classical statistics, the Rao–Blackwell Theorem [167, 242] establishes the impor-
tance of sufficient statistics in parameter estimation. In particular, it allows minimum
variance unbiased estimators to be designed by conditioning simpler estimators with

(x(`)
, z

(`)) ⇠ p(x, z)

•  Basic Monte Carlo estimation for joint distribution of x, z: 
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almost surely as L → ∞. Intuitively, however, the marginalized estimate of eq. (2.158)
should be more reliable [9, 39, 106], because the underlying sample space Z is smaller
than the original space X × Z.

In classical statistics, the Rao–Blackwell Theorem [167, 242] establishes the impor-
tance of sufficient statistics in parameter estimation. In particular, it allows minimum
variance unbiased estimators to be designed by conditioning simpler estimators with

` = 1, 2, . . . , L

•  But suppose that the conditional distribution             is tractable: p(x | z)
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•  Rao-Blackwell:  Collapsed estimator always has lower variance  



Probabilistic Mixture Models 

(a)

0 0.5 1

0

0.5

1

p(xi | zi, µ,⌃) = N (xi | µzi ,⌃zi)

p(zi | ⇡) = Cat(zi | ⇡)
✓k = {µk,⌃k}

⇡ ⇠ Dir(↵)

✓k ⇠ H(�)



A Collapsed Monte Carlo Estimator 
(z(`), ✓(`),⇡(`)) ⇠ p(z,⇡, ✓ | x)

` = 1, 2, . . . , L

Approximate joint samples from Gibbs: 

p(zi = k | x,⇡, ✓) / ⇡kf(xi | ✓k)
p(⇡ | z, x, ✓) = Dir(⇡ | N1 + ↵/K, . . . , NK + ↵/K)

•  A conventional estimator of the probability that a pair of 
observations comes from the same cluster: 

p(zi = zj) ⇡
1

L

LX

`=1

�(z(`)i , z(`)j )
Note choice of statistic which 
avoids “label switching” 

•  A provably superior, collapsed estimator of the probability that 
a pair of observations comes from the same cluster: 

p(zi = zj) ⇡
1

L

LX

`=1

KX

k=1

q(`)ik q(`)jk q

(`)
ik = p(zi = k | x,⇡(`)

, ✓

(`))



Collapsed Sampling Algorithms 

zi ⇠ Cat(⇡)

⇡ ⇠ Dir(↵)

xi ⇠ F (✓zi)

✓k ⇠ G(�)
Conjugate priors allow 

exact marginalization of 
parameters, to make an 
equivalent model with 

fewer variables 



Bayesian Learning of Probabilities 

Dirichlet Prior Distribution: 

Posterior Distribution: 

•  This is a conjugate prior, because posterior is in same family 

Multinoulli Distribution:  Single roll of a (possibly biased) die 

Cat(z | ⇡) =
KY

k=1

⇡zk
k Z = {0, 1}K ,

KX

k=1

zk = 1

p(z1, . . . , zN | ⇡) =
QK

k=1 ⇡
Nk
k

p(⇡) = Dir(⇡ | ↵) /
KY

k=1

⇡↵k�1
k

0
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α=10.00

p

p(⇡ | z) /
KY

k=1

⇡Nk+↵k�1
k / Dir(⇡ | N1 + ↵1, . . . , NK + ↵K)



Bayesian Learning of Probabilities 

Dirichlet Prior Distribution: 

Posterior Distribution: 

•  This is a conjugate prior, because posterior is in same family 

Posterior Predictive Distribution:  For the next observation, 

p(⇡) = Dir(⇡ | ↵) /
KY

k=1

⇡↵k�1
k

p(⇡ | z) /
KY

k=1

⇡Nk+↵k�1
k / Dir(⇡ | N1 + ↵1, . . . , NK + ↵K)

p(z̄ = k | z1, . . . , zN ) =

Z

⇧
⇡kp(⇡ | z1, . . . , zN ) d⇡

=
Nk + ↵k

N + ↵0
= E[⇡k | z1, . . . , zN ]



A Collapsed Gibbs Sampler 

p(z | x) / p(z)p(x | z)

/
Z

⇧
p(z | ⇡)p(⇡ | ↵) d⇡

Z

⇥
p(x | z, ✓)p(✓ | �) d✓

•  Collapsed mixture model representation: 

p(zi = k | z\i) =
N\i

k + ↵/K

N � 1 + ↵

•  Apply standard Gibbs sampling updates: 
p(zi | z\i, x) / p(zi | z\i)p(x | zi, z\i)

•  Conditional prior: 

N\i
k =

NX

j=1,j 6=i

�(zj , k)

•  Conditional likelihood: 
X

\i
k , {xj | zj = k, j 6= i}

p(xi | zi = k, z\i, x\i) =

Z

⇥k

p(xi | ✓k)p(✓k | X\i
k ) d✓k

Conjugate analysis of “other” data assigned to this cluster 

p(x | z) / p(xi | z, x\i)
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Given previous cluster assignments z(t−1), sequentially sample new assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , N}.
2. Set z = z(t−1). For each i ∈ {τ(1), . . . , τ(N)}, sequentially resample zi as follows:

(a) For each of the K clusters, determine the predictive likelihood

fk(xi) = p(xi | {xj | zj = k, j "= i} ,λ)

This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.

(b) Sample a new cluster assignment zi from the following multinomial distribution:

zi ∼
1

Zi

K∑

k=1

(N−i
k + α/K)fk(xi)δ(zi, k) Zi =

K∑

k=1

(N−i
k + α/K)fk(xi)

N−i
k is the number of other observations assigned to cluster k (see eq. (2.162)).

(c) Update cached sufficient statistics to reflect the assignment of xi to cluster zi.

3. Set z(t) = z. Optionally, mixture parameters may be sampled via steps 2–3 of Alg. 2.1.

Algorithm 2.2. Rao–Blackwellized Gibbs sampler for a K component exponential family mixture
model, as defined in Fig. 2.9. Each iteration sequentially resamples the cluster assignments for all N
observations x = {xi}N

i=1 in a different random order. Mixture parameters are integrated out of the
sampling recursion using cached sufficient statistics of the parameters assigned to each cluster.
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Standard Gibbs Sampler
Rao−Blackwellized Sampler

Figure 2.20. Comparison of standard (Alg. 2.1, dark blue) and Rao–Blackwellized (Alg. 2.2, light red)
Gibbs samplers for a mixture of K = 4 two–dimensional Gaussians. We compare data log–likelihoods at
each of 1000 iterations for the single N = 300 point dataset of Figs. 2.18 and 2.19. Left: Log–likelihood
sequences for 20 different random initializations of each algorithm. Right: From 100 different random
initializations, we show the median (solid), 0.25 and 0.75 quantiles (thick dashed), and 0.05 and 0.95
quantiles (thin dashed) of the resulting log–likelihood sequences. The Rao–Blackwellized sampler has
superior typical performance, but occasionally remains trapped in local optima for many iterations.

optima for many iterations (see right columns of Figs. 2.18 and 2.19). These results
suggest that while Rao–Blackwellization can usefully accelerate mixing, convergence
diagnostics are still important.
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}

(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(!)}L

!=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
!=1 φa(x(!))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

!=1

log ν(x(!)) (2.33)



Gibbs: Representation and Mixing 

Quantiles of 100 Chains Multiple Initializations 

Standard Gibbs:  Alternatively sample assignments, parameters 
Collapsed Gibbs:  Marginalize parameters, sample assignments 



Variational Approximate Inference 

• Choose a family of approximating distributions 
which is tractable.  The simplest example: 

• Define a distance to measure the quality of different 
approximations.  Two possibilities: 

• Find the approximation minimizing this distance 

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

q(x) =
Y

s2V
qs(xs)

D(p || q) =
X

x

p(x) log

p(x)

q(x)

D(q || p) =
X

x

q(x) log

q(x)

p(x)



Fully Factored Approximations 

Marginal 
Entropies 

Joint 
Entropy 

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

q(x) =
Y

s2V
qs(xs)

D(p || q) =
X

x

p(x) log

p(x)

q(x)
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continuous spaces Xi, implementation of the mean field method is more complicated. In
jointly Gaussian random fields, the integral message updates can be rewritten in terms
of the posterior means [311], leading to an algorithm equivalent to the classic Gauss–
Seidel iteration for linear systems [63]. More generally, for directed or undirected graphs
where all potentials are defined by exponential families, the mean field marginals are
finitely parameterized by the corresponding sufficient statistics [110]. From eq. (2.108),
we see that messages then become exponentiated expectations of these statistics with
respect to neighboring nodes. This approach can be extended to infer approximate
marginal distributions for parameters θa (see eq. (2.91)) when all priors p(θa | λa) are
conjugate [110, 331]. The VIBES software package exploits this flexibility, along with
the local structure of message–passing updates, to automatically generate mean field
inference code for directed graphical models [331].

While exponential families are somewhat flexible, many applications involve more
complex, continuous potentials which lack sufficient statistics. In such cases, there
is no finite representation for the marginal densities qi(xi), and message updates are
typically intractable. Sometimes, however, the mean field algorithm can be reasonably
approximated by Monte Carlo methods which represent qi(xi) via a collection of random
samples [332]. We discuss these methods in more detail in Sec. 2.4.

Information Theoretic Interpretations

In information theory, the KL divergence D(p || q) arises as a measure of the asymptotic
inefficiency, or information loss [49], incurred by assuming that a stochastic process x
has distribution q(x) when its true distribution is p(x | y). From this perspective,
given an approximating family Q, it seems more appropriate to minimize D(p || q) over
q ∈ Q rather than the “backwards” divergence D(q || p) underlying mean field methods.
Indeed, for fully factorized Q as in eq. (2.103), D(p || q) has an intuitive form:

D(p || q) =

∫

X
p(x | y) log p(x | y) dx −

∫

X
p(x | y) log

∏

i∈V

qi(xi) dx

= −H(p) −
∑

i∈V

∫

Xi

p(xi | y) log qi(xi) dxi

=
∑

i∈V

H(pi) − H(p) +
∑

i∈V

D(pi || qi) (2.109)

The first two terms, which do not depend on q(x), capture the fundamental information
loss incurred by any approximation neglecting depencies among the hidden variables.
The last term is uniquely minimized by taking qi(xi) = p(xi | y), so that the true
posterior marginals are exactly recovered. Interestingly, mean field methods can also
be derived via a first–order Taylor series expansion of this divergence [166].

While the decomposition of eq. (2.109) shows that the marginals p(xi | y) provide
an appropriate summary of p(x | y), it does not provide a computational method for
determining these marginals. Conversely, while mean field methods do not generally

• Trivially minimized  by setting 

• Doesn’t provide a computational method… 

qi(xi) = pi(xi)



Variational Approximations 

(Multiply by one) 

(Jensen’s inequality) 

•  Minimizing KLD maximizes lower bound on data likelihood 

•  Generalize EM by restricting to tractable families 



Free Energies 

Negative 
Entropy 

Average 
Energy 

Gibbs Free Energy 

Normalization 

•  Free energies equivalent to KL divergence, up to a fixed 
normalization constant that can be ignored 

•  Variational inference equivalent to “energy minimization” 



Mean Field Free Energy 
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Mean Field Entropy: 

Mean Field Average Energy (expected sufficient statistics): 



Mean Field Equations 

• Add Lagrange multipliers to enforce 

• Taking derivatives and simplifying, we 
find a set of fixed point equations: 

 
 

• Updating one marginal at a time gives 
convergent coordinate descent 
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xi

y

xi

y

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) mij(xj) ∝ exp

{
−

∫

Xi

φji(xj , xi) qi(xi) dxi

}

Figure 2.12. Message passing implementation of the naive mean field method. Left: Approximate
marginal densities are determined from the normalized product of the local observation potential with
messages sent from neighboring nodes. Right: Given an updated marginal estimate, new messages are
calculated and transmitted to all neighbors.

Here, γ̄i is a constant chosen to satisfy the marginalization constraint. Due to the
pairwise relationships in the free energy of eq. (2.104), the marginal qi(xi) at node i
depends directly on the corresponding marginals at neighboring nodes Γ(i). Thus, even
though Q is fully factorized, the corresponding mean field solution desirably propagates
information from local potentials throughout the graph.

To implement the mean field method, we must have a tractable representation
for the marginal densities qi(xi), and a corresponding algorithm for updating these
marginals. Consider the following decomposition of the mean field fixed point equation
(eq. (2.106)):

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) i ∈ V (2.107)

mji(xi) ∝ exp

{
−

∫

Xj

φij(xi, xj) qj(xj) dxj

}
j ∈ Γ(i) (2.108)

We interpret mji(xi) as a message sent from j to its neighboring node i. As illustrated
in Fig. 2.12, mean field algorithms alternate between updating a local marginal estimate
(eq. (2.107)), and using this new marginal to calculate an updated message for each
neighbor (eq. (2.108)). If marginals are updated sequentially, the mean field algorithm
is a form of coordinate descent which converges to a local minimum of the free energy
(eq. (2.104)). Parallel updates are also possible, but do not guarantee convergence.

If Xi takes K discrete values, we can represent messages and marginals by K–
dimensional vectors. The integration of eq. (2.108) then becomes a summation, allowing
direct message computation in O(K2) operations. For hidden variables defined on
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•  Consider a pairwise undirected graphical model: 

qi(xi) /  i(xi)
Y

j2�(i)

mji(xi)

•  For continuous variables, valid with sum replaced by integral 
•  If marginals place all of their mass on a single state, becomes 

equivalent to Gibbs sampling update equations 
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(Mean Field) Variational Bayesian Learning 
ln p(x) = ln
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•  Initialization: Randomly select starting distribution 
•  E-Step: Given parameters, find posterior of hidden data 

 
 

•  M-Step: Given posterior distributions, find likely parameters 
 
 

•  Iteration: Alternate E-step & M-step until convergence 
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