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Mean Field versus Belief Propagation 
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MF: 

Big implications from small changes: 
•  Mean Field:  Guaranteed to converge for general graphs, always 

lower-bounds partition function, but approximate even on trees 
•  Belief Propagation:  Produces exact marginals for any tree, but  

for general graphs no guarantees of convergence or accuracy 
•  Goal:  Can we justify and generalize loopy BP? 
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Mean Field Free Energy 
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Mean Field Entropy: 

Mean Field Average Energy (expected sufficient statistics): 



Markov Chain Factorizations 
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Tree Structured Variational Methods 
•  Trees exactly factorize as 

•  We may then optimize over all distributions which are 
Markov with respect to a tree-structured graph:  

Marginal 
Entropies 

Mutual 
Information 
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Tree Structured Variational Methods 
•  Trees exactly factorize as 

•  We may then optimize over all distributions which are 
Markov with respect to a tree-structured graph:  
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Bethe Variational Approximations 
Bethe approximation uses the tree-
structured free energy form even 

though the graph has cycles  
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Optimization must enforce marginalization constraints 



Bethe Variational Lagrangian 
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Constraints not explicitly enforced: 
qs(xs) � 0, qst(xs, xt) � 0

Implied by other  
equality constraints 

Inactive, will be automatically 
satisfied by solution we derive 



Derivation: Bethe to Loopy BP 
Derivation on whiteboard.  For details, see: 
•  Wainwright & Jordan, Graphical Models, Exponential 

Families, & Variational Inference.   
Foundations and Trends in Machine Learning, 2008, Sec. 4.1. 

•  Yedidia, Freeman, & Weiss, Understanding Belief Propagation 
and its Generalizations. 
Exploring Artificial Intelligence in the New Millennium, 2002. 



BP Algorithm 



BP Algorithm 



BP Algorithm 



Bethe Approximations and Loopy BP 
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•  For a tree-structure graphical model, entropy approximation 
becomes exact, and unique solution gives true marginals 

•  For general graphs, there is a correspondence between 
fixed points of the loopy belief propagation algorithm and 
stationary points of the Bethe variational objective 

•  Biggest practical applications: 
•  Alternative, stable algorithms for Bethe objective 
•  Message passing algorithms from fancier objectives 



Implications for Loopy BP 
Bethe Free Energy is an Approximation 

• BP may have multiple fixed points (non-convex) 

• BP is not guaranteed to converge 

• Few general guarantees on BP’s accuracy 

Characterizations of BP Fixed Points 

• All graphical models have at least one BP fixed point 

• Stable fixed points are local minima of Bethe 

• For graphs with cycles, BP is almost never exact 

• As cycles grow long, BP becomes exact (coding) 



Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

• Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 



Structured Mean Field 
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MF: 

For the special case of a discrete pairwise MRF: 
•  Choose a subset of core edges which form no cycles 
•  On core edges, apply BP message updates 
•  On other edges, apply MF message updates 
•  Guaranteed convergent, optimizes lower bound on Z 
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