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qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) mij(xj) ∝ exp

{
−

∫

Xi

φji(xj , xi) qi(xi) dxi

}

Figure 2.12. Message passing implementation of the naive mean field method. Left: Approximate
marginal densities are determined from the normalized product of the local observation potential with
messages sent from neighboring nodes. Right: Given an updated marginal estimate, new messages are
calculated and transmitted to all neighbors.

Here, γ̄i is a constant chosen to satisfy the marginalization constraint. Due to the
pairwise relationships in the free energy of eq. (2.104), the marginal qi(xi) at node i
depends directly on the corresponding marginals at neighboring nodes Γ(i). Thus, even
though Q is fully factorized, the corresponding mean field solution desirably propagates
information from local potentials throughout the graph.

To implement the mean field method, we must have a tractable representation
for the marginal densities qi(xi), and a corresponding algorithm for updating these
marginals. Consider the following decomposition of the mean field fixed point equation
(eq. (2.106)):

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) i ∈ V (2.107)

mji(xi) ∝ exp

{
−

∫

Xj

φij(xi, xj) qj(xj) dxj

}
j ∈ Γ(i) (2.108)

We interpret mji(xi) as a message sent from j to its neighboring node i. As illustrated
in Fig. 2.12, mean field algorithms alternate between updating a local marginal estimate
(eq. (2.107)), and using this new marginal to calculate an updated message for each
neighbor (eq. (2.108)). If marginals are updated sequentially, the mean field algorithm
is a form of coordinate descent which converges to a local minimum of the free energy
(eq. (2.104)). Parallel updates are also possible, but do not guarantee convergence.

If Xi takes K discrete values, we can represent messages and marginals by K–
dimensional vectors. The integration of eq. (2.108) then becomes a summation, allowing
direct message computation in O(K2) operations. For hidden variables defined on
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•  For continuous variables, valid with sum replaced by integral 
•  If marginals place all of their mass on a single state, becomes 

equivalent to Gibbs sampling update equations 
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•  Initialization: Randomly select starting distribution 
•  E-Step: Given parameters, find posterior of hidden data 

 
 

•  M-Step: Given posterior distributions, find likely parameters 
 
 

•  Iteration: Alternate E-step & M-step until convergence 
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p(x, θ |y, m) requires knowing its normalising constant, the marginal likelihood. In-
stead we use a simpler, factorised approximation to q(x, θ) ≈ qx(x)qθ(θ):

ln p(y |m) ≥
∫

qx(x)qθ(θ) ln
p(y,x, θ |m)

qx(x)qθ(θ)
dx dθ = Fm(qx(x), qθ(θ),y). (5)

The quantity F is a functional of the free distributions qx(x) and qθ(θ).

2.2. Variational Bayesian EM
The variational Bayesian algorithm iteratively maximises F in equation (5) with respect
to the free distributions, qx(x) and qθ(θ). We use elementary calculus of variations to
take functional derivatives of the lower bound with respect qx(x) and qθ(θ), each while
holding the other fixed. This results in the following update equations where the
superscript (t) denotes the iteration number.

q(t+1)
x (x) ∝ exp

[∫
ln p(x,y | θ, m) q(t)

θ (θ) dθ

]
(6)

q(t+1)
θ (θ) ∝ p(θ |m) exp

[∫
ln p(x,y | θ, m) q(t+1)

x (x) dx

]
. (7)

Clearly qθ(θ) and qxi(xi) are coupled, so we iterate these equations until convergence.
Readers familiar with the EM algorithm (Dempster et al. , 1977) may note the simi-
larity between this iterative algorithm and EM. We call this procedure the Variational
Bayesian EM Algorithm for reasons which will become clearer in the following sections;
see also Attias (2000) and Ghahramani and Beal (2001).

Re-writing (5), it is easy to see that maximising F is equivalent to minimising the
KL divergence between qx(x) qθ(θ) and the joint posterior p(x, θ |y, m):

ln p(y |m)−Fm(qx(x), qθ(θ),y) =

∫
qx(x) qθ(θ) ln

qx(x) qθ(θ)

p(θ,x |y, m)
dx dθ = KL(q‖p) . (8)

Note that whilst this factorisation of the posterior distribution over latent variables
and parameters may seem drastic, one can think of it as replacing stochastic depen-
dencies between x and θ with deterministic dependencies between relevant moments of
the two sets of variables.

Variational methods for lower bounding probabilities have been explored by several
researchers in the past decade. Hinton and van Camp (1993) proposed an early ap-
proach for Bayesian learning of one-hidden layer neural networks using the restriction
that qθ(θ) is Gaussian. Neal and Hinton (1998) presented a generalisation of EM which
made use of Jensen’s inequality to allow partial E-steps. Jordan et al. (1998) review
variational methods in a general context. Variational Bayesian methods have been ap-
plied to various models with latent variables (Waterhouse et al. , 1995; MacKay, 1997;
Bishop, 1999; Attias, 2000; Ghahramani and Beal, 2000). The structural EM algo-
rithm for scoring discrete graphical models (Friedman, 1998) is closely related to the
variational method described here except that in (6) the distribution over θ is replaced
by the MAP estimate.

Temporary notation change:  observations y, hidden variables x 
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3. CONJUGATE-EXPONENTIAL MODELS
We consider a particular class of graphical models with latent variables, which we call
conjugate-exponential (CE) models. We explicitly apply the variational method to these
parametric families, resulting in a simple generalisation of EM3. Conjugate-exponential
models satisfy two conditions:
Condition (1). The complete data likelihood is that of an exponential family:
p(x,y | θ) = f(x,y) g(θ) exp

{
φ(θ)Tu(x,y)

}
, where φ(θ) is the vector of natural pa-

rameters, and u and f and g are the functions that define the exponential family.
Condition (2). The parameter prior is conjugate to the complete data likelihood:
p(θ | η, ν) = h(η, ν) g(θ)η exp

{
φ(θ)T ν

}
, where η and ν are hyperparameters.

Theorem. (Conjugate-Exponential Models). Given an iid data set y =
{y1, . . .yn}, if the model satisfies conditions (1) and (2), then at every iteration of
the variational Bayesian EM algorithm and at the maxima of F(qx(x), qθ(θ),y):

(a) qθ(θ) is conjugate with parameters η̃ = η + n, ν̃ = ν +
∑n

i=1 u(yi):

qθ(θ) = h(η̃, ν̃)g(θ)η̃ exp
{
φ(θ)T ν̃

}
(9)

where u(yi) = Eqxi
(u(xi,yi)), using Eqxi

to denote expectation under the varia-
tional posterior over the latent variable(s) associated with the ith datum.

(b) qx(x) =
∏n

i=1 qxi(xi) with

qxi(xi) = p(xi |yi, φ) ∝ f(xi,yi) exp
{
φ

T
u(xi,yi)

}
(10)

where φ = Eqθ
(φ(θ)), the expectation of the natural parameter.

Proof. Substitute the parametric forms from the definition of the CE family into the
variational extrema given in (6) and (7), revealing forms for qx(x) and qθ(θ) according
to (10) and (9) respectively. For CE models these forms are then closed under itera-
tions of variational Bayesian EM, ensuring the Theorem continues to hold through to
convergence to a local maximum of the lower bound on the marginal likelihood.

3.1. Comparison of Variational Bayesian EM and EM for MAP estimation
It is instructive to compare (6) and (7) with the EM algorithm for MAP estimation.
We use an alternative derivation of EM due to Neal and Hinton (1998):

EM for MAP estimation Variational Bayesian EM

Goal: maximise p(θ |y, m) w.r.t. θ Goal: lower bound p(y |m)

E Step: compute VB-E Step: compute
q(t+1)
x (x) = p(x |y, θ(t)) q(t+1)

x (x) = p(x |y, φ
(t)

)

M Step: VB-M Step:
θ(t+1) =arg maxθ

∫
q(t+1)
x (x) ln p(x,y,θ) dx q(t+1)

θ (θ) ∝ exp
[∫

q(t+1)
x (x) ln p(x,y,θ) dx

]

The Variational Bayesian EM algorithm reduces to the ordinary EM algorithm
if we restrict the parameter density to a point estimate (i.e. Dirac delta function),

3This section follows the exposition in Ghahramani and Beal (2001), which also includes several
general results for directed and undirected graphs.
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variational extrema given in (6) and (7), revealing forms for qx(x) and qθ(θ) according
to (10) and (9) respectively. For CE models these forms are then closed under itera-
tions of variational Bayesian EM, ensuring the Theorem continues to hold through to
convergence to a local maximum of the lower bound on the marginal likelihood.

3.1. Comparison of Variational Bayesian EM and EM for MAP estimation
It is instructive to compare (6) and (7) with the EM algorithm for MAP estimation.
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∫
q(t+1)
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θ (θ) ∝ exp
[∫

q(t+1)
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]

The Variational Bayesian EM algorithm reduces to the ordinary EM algorithm
if we restrict the parameter density to a point estimate (i.e. Dirac delta function),

3This section follows the exposition in Ghahramani and Beal (2001), which also includes several
general results for directed and undirected graphs.

M-Step:  Expected log-likelihood exponentiated to distribution 
E-Step:  Based on mean of natural parameters, not mode 
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Proof. Substitute the parametric forms from the definition of the CE family into the
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convergence to a local maximum of the lower bound on the marginal likelihood.

3.1. Comparison of Variational Bayesian EM and EM for MAP estimation
It is instructive to compare (6) and (7) with the EM algorithm for MAP estimation.
We use an alternative derivation of EM due to Neal and Hinton (1998):
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q(t+1)
x (x) = p(x |y, θ(t)) q(t+1)

x (x) = p(x |y, φ
(t)

)

M Step: VB-M Step:
θ(t+1) =arg maxθ

∫
q(t+1)
x (x) ln p(x,y,θ) dx q(t+1)

θ (θ) ∝ exp
[∫

q(t+1)
x (x) ln p(x,y,θ) dx

]

The Variational Bayesian EM algorithm reduces to the ordinary EM algorithm
if we restrict the parameter density to a point estimate (i.e. Dirac delta function),

3This section follows the exposition in Ghahramani and Beal (2001), which also includes several
general results for directed and undirected graphs.
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Figure 1. (left) The true structure used to generate the data—one of 136 possible distinct structures
accounting for permutations of latent variables. (right) Marginal likelihood estimates at n = 480 for
all structures using MAP, AIS, VB and BIC scores, plotted against the number of free parameters in the
structure (staggered for each number of parameters for clarity). The true structure has 50 parameters
(vertical line); the highest scoring structure for each method is shown with a bold symbol.

qθ(θ) = δ(θ − θ∗). The VB-E step has about the same time complexity as the E
step, and is in all ways identical except that it is re-written in terms of the expected
natural parameters, φ. In particular, we can make use of all relevant propagation
algorithms such as junction tree, Kalman smoothing, or belief propagation. The VB-M
step computes a distribution over parameters (in the conjugate family) rather than a
point estimate. Both algorithms monotonically increase an objective function.

4. VARIATIONAL SCORING OF MODEL STRUCTURES
We apply the variational method to the non-trivial problem of learning the conditional
independence structure of directed acyclic graphical models with latent variables. We
compare our VB bounds for the marginal likelihood to the standard method of scoring
graphs based on the Bayesian Information Criterion (BIC; Schwarz, 1978), and also to
a sampling-based gold standard: Annealed Importance Sampling (AIS; Neal, 2001).

We consider a small graph consisting of six discrete variables: two binary-valued
latent (hidden) variables and four observed variables each of cardinality five. We restrict
ourselves to all bipartite structures in which latent variables are parents of the observed
variables. We are interested in how successful different scoring methods are at learning
from data the true graph structure (i.e. which latent variables are parents of which
observed variables). Since all variables are discrete, by placing independent Dirichlet
priors on all parameters the model becomes conjugate-exponential.

Data was generated from the graph shown in Figure 1; we call this the “true”
structure. We instantiated a setting of this graph’s parameters under the prior (once
only), and generated incrementally larger data sets from the model.4 We chose this
particular structure because it contains enough links to induce non-trivial correlations
amongst the observed variables, whilst it has few enough nodes that we can exhaustively
evaluate the marginal likelihood of all possible alternative structures.5

4Experiments averaging results over multiple true structures and parameter settings would have been
prohibitive as our sampling runs took over 300 CPU hours.

5Exhaustive enumeration is of academic interest only—in practice one would embed different structure
scoring methods in a greedy model search outer loop (Friedman, 1998) to find probable structures.
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Figure 2. (left) Rank given to the true structure by each scoring method for varying data set sizes
(higher in plot is better). (right) AIS estimates of the marginal likelihood for n = 480, for different
initial conditions of the sampler against different duration annealing schedules (∗ indicates setting initial
parameters to true values). Shown are also the BIC score (dashed) and the VB lower bound (solid).

4.1. Annealed Importance Sampling (AIS)

We estimate Z1 ≡
∫

p(θ |m)p(y | θ, m) dθ by computing Z1
Z0

=
Zτ(1)

Zτ(0)

Zτ(2)

Zτ(1)
. . .

Zτ(T )

Zτ(T−1)
where

0 = τ(0) ≤ τ(1) . . . ≤ τ(T ) = 1, and Zτ ≡
∫

p(θ |m)p(y | θ, m)τdθ. The sequence
τ(0) . . . τ(T ) is an annealing schedule of inverse temperatures. Each ratio Zτ(t)

Zτ(t−1)
is

estimated by running a Metropolis sampler for θ(i) ∼ p(θ |m)p(y | θ, m)τ(t−1)/Zτ(t−1),
and computing the importance estimate: 1

N

∑
i p(y | θ(i), m)τ(t)−τ(t−1). This estimate of

Zτ(t)

Zτ(t−1)
is unbiased if each step is sampled from equilibrium; we approximate this by

taking one sample at each τ and changing τ very slowly.

4.2. Experiments
Scoring all possible structures with MAP, BIC, VB, and AIS. There are 136
distinct structures with the basic architecture described above. For a large range of
data set sizes, we ran EM on each structure to compute the MAP estimate of the param-
eters, and from it computed the BIC score. We also ran the variational Bayesian EM
algorithm with the same initial conditions to obtain the lower bound on the marginal
likelihood. Finally we estimated the marginal likelihood using AIS, annealing from the
prior to the posterior in 16384 steps, with a nonlinear annealing schedule in τ tuned to
reduce the variance in the estimate, and a Metropolis proposal tuned to give reasonable
acceptance rates. In Figure 1 we have shown the MAP, AIS, VB and BIC scores for
each structure, ordered by number of parameters, for 480 data points. This data set
size was chosen as it was the smallest in which both VB and AIS gave the highest score
to the true structure. We can see the general upward trend for MAP, which prefers
more complex structures and the general downward trend for BIC which (over)penalises
complexity. AIS lies above the VB lower bound for all structures as we would expect.
At 480 data points VB appears to be close to AIS and finds the correct structure.

Rank of the True Model. Figure 2 shows the rank out of 136 given by each scoring
method to the true structure for 20 data set sizes. All methods eventually find the
correct structure, although the AIS rank is noisy, which may be due to annealing too
rapidly (we examine the effect of annealing time on AIS below). BIC finds it at 1120
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VARIATIONAL MESSAGE PASSING

N N(b) (c) (d)(a) NN

µ γµ γµ

{mxn→µ} {mxn→γ}
mµ→xnmγ→xn

γ µ γ

xn xn xn xn

Figure 3: (a)-(d) Message passing procedure for variational inference in a univariate Gaussian
model. The box around the xi node denotes a plate, which indicates that the contained
node and its connected edges are duplicated N times. The braces around the messages
leaving the plate indicate that a set of N distinct messages are being sent.

=

[
− 1
2(xn−µ)2

1
2

]T[
γ
lnγ

]
− ln2π (22)

which shows that, for conjugacy, uµ(µ) must be [µ,µ2]T and uγ(γ) must be [γ, lnγ]T or linear trans-
forms of these.4 If we use a separate conjugate prior for each parameter then µmust have a Gaussian
prior and γ a gamma prior since these are the exponential family distributions with these natural
statistic vectors. Alternatively, we could have chosen a normal-gamma prior over both parameters
which leads to a slightly more complicated message passing procedure. We define the parameter
priors to have hyper-parameters m, β, a and b, so that

lnP(µ|m,β) =

[
βm

−β/2

]T[
µ
µ2

]
+
1
2
(lnβ−βm2− ln2π)

lnP(γ |a,b) =

[
−b
a−1

]T[
γ
lnγ

]
+a lnb− lnΓ(a).

3.4.1 VARIATIONAL MESSAGE PASSING IN THE UNIVARIATE GAUSSIAN MODEL

We can now apply variational message passing to infer the distributions over µ and γ variationally.
The variational distribution is fully factorised and takes the form

Q(µ,γ) = Qµ(µ)Qγ(γ).

We start by initialising Qµ(µ) and Qγ(γ) and find initial values of 〈uµ(µ)〉 and 〈uγ(γ)〉. Let us
choose to update Qµ(µ) first, in which case variational message passing will proceed as follows
(illustrated in Figure 3a-d).

(a) As we wish to updateQµ(µ), we must first ensure that messages have been sent to the children
of µ by any co-parents. Thus, messages mγ→xn are sent from γ to each of the observed nodes
xn. These messages are the same, and are just equal to 〈uγ(γ)〉 = [〈γ〉,〈lnγ〉]T, where the
expectation are with respect to the initial setting of Qγ.

4. To prevent the need for linear transformation of messages, a normalised form of natural statistic vectors will always
be used, for example [µ,µ2]T or [γ, lnγ]T.
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which follows from (17). The new expectation of the natural statistic vector 〈uY 〉Q∗
Y
can then be

found, as it is a deterministic function of φ∗Y .
The variational message passing algorithm uses these messages to optimise the variational dis-

tribution iteratively, as described in Algorithm 1 below. This algorithm requires that the lower
bound L(Q) be evaluated, which will be discussed in Section 3.6.

Algorithm 1 The variational message passing algorithm

1. Initialise each factor distribution Qj by initialising the corresponding moment vector
〈u j(Xj)〉.

2. For each node Xj in turn,

• Retrieve messages from all parent and child nodes, as defined in (18) and (19). This will
require child nodes to retrieve messages from the co-parents of Xj.

• Compute updated natural parameter vector φ∗j using (20).
• Compute updated moment vector 〈u j(Xj)〉 given the new setting of the parameter vector.

3. Calculate the new value of the lower bound L(Q) (if required).

4. If the increase in the bound is negligible or a specified number of iterations has been reached,
stop. Otherwise repeat from step 2.

3.4 Example: the Univariate Gaussian Model

To illustrate how variational message passing works, let us apply it to a model which represents a
set of observed one-dimensional data {xn}Nn=1 with a univariate Gaussian distribution of mean µ and
precision γ,

P(x |H ) =
N

∏
n=1

N (xn |µ,γ−1).

We wish to infer the posterior distribution over the parameters µ and γ. In this simple model the
exact solution is tractable, which will allow us to compare the approximate posterior with the true
posterior. Of course, for any practical application of VMP, the exact posterior would not be tractable
otherwise we would not be using approximate inference methods.

In this model, the conditional distribution of each data point xn is a univariate Gaussian, which
is in the exponential family and so its logarithm can be expressed in standard form as

lnP(xn |µ,γ−1) =

[
γµ

−γ/2

]T[
xn
x2n

]
+
1
2
(lnγ− γµ2− ln2π)

and so ux(xn) = [xn,x2n]T. This conditional can also be written so as to separate out the dependencies
on µ and γ

lnP(xn |µ,γ−1) =

[
γxn
−γ/2

]T[
µ
µ2

]
+
1
2
(lnγ− γx2n− ln2π) (21)
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Figure 4: Contour plots of the variational and true posterior over the mean µ and precision γ of
a Gaussian distribution, given four samples from N (x |5,1). The parameter priors are
P(µ) = N (0,1000) and P(γ) = Gamma(0.001,0.001).

messages in VMP can be passed according to a very flexible schedule. At any point, any factor can
be selected and it can be updated locally using only messages from its neighbours and co-parents.
There is no requirement that factors be updated in any particular order. However, changing the up-
date order can change which stationary point the algorithm converges to, even if the initialisation is
unchanged.

Another constraint on belief propagation is that it is only exact for graphs which are trees and
suffers from double-counting if loops are included. VMP does not have this restriction and can be
applied to graphs of general form.

3.6 Calculation of the Lower Bound L(Q)

The variational message passing algorithm makes use of the lower bound L(Q) as a diagnostic of
convergence. Evaluating the lower bound is also useful for performing model selection, or model
averaging, because it provides an estimate of the log evidence for the model.

The lower bound can also play a useful role in helping to check the correctness both of the ana-
lytical derivation of the update equations and of their software implementation, simply by evaluating
the bound after updating each factor in the variational posterior distribution and checking that the
value of the bound does not decrease. This can be taken a stage further (Bishop and Svensén, 2003)
by using numerical differentiation applied to the lower bound. After each update, the gradient of the
bound is evaluated in the subspace corresponding to the parameters of the updated factor, to check
that it is zero (within numerical tolerances). This requires that the differentiation take account of
any constraints on the parameters (for instance that they be positive or that they sum to one). These
checks, of course, provide necessary but not sufficient conditions for correctness. Also, they add
computational cost so would typically only be employed whilst debugging the implementation.

In previous applications of variational inference, however, the evaluation of the lower bound
has typically been done using separate code from that used to implement the update equations.
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value of the bound does not decrease. This can be taken a stage further (Bishop and Svensén, 2003)
by using numerical differentiation applied to the lower bound. After each update, the gradient of the
bound is evaluated in the subspace corresponding to the parameters of the updated factor, to check
that it is zero (within numerical tolerances). This requires that the differentiation take account of
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Belief Propagation (Sum-Product) 
BELIEFS:  Posterior marginals 

MESSAGES:  Sufficient statistics 

neighborhood of node t 
(adjacent nodes) 

I)  Message Product 
II) Message Propagation 
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Mean Field versus Belief Propagation 
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Belief Propagation (Sum-Product) Messages: 

(Naïve) Mean Field Messages: 
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Replaces geometric (log-domain) mean by arithmetic mean, 
and divides by incoming message to avoid “double-counting” information  



Mean Field versus Belief Propagation 
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MF: 

Big implications from small changes: 
•  Belief Propagation:  Produces exact marginals for any tree, but  

for general graphs no guarantees of convergence or accuracy 
•  Mean Field:  Guaranteed to converge for general graphs, always 

lower-bounds partition function, but approximate even on trees 



Sum-Product for Blocked Sampling 
Global Directed Factorization:   
•  Choose some node as the root 

of the tree, order by depth 
•  Define directed factorization 

from root to leaves: 
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Bottom-Up Message Passing: 
•  Pass sum-product messages 

recursively from leaves to root 
•  Compute marginal of root node: 
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Top-Down Recursive Sampling: 
•  Sample root from marginal, then sample by depth given parent: 
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Monte Carlo Estimation 

E[f ] =
Z

f(x)p(x | y) dx ⇡ 1

L

LX

`=1

f(x(`)) x

(`) ⇠ p(x | y)

•  Suppose interested in some complex, global function of state: 

•  Can efficiently draw joint samples from posterior marginals: 
Ø  Forward Message Passing: 
Ø Backwards Sampling:   

p(xt | y), p(xt, xt+1 | y)

x

(`)
T ⇠ p(xT | y)

x

(`)
T�1 ⇠ p(xT�1 | x(`)

T , y)

x

(`)
T�2 ⇠ p(xT�2 | x(`)

T�1, y)

(x(`)
1 , x

(`)
2 , . . . , x

(`)
T ) ⇠ p(x | y)



Monte Carlo Estimation 

•  Procedure only tractable for a limited class of models: 
Ø Discrete states:  Sum-product belief propagation algorithm 
Ø Gaussian continuous states:  Kalman smoothing algorithm 

•  Can efficiently draw joint samples from posterior marginals: 
Ø  Forward Message Passing: 
Ø Backwards Sampling:   

p(xt | y), p(xt, xt+1 | y)
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Example: Bayesian HMMs 
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FIG. 5. (a) Graphical representation of the sticky HDP-HMM. The state evolves as
zt+1|{πk}∞k=1, zt ∼ πzt , where πk |α,κ,β ∼ DP(α + κ, (αβ + κδk)/(α + κ)) and β|γ ∼ GEM(γ ),
and observations are generated as yt |{θk}∞k=1, zt ∼ F(θzt ). The original HDP-HMM has
κ = 0. (b) Sticky HDP-HMM with DP emissions, where st indexes the state-specific mixture
component generating observation yt . The DP prior dictates that st |{ψk}∞k=1, zt ∼ ψzt for
ψk |σ ∼ GEM(σ ). The j th Gaussian component of the kth mixture density is parameterized by θk,j

so yt |{θk,j }∞k,j=1, zt , st ∼ F(θzt ,st ).

persistence, the flexible nature of the HDP-HMM prior allows for state sequences
with unrealistically fast dynamics to have large posterior probability. For example,
with multinomial emissions, a good explanation of the data is to divide different
observation values into unique states and then rapidly switch between them (see
Figure 1). In such cases, many models with redundant states may have large poste-
rior probability, thus impeding our ability to identify a compact dynamical model
which best explains the observations. The problem is compounded by the fact that
once this alternating pattern has been instantiated by the sampler, its persistence
is then reinforced by the properties of the Chinese restaurant franchise, thus slow-
ing mixing rates. Furthermore, this fragmentation of data into redundant states can
reduce predictive performance, as is discussed in Section 6. In many applications,
one would like to be able to incorporate prior knowledge that slow, smoothly vary-
ing dynamics are more likely.

To address these issues, we propose to instead model the transition distributions
πj as follows:

β|γ ∼ GEM(γ ),
(5.1)

πj |α,κ,β ∼ DP
(
α + κ,

αβ + κδj

α + κ

)
.

Here, (αβ + κδj ) indicates that an amount κ > 0 is added to the j th component
of αβ . Informally, what we are doing is increasing the expected probability of
self-transition by an amount proportional to κ :

E[πjk|β,κ] = αβk + κδ(j, k)

α + κ
.(5.2)
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Given a previous set of state-specific transition probabilities π(n−1), the global transition
distribution β(n−1), and emission parameters θ(n−1):

1. Set π = π(n−1) and θ = θ(n−1). Working sequentially backwards in time, calculate
messagesmt,t−1(k) :

(a) For each k ∈ {1, . . . , L}, initialize messages to
mT+1,T (k) = 1

(b) For each t ∈ {T − 1, . . . , 1} and for each k ∈ {1, . . . , L}, compute

mt,t−1(k) =

L
∑

j=1

πk(j)N (yt; µj , Σj)mt+1,t(j)

2. Sample state assignments z1:T working sequentially forward in time, starting with njk = 0
and Yk = ∅ for each (j, k) ∈ {1, . . . , L}2:

(a) For each k ∈ {1, . . . , L}, compute the probability
fk(yt) = πzt−1

(k)N (yt; µk, Σk)mt+1,t(k)

(b) Sample a state assignment zt:

zt ∼

L
∑

k=1

fk(yt)δ(zt, k)

(c) Increment nzt−1zt and add yt to the cached statistics for the new assignment zt = k:
Yk ← Yk ⊕ yt

3. Sample the auxiliary variablesm,w, and m̄ as in step 3 of Algorithm 1.

4. Update the global transition distribution by sampling
β ∼ Dir(γ/L + m̄·1, . . . , γ/L + m̄·L)

5. For each k ∈ {1, . . . , L}, sample a new transition distribution and emission parameter
based on the sampled state assignments

πk ∼ Dir(αβ1 + nk1, . . . ,αβk + κ+ nkk, . . . ,αβL + nkL)

θk ∼ p(θ | λ,Yk)

See Supplementary Material D.4.1 for details on resampling θk.

6. Fix π(n) = π, β(n) = β, and θ(n) = θ.

7. Optionally, resample the hyperparameters γ, α, and κ as described in Supplementary
Material E.

Algorithm 3: Blocked Gibbs sampler for the sticky HDP-HMM. The algorithm for the
original HDP-HMM follows directly by setting κ = 0. Here, we assume Gaussian ob-
servations with an independent Gaussian prior on the mean and inverse-Wishart prior on
the covariance (see Supplementary Material D.4.1). The set Yk is comprised of the statis-
tics obtained from the observations assigned to state k that are necessary for updating the
parameter θk = {µk, Σk}. The ⊕ operator updates these cached statistics as a new assign-
ment is made.
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FIG. 6. (a) Observation sequence (blue) and true state sequence (red) for a three-state HMM with
state persistence. (b) Example of the sticky HDP-HMM direct assignment Gibbs sampler splitting
temporally separated examples of the same true state (red) into multiple estimated states (blue)
at Gibbs iteration 1000. (c) Histogram of the inferred self-transition proportion parameter, ρ, for
the sticky HDP-HMM blocked sampler. For the original HDP-HMM, the median (solid blue) and
10th and 90th quantiles (dashed red) of Hamming distance between the true and estimated state
sequences over the first 1000 Gibbs samples from 200 chains are shown for the (d) direct assign-
ment sampler, and (e) blocked sampler. (f) Hamming distance over 30,000 Gibbs samples from three
chains of the original HDP-HMM blocked sampler. (g)–(i) Analogous plots to (d) and (f) for the
sticky HDP-HMM. (k) and (l) Plots analogous to (e) and (f) for a nonsticky HDP-HMM using beam
sampling. (j) A histogram of the effective beam sampler truncation level, Leff, over the 30,000 Gibbs
iterations from the three chains (blue) compared to the fixed truncation level, L = 20, used in the
truncated sticky HDP-HMM blocked sampler results (red).
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