Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 19:
Mean Field Variational Bayesian Learning, Blocked Gibbs Samplers

Mean Field Free Energy

$$
\begin{gathered}
p(x)=\frac{1}{Z} \exp \left\{-\sum_{(s, t) \in \mathcal{E}} \phi_{s t}\left(x_{s}, x_{t}\right)-\sum_{s \in \mathcal{V}} \phi_{s}\left(x_{s}\right)\right\} \\
q(x)=\prod_{s \in \mathcal{V}} q_{s}\left(x_{s}\right) \quad \begin{array}{r}
\phi_{s t}\left(x_{s}, x_{t}\right)=-\log \psi_{s t}\left(x_{s}, x_{t}\right) \\
\phi_{s}\left(x_{s}\right)=-\log \psi_{s}\left(x_{s}\right)
\end{array} \\
D(q \| p)=-H(q)+\sum_{x} q(x) E(x)+\log Z
\end{gathered}
$$

Mean Field Entropy:

$$
H(q)=\sum_{s \in \mathcal{V}} H_{s}\left(q_{s}\right)=-\sum_{s \in \mathcal{V}} \sum_{x_{s}} q_{s}\left(x_{s}\right) \log q_{s}\left(x_{s}\right)
$$

Mean Field Average Energy (expected sufficient statistics):
$\sum_{x} q(x) E(x)=\sum_{(s, t) \in \mathcal{E}} \sum_{x_{s}, x_{t}} q_{s}\left(x_{s}\right) q_{t}\left(x_{t}\right) \phi_{s t}\left(x_{s}, x_{t}\right)+\sum_{s \in \mathcal{V}} \sum_{x_{s}} q_{s}\left(x_{s}\right) \phi_{s}\left(x_{s}\right)$

Mean Field as Message Passing

- Consider a pairwise undirected graphical model:

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

$$
\begin{aligned}
q_{i}\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in \Gamma(i)} & m_{j i}\left(x_{i}\right) \\
m_{j i}\left(x_{i}\right) & \propto \exp \left\{-\sum_{x_{j}} \phi_{i j}\left(x_{i}, x_{j}\right) q_{j}\left(x_{j}\right)\right\}
\end{aligned}
$$

- For continuous variables, valid with sum replaced by integral
- If marginals place all of their mass on a single state, becomes equivalent to Gibbs sampling update equations

(Mean Field) Variational Bayesian Learning

$$
\begin{aligned}
\ln p(x) & =\ln \left(\int_{\Theta} \sum_{z} p(x, z \mid \theta) p(\theta) d \theta\right) \\
\ln p(x) & \geq \int_{\Theta} \sum_{z} q_{z}(z) q_{\theta}(\theta) \ln \left(\frac{p(x, z \mid \theta) p(\theta)}{q_{z}(z) q_{\theta}(\theta)}\right) d \theta
\end{aligned}
$$

$$
\ln p(x) \geq \int_{\Theta} \sum_{z} q_{z}(z) q_{\theta}(\theta) \ln p(x, z, \theta) d \theta+H\left(q_{z}\right)+H\left(q_{\theta}\right) \triangleq \mathcal{L}\left(q_{z}, q_{\theta}\right)
$$

- Initialization: Randomly select starting distribution $q_{\theta}^{(0)}$
- E-Step: Given parameters, find posterior of hidden data

$$
q_{z}^{(t)}=\arg \max _{q_{z}} \mathcal{L}\left(q_{z}, q_{\theta}^{(t-1)}\right)
$$

- M-Step: Given posterior distributions, find likely parameters

$$
q_{\theta}^{(t)}=\arg \max _{q_{\theta}} \mathcal{L}\left(q_{z}^{(t)}, q_{\theta}\right)
$$

- Iteration: Alternate E-step \& M-step until convergence

(Mean Field) Variational Bayesian Learning

Temporary notation change: observations y, hidden variables x

$$
\ln p(\mathbf{y} \mid m) \geq \int q_{\mathbf{x}}(\mathbf{x}) q_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \ln \frac{p(\mathbf{y}, \mathbf{x}, \boldsymbol{\theta} \mid m)}{q_{\mathbf{x}}(\mathbf{x}) q_{\boldsymbol{\theta}}(\boldsymbol{\theta})} d \mathbf{x} d \boldsymbol{\theta}=\mathcal{F}_{m}\left(q_{\mathbf{x}}(\mathbf{x}), q_{\boldsymbol{\theta}}(\boldsymbol{\theta}), \mathbf{y}\right)
$$

Condition (1). The complete data likelihood is that of an exponential family: $p(\mathbf{x}, \mathbf{y} \mid \boldsymbol{\theta})=f(\mathbf{x}, \mathbf{y}) g(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\phi}(\boldsymbol{\theta})^{T} \mathbf{u}(\mathbf{x}, \mathbf{y})\right\}$, where $\boldsymbol{\phi}(\boldsymbol{\theta})$ is the vector of natural parameters, and \mathbf{u} and f and g are the functions that define the exponential family.
Condition (2). The parameter prior is conjugate to the complete data likelihood: $p(\boldsymbol{\theta} \mid \eta, \boldsymbol{\nu})=h(\eta, \boldsymbol{\nu}) g(\boldsymbol{\theta})^{\eta} \exp \left\{\boldsymbol{\phi}(\boldsymbol{\theta})^{T} \boldsymbol{\nu}\right\}$, where η and $\boldsymbol{\nu}$ are hyperparameters.

EM for MAP estimation	Variational Bayesian EM
Goal: maximise $p(\boldsymbol{\theta} \mid \mathbf{y}, m)$ w.r.t. $\boldsymbol{\theta}$	Goal: lower bound $p(\mathbf{y} \mid m)$
E Step: compute	VB-E Step: compute $\bar{\phi}^{(t)}=\mathbb{E}_{q_{\theta}^{(t)}}[\phi(\theta)]$
$q_{\mathbf{x}}^{(t+1)}(\mathbf{x})=p\left(\mathbf{x} \mid \mathbf{y}, \boldsymbol{\theta}^{(t)}\right)$	$q_{\mathbf{x}}^{(t+1)}(\mathbf{x})=p\left(\mathbf{x} \mid \mathbf{y}, \overline{\boldsymbol{\phi}}^{(t)}\right)$
$\mathbf{M ~ S t e p : ~}$	VB-M Step:
$\boldsymbol{\theta}^{(t+1)}=\arg \max _{\boldsymbol{\theta}} \int q_{\mathbf{x}}^{(t+1)}(\mathbf{x}) \ln p(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) d \mathbf{x}$	$q_{\boldsymbol{\theta}}^{(t+1)}(\boldsymbol{\theta}) \propto \exp \left[\int q_{\mathbf{x}}^{(t+1)}(\mathbf{x}) \ln p(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) d \mathbf{x}\right]$

M-Step: Expected log-likelihood exponentiated to distribution E-Step: Based on mean of natural parameters, not mode

Exponential Family Variational Learning

Temporary notation change: observations y, hidden variables x
Condition (1). The complete data likelihood is that of an exponential family: $p(\mathbf{x}, \mathbf{y} \mid \boldsymbol{\theta})=f(\mathbf{x}, \mathbf{y}) g(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\phi}(\boldsymbol{\theta})^{T} \mathbf{u}(\mathbf{x}, \mathbf{y})\right\}$, where $\boldsymbol{\phi}(\boldsymbol{\theta})$ is the vector of natural parameters, and \mathbf{u} and f and g are the functions that define the exponential family.
Condition (2). The parameter prior is conjugate to the complete data likelihood: $p(\boldsymbol{\theta} \mid \eta, \boldsymbol{\nu})=h(\eta, \boldsymbol{\nu}) g(\boldsymbol{\theta})^{\eta} \exp \left\{\boldsymbol{\phi}(\boldsymbol{\theta})^{T} \boldsymbol{\nu}\right\}$, where η and $\boldsymbol{\nu}$ are hyperparameters.
Theorem. (Conjugate-Exponential Models). Given an iid data set $\mathbf{y}=$ $\left\{\mathbf{y}_{1}, \ldots \mathbf{y}_{n}\right\}$, if the model satisfies conditions (1) and (2), then at every iteration of the variational Bayesian EM algorithm and at the maxima of $\mathcal{F}\left(q_{\mathbf{x}}(\mathbf{x}), q_{\boldsymbol{\theta}}(\boldsymbol{\theta}), \mathbf{y}\right)$:
(a) $q_{\boldsymbol{\theta}}(\boldsymbol{\theta})$ is conjugate with parameters $\tilde{\eta}=\eta+n, \tilde{\boldsymbol{\nu}}=\boldsymbol{\nu}+\sum_{i=1}^{n} \overline{\mathbf{u}}\left(\mathbf{y}_{i}\right)$:

$$
\begin{equation*}
q_{\boldsymbol{\theta}}(\boldsymbol{\theta})=h(\tilde{\eta}, \tilde{\boldsymbol{\nu}}) g(\boldsymbol{\theta})^{\tilde{\eta}} \exp \left\{\boldsymbol{\phi}(\boldsymbol{\theta})^{T} \tilde{\boldsymbol{\nu}}\right\} \tag{9}
\end{equation*}
$$

where $\overline{\mathbf{u}}\left(\mathbf{y}_{i}\right)=\mathrm{E}_{q_{x_{i}}}\left(\mathbf{u}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right)$, using $\mathrm{E}_{q_{\mathbf{x}_{i}}}$ to denote expectation under the variational posterior over the latent variable(s) associated with the ith datum.
(b) $q_{\mathbf{x}}(\mathbf{x})=\prod_{i=1}^{n} q_{\mathbf{x}_{i}}\left(\mathbf{x}_{i}\right)$ with

$$
\begin{equation*}
q_{\mathbf{x}_{i}}\left(\mathbf{x}_{i}\right)=p\left(\mathbf{x}_{i} \mid \mathbf{y}_{i}, \bar{\phi}\right) \propto f\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \exp \left\{\bar{\phi}^{T} \mathbf{u}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\} \tag{10}
\end{equation*}
$$

where $\overline{\boldsymbol{\phi}}=\mathrm{E}_{q_{\theta}}(\boldsymbol{\phi}(\boldsymbol{\theta}))$, the expectation of the natural parameter.
Beal \& Ghahramani 2003

Example: Graph Structure Learning

Consider all possible bipartite graph structures relating 6 discrete variables

Beal \& Ghahramani 2003

Example: Bayesian Gaussian Learning

$\ln P\left(x_{n} \mid \mu, \gamma^{-1}\right)=\left[\begin{array}{c}\gamma \mu \\ -\gamma / 2\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}x_{n} \\ x_{n}^{2}\end{array}\right]+\frac{1}{2}\left(\ln \gamma-\gamma \mu^{2}-\ln 2 \pi\right)$

$$
P(\mu)=\mathcal{N}(0,1000) \text { and } P(\gamma)=\operatorname{Gamma}(0.001,0.001)
$$

Winn \& Bishop 2005

Belief Propagation (Sum-Product)

BELIEFS: Posterior marginals

$$
\begin{gathered}
q_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right) \\
\Gamma(t)
\end{gathered} \longrightarrow_{\substack{\text { neighborhood of node } \mathrm{t} \\
\text { (adjacent nodes) }}}
$$

MESSAGES: Sufficient statistics

Mean Field versus Belief Propagation

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

Belief Propagation (Sum-Product) Messages:

$$
\begin{aligned}
m_{t s}\left(x_{s}\right) & \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right) \\
m_{t s}\left(x_{s}\right) & \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)}
\end{aligned}
$$

Replaces geometric (log-domain) mean by arithmetic mean, and divides by incoming message to avoid "double-counting" information (Naïve) Mean Field Messages:
$m_{t s}\left(x_{s}\right) \propto \exp \left\{-\sum_{x_{t}} \phi_{s t}\left(x_{s}, x_{t}\right) q_{t}\left(x_{t}\right)\right\} \quad \phi_{s t}\left(x_{s}, x_{t}\right)=-\psi_{s t}\left(x_{s}, x_{t}\right)$

Mean Field versus Belief Propagation

$$
\begin{aligned}
p(x) & =\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right) \quad \phi_{s t}\left(x_{s}, x_{t}\right)=-\psi_{s t}\left(x_{s}, x_{t}\right) \\
q_{t}\left(x_{t}\right) & \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right) \\
\mathrm{BP}: m_{t s}\left(x_{s}\right) & \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)}
\end{aligned}
$$

MF: $\quad m_{t s}\left(x_{s}\right) \propto \exp \left\{-\sum_{x_{t}} \phi_{s t}\left(x_{s}, x_{t}\right) q_{t}\left(x_{t}\right)\right\}$
Big implications from small changes:

- Belief Propagation: Produces exact marginals for any tree, but for general graphs no guarantees of convergence or accuracy
- Mean Field: Guaranteed to converge for general graphs, always lower-bounds partition function, but approximate even on trees

Sum-Product for Blocked Sampling

Global Directed Factorization: $p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)$

- Choose some node as the root of the tree, order by depth
- Define directed factorization from root to leaves:

$$
p(x)=p\left(x_{\mathrm{Root}}\right) \prod_{s} p\left(x_{s} \mid x_{\mathrm{Pa}(s)}\right)
$$

Bottom-Up Message Passing:

- Pass sum-product messages

$$
m_{t s}\left(x_{s}\right) \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)
$$ recursively from leaves to root

- Compute marginal of root node:

$$
q_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)
$$

Top-Down Recursive Sampling:

- Sample root from marginal, then sample by depth given parent:

$$
p\left(x_{s} \mid X_{t}=\hat{x}_{t}, t=\operatorname{Pa}(s)\right) \propto \psi_{t s}\left(\hat{x}_{t}, x_{s}\right) \psi_{s}\left(x_{s}\right) \prod_{u \in \Gamma(s) \backslash t} m_{u s}\left(x_{s}\right)
$$

- Suppose interested in some complex, global function of state:

$$
\mathbb{E}[f]=\int f(x) p(x \mid y) d x \approx \frac{1}{L} \sum_{\ell=1}^{L} f\left(x^{(\ell)}\right) \quad x^{(\ell)} \sim p(x \mid y)
$$

- Can efficiently draw joint samples from posterior marginals:
$>$ Forward Message Passing: $p\left(x_{t} \mid y\right), p\left(x_{t}, x_{t+1} \mid y\right)$
$>$ Backwards Sampling:
> Backwards Sampling:

$$
\begin{aligned}
x_{T}^{(\ell)} & \sim p\left(x_{T} \mid y\right) \\
x_{T-1}^{(\ell)} & \sim p\left(x_{T-1} \mid x_{T}^{(\ell)}, y\right) \quad\left(x_{1}^{(\ell)}, x_{2}^{(\ell)}, \ldots, x_{T}^{(\ell)}\right) \sim p(x \mid y) \\
x_{T-2}^{(\ell)} & \sim p\left(x_{T-2} \mid x_{T-1}^{(\ell)}, y\right)
\end{aligned}
$$

Monte Carlo Estimation

- Procedure only tractable for a limited class of models:
$>$ Discrete states: Sum-product belief propagation algorithm
$>$ Gaussian continuous states: Kalman smoothing algorithm
- Can efficiently draw joint samples from posterior marginals:
$>$ Forward Message Passing: $\quad p\left(x_{t} \mid y\right), p\left(x_{t}, x_{t+1} \mid y\right)$
> Backwards Sampling:

$$
\begin{aligned}
x_{T}^{(\ell)} & \sim p\left(x_{T} \mid y\right) \\
x_{T-1}^{(\ell)} & \sim p\left(x_{T-1} \mid x_{T}^{(\ell)}, y\right) \quad\left(x_{1}^{(\ell)}, x_{2}^{(\ell)}, \ldots, x_{T}^{(\ell)}\right) \sim p(x \mid y) \\
x_{T-2}^{(\ell)} & \sim p\left(x_{T-2} \mid x_{T-1}^{(\ell)}, y\right)
\end{aligned}
$$

Example: Bayesian HMMs

Given a previous set of state-specific transition probabilities $\boldsymbol{\pi}^{(n-1)}$, the global transition distribution $\beta^{(n-1)}$, and emission parameters $\boldsymbol{\theta}^{(n-1)}$:

1. Set $\boldsymbol{\pi}=\boldsymbol{\pi}^{(n-1)}$ and $\boldsymbol{\theta}=\boldsymbol{\theta}^{(n-1)}$. Working sequentially backwards in time, calculate messages $m_{t, t-1}(k)$:
(a) For each $k \in\{1, \ldots, L\}$, initialize messages to

$$
m_{T+1, T}(k)=1
$$

(b) For each $t \in\{T-1, \ldots, 1\}$ and for each $k \in\{1, \ldots, L\}$, compute

$$
m_{t, t-1}(k)=\sum_{j=1}^{L} \pi_{k}(j) \mathcal{N}\left(y_{t} ; \mu_{j}, \Sigma_{j}\right) m_{t+1, t}(j)
$$

2. Sample state assignments $z_{1: T}$ working sequentially forward in time, starting with $n_{j k}=0$ and $\mathcal{Y}_{k}=\emptyset$ for each $(j, k) \in\{1, \ldots, L\}^{2}$:

(a) For each $k \in\{1, \ldots, L\}$, compute the probability

$$
f_{k}\left(y_{t}\right)=\pi_{z_{t-1}}(k) \mathcal{N}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right) m_{t+1, t}(k)
$$

(b) Sample a state assignment z_{t} :

$$
z_{t} \sim \sum_{k=1}^{L} f_{k}\left(y_{t}\right) \delta\left(z_{t}, k\right)
$$

(c) Increment $n_{z_{t-1} z_{t}}$ and add y_{t} to the cached statistics for the new assignment $z_{t}=k$:

$$
\mathcal{Y}_{k} \leftarrow \mathcal{Y}_{k} \oplus y_{t}
$$

Standard Gibbs

Blocked Gibbs

