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Tree Structured Variational Methods 
•  Trees exactly factorize as 

•  We may then optimize over all distributions which are 
Markov with respect to a tree-structured graph:  
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Mean Field & Belief Propagation 

Original Graph 
(Loopy BP) Naïve Mean Field Structured 

Mean Field 

Partition the graph edges into two sets: 
Ec core edges, dependence directly modeled: qst(xs, xt)
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MF & BP:  Variational Objective 
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MF & BP:  Message Passing 

xt

•  Naïve mean field:  All edges in residual, guaranteed convergent 
•  Structured mean field:  Acyclic subset of edges in core, remainder in 

residual, guaranteed convergent and strictly more expressive 
•  Loopy belief propagation:  All edges in core, captures most direct 

dependences, but approximation uncontrolled and may not converge 
•  All methods:  Exist one, or more, fixed points (possibly non-convex).  

Strongest convergence guarantees for sequential message updates. 
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Exponential Families: Inference & Learning 
3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

M , {µ 2 Rd | 9 p such that Ep[�(x)] = µ}

p(x | ✓) = exp{✓T�(x)�A(✓)}
A(✓) = log

Z

X
exp{✓T�(x)} dx

⌦ , {✓ 2 Rd | A(✓) < +1}

Alternative Representations: 
Canonical parameters or moments 

Inference:  Find moments of model with known parameters 

µ = r✓A(✓) = E✓[�(x)] =

Z

X
�(x)p(x | ✓) dx

Learning:  Find model parameters matching data moments 

E✓̂[�(x)] = µ̂

inverse of mapping required for inference 

µ̂ =
1

N

NX

`=1

�(x(`)) µ̂ =
1

↵+N

✓
↵µ0 +

NX

`=1

�(x(`))

◆ML: MAP: 
(conjugate 

prior) 



Discrete Variables & Marginal Polytopes 
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56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as





0 0 1
1 0 −1
0 1 −1
−1 −1 1








µ1

µ2

µ12



 ≥





0
0
0
−1




.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.

Pair of Binary Variables 

M = conv{�(x) | x 2 X} convex hull of possible configurations 
3.4 Mean Parameterization and Inference Problems 55

Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | 〈aj , µ〉 ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V ) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].

General Convex Polytope 

M , {µ 2 Rd | 9 p such that Ep[�(x)] = µ} ✓ [0, 1]d
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To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as
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These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.

•  Number of vertices always 
exponential in number of variables 
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where the mean parameters µ = E[X] and Σ11 = E[X2] must satisfy
the quadratic constraint Σ11 − µ2 ≥ 0.

The set M is always a convex subset of Rd. Indeed, if µ and µ′ are
both elements of M, then there must exist distributions p and p′ that
realize them, meaning that µ = Ep[φ(X)] and µ′ = Ep′ [φ(X)]. For any
λ ∈ [0,1], the convex combination µ(λ) := λµ + (1 − λ)µ′ is realized by
the mixture distribution λp + (1 − λ)p′, so that µ(λ) also belongs to
M. In Appendix B.3, we summarize further properties of M that hold
for general exponential families.

The case of discrete random variables yields a set M with some spe-
cial properties. More specifically, for any random vector (X1,X2, . . .Xm)
such that the associated state space X m is finite, we have the
representation

M =

{
µ ∈ Rd | µ =

∑

x∈X m

φ(x)p(x) for some p(x) ≥ 0,

∑

x∈X m

p(x) = 1

}

= conv{φ(x),x ∈ X m}, (3.28)

where conv denotes the convex hull operation (see Appendix A.2). Con-
sequently, when |X m| is finite, the set M is — by definition — a convex
polytope.

The Minkowski–Weyl theorem [203], stated in Appendix A.2, pro-
vides an alternative description of a convex polytope. As opposed
to the convex hull of a finite collection of vectors, any polytope M
can also be characterized by a finite collection of linear inequality
constraints. Explicitly, for any polytope M, there exists a collection
{(aj , bj) ∈ Rd × R | j ∈ J } with |J | finite such that

M = {µ ∈ Rd | 〈aj , µ〉 ≥ bj ∀j ∈ J }. (3.29)

In geometric terms, this representation shows that M is equal to the
intersection of a finite collection of half-spaces, as illustrated in Fig-
ure 3.5. Let us show the distinction between the convex hull (3.28) and
linear inequality (3.29) representations using the Ising model.
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To make these ideas more concrete, consider the simplest nontrivial
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(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
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[0,1]3.

•  Number of faces exponential in general, 
but grows linearly with problem size for 
certain graph topologies 
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Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

64 Graphical Models as Exponential Families

definition of M allows for mean parameters µ ∈ Rd generated by any
possible distribution, not just distributions pθ in the exponential family
defined by the sufficient statistics φ. It turns out that this extra free-
dom does not really enlarge the set M; as Theorem 3.3 makes precise,
under suitable conditions, all mean parameters in M can be realized
by an exponential family distribution (or, for boundary points, by a
limiting sequence of such distributions).
We begin with a result addressing the first question:

Proposition 3.2. The gradient mapping ∇A : Ω→M is one-to-one
if and only if the exponential representation is minimal.

Proof. If the representation is not minimal, then there must exist a
nonzero vector γ ∈ Rd for which 〈γ, φ(x)〉 is a constant (almost surely
with respect to ν). Given any parameter θ1 ∈ Ω, let us define another
parameter vector θ2 = θ1 + tγ, where t ∈ R. Since Ω is open, choosing
t sufficiently small ensures that θ2 ∈ Ω as well. By the condition on
the vector γ, the densities pθ1 and pθ2 induce the same probability
distribution (only their normalization constants differ). For this pair,
we have ∇A(θ1) =∇A(θ2), so that ∇A is not one-to-one.

Conversely, if the representation is minimal, then A is strictly con-
vex by Proposition 3.1. For any strictly convex and differentiable func-
tion, we have A(θ2) > A(θ1) + 〈∇A(θ1), θ2 − θ1〉, for all θ1 '= θ2 in the
domain Ω. The same inequality also holds with the roles of θ1 and θ2

reversed; adding together these inequalities yields that

〈∇A(θ1) − ∇A(θ2), θ1 − θ2〉 > 0

for all distinct θ1,θ2 ∈ Ω, which shows that ∇A is one-to-one.

In general, although the gradient mapping ∇A is not one-to-one for
an overcomplete representation, there is still a one-to-one correspon-
dence between each element of ∇A(Ω) and an affine subset of Ω. In
particular, this affine subset contains all those canonical parameters θ
that are mapped to the same mean parameter. For either a minimal
or an overcomplete representation, we say that a pair (θ,µ) is dually

66 Graphical Models as Exponential Families

between A and the maximum entropy principle is specified precisely in
terms of the conjugate dual function A∗, to which we now turn.

3.6 Conjugate Duality: Maximum Likelihood and
Maximum Entropy

Conjugate duality is a cornerstone of convex analysis [112, 203], and
is a natural source for variational representations. In this section, we
explore the relationship between the log partition function A and its
conjugate dual function A∗. This conjugate relationship is defined by a
variational principle that is central to the remainder of this survey, in
that it underlies a wide variety of known algorithms, both of an exact
nature (e.g., the junction tree algorithm and its special cases of Kalman
filtering, the forward–backward algorithm, peeling algorithms) and an
approximate nature (e.g., sum-product on graphs with cycles, mean
field, expectation-propagation, Kikuchi methods, linear programming,
and semidefinite relaxations).

3.6.1 General Form of Conjugate Dual

Given a function A, the conjugate dual function to A, which we denote
by A∗, is defined as follows:

A∗(µ) := sup
θ∈Ω

{〈µ, θ〉 − A(θ)}. (3.42)

Here µ ∈ Rd is a fixed vector of so-called dual variables of the same
dimension as θ. Our choice of notation — i.e., using µ again —
is deliberately suggestive, in that these dual variables turn out to
have a natural interpretation as mean parameters. Indeed, we have
already mentioned one statistical interpretation of this variational prob-
lem (3.42); in particular, the right-hand side is the optimized value of
the rescaled log likelihood (3.38). Of course, this maximum likelihood
problem only makes sense when the vector µ belongs to the set M; an
example is the vector of empirical moments µ̂ = 1

n

∑n
i=1φ(Xi) induced

by a set of data Xn
1 = {X1, . . . ,Xn}. In our development, we consider

the optimization problem (3.42) more broadly for any vector µ ∈ Rd. In
this context, it is necessary to view A∗ as a function taking values in the
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(b) In terms of this dual, the log partition function has the
variational representation

A(θ) = sup
µ∈M

{
〈θ, µ〉 − A∗(µ)

}
. (3.45)

(c) For all θ ∈ Ω, the supremum in Equation (3.45) is attained
uniquely at the vector µ ∈M◦ specified by the moment-
matching conditions

µ =
∫

X m
φ(x)pθ(x)ν(dx) = Eθ[φ(X)]. (3.46)

Theorem 3.4(a) provides a precise statement of the duality between
the cumulant function A and entropy. A few comments on this relation-
ship are in order. First, it is important to recognize that A∗ is a slightly
different object than the usual entropy (3.2): whereas the entropy maps
density functions to real numbers (and so is a functional), the dual func-
tion A∗ is an extended real-valued function on Rd, finite only for valid
mean parameters µ ∈M.

Second, the value −A∗(µ) corresponds to the optimum of the maxi-
mum entropy problem (3.3), where µ ∈ Rd parameterizes the constraint
set. The event A∗(µ) = +∞ corresponds to infeasibility of the maxi-
mum entropy problem. This is an important point. Constrained opti-
mization problems are defined both by the set being optimized over and
the function being optimized. Given that the variational representation
of the cumulant function in (3.45) takes the form of a maximization
problem, we see that vectors µ for which −A∗(µ) = −∞ can certainly
not be optima. Thus, it suffices to maximize over the set M instead
of Rd, as expressed in the variational representation (3.45). This fact
implies that the nature of the set M plays a critical role in determining
the complexity of computing the cumulant function.

Third, Theorem 3.4 also clarifies the precise nature of the bijection
between the sets Ω and M◦, which holds for any minimal exponential
family. In particular, the gradient mapping ∇A maps Ω in a one-to-one
manner onto M◦, whereas the inverse mapping from M◦ to Ω is given
by the gradient ∇A∗ of the dual function (see Appendix B.3 for more
details). Figure 3.8 provides an idealized illustration of this bijective
correspondence based on the gradient mappings (∇A,∇A∗).
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Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate
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coupled if µ =∇A(θ). This notion of dual coupling plays an important
role in the sequel.

We now turn to the second issue regarding the image ∇A(Ω) of
the domain of valid canonical parameters Ω under the gradient map-
ping ∇A. Specifically, the goal is to determine for which mean parame-
ter vectors µ ∈M does there exist a vector θ = θ(µ) ∈ Ω such that
Eθ[φ(X)] = µ. The solution turns out to be rather simple: the image
∇A(Ω) is simply the interior M◦. This fact is remarkable: it means
that (disregarding boundary points) all mean parameters M that are
realizable by some distribution can be realized by a member of the
exponential family. To provide some intuition into this fact, consider
the maximum entropy problem (3.3) for a given mean parameter µ
in the interior of M. As discussed earlier, when a solution to this
problem exists, it necessarily takes the form of an exponential fam-
ily member, say pθ(µ). Moreover, from the optimality conditions for the
maximum entropy problem, this exponential family member must sat-
isfy the moment-matching conditions Eθ(µ)[φ(X)] = µ. Note that these
moment-matching conditions are identical to those defining the maxi-
mum likelihood problem (3.38) — as we discuss in the following section,
this fact is not coincidental, but rather a consequence of the primal–
dual relationship between maximum entropy and maximum likelihood.

Theorem 3.3. In a minimal exponential family, the gradient map
∇A is onto the interior of M, denoted by M◦. Consequently, for each
µ ∈M◦, there exists some θ = θ(µ) ∈ Ω such that Eθ[φ(X)] = µ.

We provide the proof of this result in Appendix B. In conjunction
with Proposition 3.2, Theorem 3.3 guarantees that for minimal expo-
nential families, each mean parameter µ ∈M◦ is uniquely realized by
some density pθ(µ) in the exponential family. However, a typical expo-
nential family {pθ | θ ∈ Ω} describes only a strict subset of all possible
densities (with respect to the given base measure ν). In this case, there
must exist at least some other density p — albeit not a member of an
exponential family — that also realizes µ. The distinguishing property
of the exponential distribution pθ(µ) is that, among the set of all dis-
tributions that realize µ, it has the maximum entropy. The connection
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3.6 Conjugate Duality: Maximum Likelihood and
Maximum Entropy
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explore the relationship between the log partition function A and its
conjugate dual function A∗. This conjugate relationship is defined by a
variational principle that is central to the remainder of this survey, in
that it underlies a wide variety of known algorithms, both of an exact
nature (e.g., the junction tree algorithm and its special cases of Kalman
filtering, the forward–backward algorithm, peeling algorithms) and an
approximate nature (e.g., sum-product on graphs with cycles, mean
field, expectation-propagation, Kikuchi methods, linear programming,
and semidefinite relaxations).

3.6.1 General Form of Conjugate Dual

Given a function A, the conjugate dual function to A, which we denote
by A∗, is defined as follows:

A∗(µ) := sup
θ∈Ω

{〈µ, θ〉 − A(θ)}. (3.42)

Here µ ∈ Rd is a fixed vector of so-called dual variables of the same
dimension as θ. Our choice of notation — i.e., using µ again —
is deliberately suggestive, in that these dual variables turn out to
have a natural interpretation as mean parameters. Indeed, we have
already mentioned one statistical interpretation of this variational prob-
lem (3.42); in particular, the right-hand side is the optimized value of
the rescaled log likelihood (3.38). Of course, this maximum likelihood
problem only makes sense when the vector µ belongs to the set M; an
example is the vector of empirical moments µ̂ = 1
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∑n
i=1φ(Xi) induced

by a set of data Xn
1 = {X1, . . . ,Xn}. In our development, we consider

the optimization problem (3.42) more broadly for any vector µ ∈ Rd. In
this context, it is necessary to view A∗ as a function taking values in the

68 Graphical Models as Exponential Families

(b) In terms of this dual, the log partition function has the
variational representation

A(θ) = sup
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{
〈θ, µ〉 − A∗(µ)
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. (3.45)

(c) For all θ ∈ Ω, the supremum in Equation (3.45) is attained
uniquely at the vector µ ∈M◦ specified by the moment-
matching conditions

µ =
∫

X m
φ(x)pθ(x)ν(dx) = Eθ[φ(X)]. (3.46)

Theorem 3.4(a) provides a precise statement of the duality between
the cumulant function A and entropy. A few comments on this relation-
ship are in order. First, it is important to recognize that A∗ is a slightly
different object than the usual entropy (3.2): whereas the entropy maps
density functions to real numbers (and so is a functional), the dual func-
tion A∗ is an extended real-valued function on Rd, finite only for valid
mean parameters µ ∈M.

Second, the value −A∗(µ) corresponds to the optimum of the maxi-
mum entropy problem (3.3), where µ ∈ Rd parameterizes the constraint
set. The event A∗(µ) = +∞ corresponds to infeasibility of the maxi-
mum entropy problem. This is an important point. Constrained opti-
mization problems are defined both by the set being optimized over and
the function being optimized. Given that the variational representation
of the cumulant function in (3.45) takes the form of a maximization
problem, we see that vectors µ for which −A∗(µ) = −∞ can certainly
not be optima. Thus, it suffices to maximize over the set M instead
of Rd, as expressed in the variational representation (3.45). This fact
implies that the nature of the set M plays a critical role in determining
the complexity of computing the cumulant function.

Third, Theorem 3.4 also clarifies the precise nature of the bijection
between the sets Ω and M◦, which holds for any minimal exponential
family. In particular, the gradient mapping ∇A maps Ω in a one-to-one
manner onto M◦, whereas the inverse mapping from M◦ to Ω is given
by the gradient ∇A∗ of the dual function (see Appendix B.3 for more
details). Figure 3.8 provides an idealized illustration of this bijective
correspondence based on the gradient mappings (∇A,∇A∗).
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extended real line R∗ = R ∪ {+∞}, as is standard in convex analysis
(see Appendix A.2.5 for more details).

As we have previously intimated, the conjugate dual function (3.42)
is very closely connected to entropy. Recall the definition (3.2) of the
Shannon entropy. The main result of the following theorem is that when
µ ∈M◦, the value of the dual function A∗(µ) is precisely the negative
entropy of the exponential family distribution pθ(µ), where θ(µ) is the
unique vector of canonical parameters satisfying the relation

Eθ(µ)[φ(X)] =∇A(θ(µ)) = µ. (3.43)

We will also find it essential to consider µ /∈M◦, in which case it is
impossible to find canonical parameters satisfying the relation (3.43). In
this case, the behavior of the supremum defining A∗(µ) requires a more
delicate analysis. In fact, denoting by M the closure of M, it turns out
that whenever µ /∈M, then A∗(µ) = +∞. This fact is essential in the
use of variational methods: it guarantees that any optimization problem
involving the dual function can be reduced to an optimization problem
over M. Accordingly, a great deal of our discussion in the sequel will be
on the structure of M for various graphical models, and various approx-
imations to M for models in which its structure is overly complex.

More formally, the following theorem, proved in Appendix B.2, provides
a precise characterization of the relation between A and its conjugate
dual A∗:

Theorem 3.4.

(a) For any µ ∈M◦, denote by θ(µ) the unique canonical
parameter satisfying the dual matching condition (3.43).
The conjugate dual function A∗ takes the form

A∗(µ) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M.
(3.44)

For any boundary point µ ∈M\M◦ we have
A∗(µ) = lim

n→+∞
A∗(µn) taken over any sequence {µn} ⊂M◦

converging to µ.
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Fig. 3.9 A block diagram decomposition of A∗ as the composition of two functions. Any
mean parameter µ ∈ M◦ is first mapped back to a canonical parameter θ(µ) in the inverse
image (∇A)−1(µ). The value of A∗(µ) corresponds to the negative entropy −H(pθ(µ)) of
the associated exponential family density pθ(µ).

rapidly with the graph size. Indeed, unless fundamental conjectures in
complexity theory turn out to be false, it is not even possible to opti-
mize a linear function over M for a general discrete MRF. In addition
to the complexity of the constraint set, issue (b) highlights that even
evaluating the cost function at a single point µ ∈M, let alone optimiz-
ing it over M, is extremely difficult.

To understand the complexity inherent in evaluating the dual value
A∗(µ), note that Theorem 3.4 provides only an implicit characteri-
zation of A∗ as the composition of mappings: first, the inverse map-
ping (∇A)−1 : M◦→ Ω, in which µ maps to θ(µ), corresponding to the
exponential family member with mean parameters µ; and second, the
mapping from θ(µ) to the negative entropy −H(pθ(µ)) of the associ-
ated exponential family density. This decomposition of the value A∗(µ)
is illustrated in Figure 3.9. Consequently, computing the dual value
A∗(µ) at some point µ ∈M◦ requires computing the inverse map-
ping (∇A)−1(µ), in itself a nontrivial problem, and then evaluating
the entropy, which requires high-dimensional integration for general
graphical models. These difficulties motivate the use of approximations
to M and A∗. Indeed, as shown in the sections to follow, a broad class
of methods for approximate marginalization are based on this strategy
of finding an approximation to the exact variational principle, which is
then often solved using some form of message-passing algorithm.
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Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

66 Graphical Models as Exponential Families

between A and the maximum entropy principle is specified precisely in
terms of the conjugate dual function A∗, to which we now turn.

3.6 Conjugate Duality: Maximum Likelihood and
Maximum Entropy

Conjugate duality is a cornerstone of convex analysis [112, 203], and
is a natural source for variational representations. In this section, we
explore the relationship between the log partition function A and its
conjugate dual function A∗. This conjugate relationship is defined by a
variational principle that is central to the remainder of this survey, in
that it underlies a wide variety of known algorithms, both of an exact
nature (e.g., the junction tree algorithm and its special cases of Kalman
filtering, the forward–backward algorithm, peeling algorithms) and an
approximate nature (e.g., sum-product on graphs with cycles, mean
field, expectation-propagation, Kikuchi methods, linear programming,
and semidefinite relaxations).

3.6.1 General Form of Conjugate Dual

Given a function A, the conjugate dual function to A, which we denote
by A∗, is defined as follows:

A∗(µ) := sup
θ∈Ω

{〈µ, θ〉 − A(θ)}. (3.42)

Here µ ∈ Rd is a fixed vector of so-called dual variables of the same
dimension as θ. Our choice of notation — i.e., using µ again —
is deliberately suggestive, in that these dual variables turn out to
have a natural interpretation as mean parameters. Indeed, we have
already mentioned one statistical interpretation of this variational prob-
lem (3.42); in particular, the right-hand side is the optimized value of
the rescaled log likelihood (3.38). Of course, this maximum likelihood
problem only makes sense when the vector µ belongs to the set M; an
example is the vector of empirical moments µ̂ = 1

n

∑n
i=1φ(Xi) induced

by a set of data Xn
1 = {X1, . . . ,Xn}. In our development, we consider

the optimization problem (3.42) more broadly for any vector µ ∈ Rd. In
this context, it is necessary to view A∗ as a function taking values in the
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(b) In terms of this dual, the log partition function has the
variational representation

A(θ) = sup
µ∈M

{
〈θ, µ〉 − A∗(µ)

}
. (3.45)

(c) For all θ ∈ Ω, the supremum in Equation (3.45) is attained
uniquely at the vector µ ∈M◦ specified by the moment-
matching conditions

µ =
∫

X m
φ(x)pθ(x)ν(dx) = Eθ[φ(X)]. (3.46)

Theorem 3.4(a) provides a precise statement of the duality between
the cumulant function A and entropy. A few comments on this relation-
ship are in order. First, it is important to recognize that A∗ is a slightly
different object than the usual entropy (3.2): whereas the entropy maps
density functions to real numbers (and so is a functional), the dual func-
tion A∗ is an extended real-valued function on Rd, finite only for valid
mean parameters µ ∈M.

Second, the value −A∗(µ) corresponds to the optimum of the maxi-
mum entropy problem (3.3), where µ ∈ Rd parameterizes the constraint
set. The event A∗(µ) = +∞ corresponds to infeasibility of the maxi-
mum entropy problem. This is an important point. Constrained opti-
mization problems are defined both by the set being optimized over and
the function being optimized. Given that the variational representation
of the cumulant function in (3.45) takes the form of a maximization
problem, we see that vectors µ for which −A∗(µ) = −∞ can certainly
not be optima. Thus, it suffices to maximize over the set M instead
of Rd, as expressed in the variational representation (3.45). This fact
implies that the nature of the set M plays a critical role in determining
the complexity of computing the cumulant function.

Third, Theorem 3.4 also clarifies the precise nature of the bijection
between the sets Ω and M◦, which holds for any minimal exponential
family. In particular, the gradient mapping ∇A maps Ω in a one-to-one
manner onto M◦, whereas the inverse mapping from M◦ to Ω is given
by the gradient ∇A∗ of the dual function (see Appendix B.3 for more
details). Figure 3.8 provides an idealized illustration of this bijective
correspondence based on the gradient mappings (∇A,∇A∗).
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extended real line R∗ = R ∪ {+∞}, as is standard in convex analysis
(see Appendix A.2.5 for more details).

As we have previously intimated, the conjugate dual function (3.42)
is very closely connected to entropy. Recall the definition (3.2) of the
Shannon entropy. The main result of the following theorem is that when
µ ∈M◦, the value of the dual function A∗(µ) is precisely the negative
entropy of the exponential family distribution pθ(µ), where θ(µ) is the
unique vector of canonical parameters satisfying the relation

Eθ(µ)[φ(X)] =∇A(θ(µ)) = µ. (3.43)

We will also find it essential to consider µ /∈M◦, in which case it is
impossible to find canonical parameters satisfying the relation (3.43). In
this case, the behavior of the supremum defining A∗(µ) requires a more
delicate analysis. In fact, denoting by M the closure of M, it turns out
that whenever µ /∈M, then A∗(µ) = +∞. This fact is essential in the
use of variational methods: it guarantees that any optimization problem
involving the dual function can be reduced to an optimization problem
over M. Accordingly, a great deal of our discussion in the sequel will be
on the structure of M for various graphical models, and various approx-
imations to M for models in which its structure is overly complex.

More formally, the following theorem, proved in Appendix B.2, provides
a precise characterization of the relation between A and its conjugate
dual A∗:

Theorem 3.4.

(a) For any µ ∈M◦, denote by θ(µ) the unique canonical
parameter satisfying the dual matching condition (3.43).
The conjugate dual function A∗ takes the form

A∗(µ) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M.
(3.44)

For any boundary point µ ∈M\M◦ we have
A∗(µ) = lim

n→+∞
A∗(µn) taken over any sequence {µn} ⊂M◦

converging to µ.

3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 67

extended real line R∗ = R ∪ {+∞}, as is standard in convex analysis
(see Appendix A.2.5 for more details).

As we have previously intimated, the conjugate dual function (3.42)
is very closely connected to entropy. Recall the definition (3.2) of the
Shannon entropy. The main result of the following theorem is that when
µ ∈M◦, the value of the dual function A∗(µ) is precisely the negative
entropy of the exponential family distribution pθ(µ), where θ(µ) is the
unique vector of canonical parameters satisfying the relation

Eθ(µ)[φ(X)] =∇A(θ(µ)) = µ. (3.43)

We will also find it essential to consider µ /∈M◦, in which case it is
impossible to find canonical parameters satisfying the relation (3.43). In
this case, the behavior of the supremum defining A∗(µ) requires a more
delicate analysis. In fact, denoting by M the closure of M, it turns out
that whenever µ /∈M, then A∗(µ) = +∞. This fact is essential in the
use of variational methods: it guarantees that any optimization problem
involving the dual function can be reduced to an optimization problem
over M. Accordingly, a great deal of our discussion in the sequel will be
on the structure of M for various graphical models, and various approx-
imations to M for models in which its structure is overly complex.

More formally, the following theorem, proved in Appendix B.2, provides
a precise characterization of the relation between A and its conjugate
dual A∗:

Theorem 3.4.

(a) For any µ ∈M◦, denote by θ(µ) the unique canonical
parameter satisfying the dual matching condition (3.43).
The conjugate dual function A∗ takes the form

A∗(µ) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M.
(3.44)

For any boundary point µ ∈M\M◦ we have
A∗(µ) = lim

n→+∞
A∗(µn) taken over any sequence {µn} ⊂M◦

converging to µ.
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(b) In terms of this dual, the log partition function has the
variational representation

A(θ) = sup
µ∈M

{
〈θ, µ〉 − A∗(µ)

}
. (3.45)

(c) For all θ ∈ Ω, the supremum in Equation (3.45) is attained
uniquely at the vector µ ∈M◦ specified by the moment-
matching conditions

µ =
∫

X m
φ(x)pθ(x)ν(dx) = Eθ[φ(X)]. (3.46)

Theorem 3.4(a) provides a precise statement of the duality between
the cumulant function A and entropy. A few comments on this relation-
ship are in order. First, it is important to recognize that A∗ is a slightly
different object than the usual entropy (3.2): whereas the entropy maps
density functions to real numbers (and so is a functional), the dual func-
tion A∗ is an extended real-valued function on Rd, finite only for valid
mean parameters µ ∈M.

Second, the value −A∗(µ) corresponds to the optimum of the maxi-
mum entropy problem (3.3), where µ ∈ Rd parameterizes the constraint
set. The event A∗(µ) = +∞ corresponds to infeasibility of the maxi-
mum entropy problem. This is an important point. Constrained opti-
mization problems are defined both by the set being optimized over and
the function being optimized. Given that the variational representation
of the cumulant function in (3.45) takes the form of a maximization
problem, we see that vectors µ for which −A∗(µ) = −∞ can certainly
not be optima. Thus, it suffices to maximize over the set M instead
of Rd, as expressed in the variational representation (3.45). This fact
implies that the nature of the set M plays a critical role in determining
the complexity of computing the cumulant function.

Third, Theorem 3.4 also clarifies the precise nature of the bijection
between the sets Ω and M◦, which holds for any minimal exponential
family. In particular, the gradient mapping ∇A maps Ω in a one-to-one
manner onto M◦, whereas the inverse mapping from M◦ to Ω is given
by the gradient ∇A∗ of the dual function (see Appendix B.3 for more
details). Figure 3.8 provides an idealized illustration of this bijective
correspondence based on the gradient mappings (∇A,∇A∗).
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Fig. 3.9 A block diagram decomposition of A∗ as the composition of two functions. Any
mean parameter µ ∈ M◦ is first mapped back to a canonical parameter θ(µ) in the inverse
image (∇A)−1(µ). The value of A∗(µ) corresponds to the negative entropy −H(pθ(µ)) of
the associated exponential family density pθ(µ).

rapidly with the graph size. Indeed, unless fundamental conjectures in
complexity theory turn out to be false, it is not even possible to opti-
mize a linear function over M for a general discrete MRF. In addition
to the complexity of the constraint set, issue (b) highlights that even
evaluating the cost function at a single point µ ∈M, let alone optimiz-
ing it over M, is extremely difficult.

To understand the complexity inherent in evaluating the dual value
A∗(µ), note that Theorem 3.4 provides only an implicit characteri-
zation of A∗ as the composition of mappings: first, the inverse map-
ping (∇A)−1 : M◦→ Ω, in which µ maps to θ(µ), corresponding to the
exponential family member with mean parameters µ; and second, the
mapping from θ(µ) to the negative entropy −H(pθ(µ)) of the associ-
ated exponential family density. This decomposition of the value A∗(µ)
is illustrated in Figure 3.9. Consequently, computing the dual value
A∗(µ) at some point µ ∈M◦ requires computing the inverse map-
ping (∇A)−1(µ), in itself a nontrivial problem, and then evaluating
the entropy, which requires high-dimensional integration for general
graphical models. These difficulties motivate the use of approximations
to M and A∗. Indeed, as shown in the sections to follow, a broad class
of methods for approximate marginalization are based on this strategy
of finding an approximation to the exact variational principle, which is
then often solved using some form of message-passing algorithm.
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Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate
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between A and the maximum entropy principle is specified precisely in
terms of the conjugate dual function A∗, to which we now turn.

3.6 Conjugate Duality: Maximum Likelihood and
Maximum Entropy

Conjugate duality is a cornerstone of convex analysis [112, 203], and
is a natural source for variational representations. In this section, we
explore the relationship between the log partition function A and its
conjugate dual function A∗. This conjugate relationship is defined by a
variational principle that is central to the remainder of this survey, in
that it underlies a wide variety of known algorithms, both of an exact
nature (e.g., the junction tree algorithm and its special cases of Kalman
filtering, the forward–backward algorithm, peeling algorithms) and an
approximate nature (e.g., sum-product on graphs with cycles, mean
field, expectation-propagation, Kikuchi methods, linear programming,
and semidefinite relaxations).

3.6.1 General Form of Conjugate Dual

Given a function A, the conjugate dual function to A, which we denote
by A∗, is defined as follows:

A∗(µ) := sup
θ∈Ω

{〈µ, θ〉 − A(θ)}. (3.42)

Here µ ∈ Rd is a fixed vector of so-called dual variables of the same
dimension as θ. Our choice of notation — i.e., using µ again —
is deliberately suggestive, in that these dual variables turn out to
have a natural interpretation as mean parameters. Indeed, we have
already mentioned one statistical interpretation of this variational prob-
lem (3.42); in particular, the right-hand side is the optimized value of
the rescaled log likelihood (3.38). Of course, this maximum likelihood
problem only makes sense when the vector µ belongs to the set M; an
example is the vector of empirical moments µ̂ = 1

n

∑n
i=1φ(Xi) induced

by a set of data Xn
1 = {X1, . . . ,Xn}. In our development, we consider

the optimization problem (3.42) more broadly for any vector µ ∈ Rd. In
this context, it is necessary to view A∗ as a function taking values in the
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(b) In terms of this dual, the log partition function has the
variational representation

A(θ) = sup
µ∈M

{
〈θ, µ〉 − A∗(µ)

}
. (3.45)

(c) For all θ ∈ Ω, the supremum in Equation (3.45) is attained
uniquely at the vector µ ∈M◦ specified by the moment-
matching conditions

µ =
∫

X m
φ(x)pθ(x)ν(dx) = Eθ[φ(X)]. (3.46)

Theorem 3.4(a) provides a precise statement of the duality between
the cumulant function A and entropy. A few comments on this relation-
ship are in order. First, it is important to recognize that A∗ is a slightly
different object than the usual entropy (3.2): whereas the entropy maps
density functions to real numbers (and so is a functional), the dual func-
tion A∗ is an extended real-valued function on Rd, finite only for valid
mean parameters µ ∈M.

Second, the value −A∗(µ) corresponds to the optimum of the maxi-
mum entropy problem (3.3), where µ ∈ Rd parameterizes the constraint
set. The event A∗(µ) = +∞ corresponds to infeasibility of the maxi-
mum entropy problem. This is an important point. Constrained opti-
mization problems are defined both by the set being optimized over and
the function being optimized. Given that the variational representation
of the cumulant function in (3.45) takes the form of a maximization
problem, we see that vectors µ for which −A∗(µ) = −∞ can certainly
not be optima. Thus, it suffices to maximize over the set M instead
of Rd, as expressed in the variational representation (3.45). This fact
implies that the nature of the set M plays a critical role in determining
the complexity of computing the cumulant function.

Third, Theorem 3.4 also clarifies the precise nature of the bijection
between the sets Ω and M◦, which holds for any minimal exponential
family. In particular, the gradient mapping ∇A maps Ω in a one-to-one
manner onto M◦, whereas the inverse mapping from M◦ to Ω is given
by the gradient ∇A∗ of the dual function (see Appendix B.3 for more
details). Figure 3.8 provides an idealized illustration of this bijective
correspondence based on the gradient mappings (∇A,∇A∗).

68 Graphical Models as Exponential Families

(b) In terms of this dual, the log partition function has the
variational representation

A(θ) = sup
µ∈M

{
〈θ, µ〉 − A∗(µ)

}
. (3.45)

(c) For all θ ∈ Ω, the supremum in Equation (3.45) is attained
uniquely at the vector µ ∈M◦ specified by the moment-
matching conditions

µ =
∫

X m
φ(x)pθ(x)ν(dx) = Eθ[φ(X)]. (3.46)

Theorem 3.4(a) provides a precise statement of the duality between
the cumulant function A and entropy. A few comments on this relation-
ship are in order. First, it is important to recognize that A∗ is a slightly
different object than the usual entropy (3.2): whereas the entropy maps
density functions to real numbers (and so is a functional), the dual func-
tion A∗ is an extended real-valued function on Rd, finite only for valid
mean parameters µ ∈M.

Second, the value −A∗(µ) corresponds to the optimum of the maxi-
mum entropy problem (3.3), where µ ∈ Rd parameterizes the constraint
set. The event A∗(µ) = +∞ corresponds to infeasibility of the maxi-
mum entropy problem. This is an important point. Constrained opti-
mization problems are defined both by the set being optimized over and
the function being optimized. Given that the variational representation
of the cumulant function in (3.45) takes the form of a maximization
problem, we see that vectors µ for which −A∗(µ) = −∞ can certainly
not be optima. Thus, it suffices to maximize over the set M instead
of Rd, as expressed in the variational representation (3.45). This fact
implies that the nature of the set M plays a critical role in determining
the complexity of computing the cumulant function.

Third, Theorem 3.4 also clarifies the precise nature of the bijection
between the sets Ω and M◦, which holds for any minimal exponential
family. In particular, the gradient mapping ∇A maps Ω in a one-to-one
manner onto M◦, whereas the inverse mapping from M◦ to Ω is given
by the gradient ∇A∗ of the dual function (see Appendix B.3 for more
details). Figure 3.8 provides an idealized illustration of this bijective
correspondence based on the gradient mappings (∇A,∇A∗).

74 Graphical Models as Exponential Families

Fig. 3.9 A block diagram decomposition of A∗ as the composition of two functions. Any
mean parameter µ ∈ M◦ is first mapped back to a canonical parameter θ(µ) in the inverse
image (∇A)−1(µ). The value of A∗(µ) corresponds to the negative entropy −H(pθ(µ)) of
the associated exponential family density pθ(µ).

rapidly with the graph size. Indeed, unless fundamental conjectures in
complexity theory turn out to be false, it is not even possible to opti-
mize a linear function over M for a general discrete MRF. In addition
to the complexity of the constraint set, issue (b) highlights that even
evaluating the cost function at a single point µ ∈M, let alone optimiz-
ing it over M, is extremely difficult.

To understand the complexity inherent in evaluating the dual value
A∗(µ), note that Theorem 3.4 provides only an implicit characteri-
zation of A∗ as the composition of mappings: first, the inverse map-
ping (∇A)−1 : M◦→ Ω, in which µ maps to θ(µ), corresponding to the
exponential family member with mean parameters µ; and second, the
mapping from θ(µ) to the negative entropy −H(pθ(µ)) of the associ-
ated exponential family density. This decomposition of the value A∗(µ)
is illustrated in Figure 3.9. Consequently, computing the dual value
A∗(µ) at some point µ ∈M◦ requires computing the inverse map-
ping (∇A)−1(µ), in itself a nontrivial problem, and then evaluating
the entropy, which requires high-dimensional integration for general
graphical models. These difficulties motivate the use of approximations
to M and A∗. Indeed, as shown in the sections to follow, a broad class
of methods for approximate marginalization are based on this strategy
of finding an approximation to the exact variational principle, which is
then often solved using some form of message-passing algorithm.

To infer or approximate moments for known model, we can: 
•  Represent, or approximate, the marginal polytope 
•  Compute, bound, or approximate the entropy function 
•  Derive algorithms for resulting constrained optimization problem 
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Therefore, if the Gaussian mean field updates (5.21) converge, they
compute the correct mean vector. Moreover, the convergence behavior
of such updates is well understood: for instance, the updates (5.21)
are guaranteed to converge whenever −Θ is strictly diagonally dom-
inant; see Demmel [67] for further details on such Gauss–Jacobi and
Gauss–Seidel iterations for solving matrix-vector equations.

5.4 Nonconvexity of Mean Field

An important fact about the mean field approach is that the variational
problem (5.25) may be nonconvex, so that there may be local minima,
and the mean field updates can have multiple solutions. The source of
this nonconvexity can be understood in different ways, depending on
the formulation of the problem. As an illustration, let us return again
to naive mean field for the Ising model.

Example 5.4. (Nonconvexity for Naive Mean Field) We now
consider an example, drawn from Jaakkola [120], that illustrates
the nonconvexity of naive mean field for a simple model. Con-
sider a pair (X1,X2) of binary variates, taking values in the space2

{−1,+1}2, thereby defining a 3D exponential family of the form
pθ(x) ∝ exp(θ1x1 + θ2x2 + θ12x1x2), with associated mean parameters
µi = E[Xi] and µ12 = E[X1X2]. If the constraint µ12 = µ1µ2 is imposed
directly, as in the formulation (5.16), then the naive mean field objec-
tive function for this very special model takes the form:

f(µ1,µ2;θ) = θ12µ1µ2 + θ1µ1 + θ2µ2 + H(µ1) + H(µ2), (5.22)

where H(µi) = −1
2(1 + µi) log 1

2(1 + µi) − 1
2(1 − µi) log 1

2(1 − µi) are
the singleton entropies for the {−1,+1}-spin representation.

Now, let us consider a subfamily of such models, given by canonical
parameters of the form:

(θ1,θ2,θ12) =
(

0, 0,
1
4

log
q

1 − q

)
=: θ(q),

2 This model, known as a “spin” representation, is a simple transformation of the {0,1}2

state space considered earlier.
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Fig. 5.2 Two different perspectives on the nonconvexity of naive mean field for the Ising
model. (a) Illustration of the naive mean field objective function (5.22) for three different
parameter values: q ∈ {0.50,0.04,0.01}. For q = 0.50 and q = 0.04, the global maximum is
achieved at (µ1,µ2) = (0,0), whereas for q = 0.01, the point (0,0) is no longer a global
maximum. Instead the global maximum is achieved at two nonsymmetric points, (+µ,−µ)
and (−µ,+µ). (b) Nonconvexity can also be seen by examining the shape of the set of fully
factorized marginals for a pair of binary variables. The gray area shows the polytope defined
by the inequality (5.23), corresponding to the intersection of M(G) with the hyperplane
µ1 = µ2. The nonconvex quadratic set µ12 = µ2

1 corresponds to the intersection of this
projected polytope with the set MF0 (G) of fully factorized marginals.

where q ∈ (0,1) is a parameter. By construction, this model is
symmetric in X1 and X2, so that for any value of q ∈ (0,1),
we have E[X1] = E[X2] = 0. Moreover, some calculation shows that
q = P[X1 = X2].

For q = 0.50, the objective function f(µ1,µ2;θ(0.50)) achieves its
global maximum at (µ1,µ2) = (0,0), so that the mean field approxima-
tion is exact. (This exactness is to be expected since θ(0.50) = (0,0,0),
corresponding to a completely decoupled model.) As q decreases away
from 0.50, the objective function f starts to change, until for suitably
small q, the point (µ1,µ2) = (0,0) is no longer the global maximum —
in fact, it is not even a local maximum.

To illustrate this behavior explicitly, we consider the cross-section of
f obtained by setting µ1 = τ and µ2 = −τ , and then plot the 1D func-
tion f(τ,−τ ;θ(q)) for different values of q. As shown in Figure 5.2(a),
for q = 0.50, this 1D objective function has a unique global maximum at
τ = 0. As q decreases away from 0.50, the objective function gradually
flattens out, as shown in the change between q = 0.50 and q = 0.04.
For q sufficiently close to zero, the point τ = 0 is no longer a global
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tion is exact. (This exactness is to be expected since θ(0.50) = (0,0,0),
corresponding to a completely decoupled model.) As q decreases away
from 0.50, the objective function f starts to change, until for suitably
small q, the point (µ1,µ2) = (0,0) is no longer the global maximum —
in fact, it is not even a local maximum.

To illustrate this behavior explicitly, we consider the cross-section of
f obtained by setting µ1 = τ and µ2 = −τ , and then plot the 1D func-
tion f(τ,−τ ;θ(q)) for different values of q. As shown in Figure 5.2(a),
for q = 0.50, this 1D objective function has a unique global maximum at
τ = 0. As q decreases away from 0.50, the objective function gradually
flattens out, as shown in the change between q = 0.50 and q = 0.04.
For q sufficiently close to zero, the point τ = 0 is no longer a global
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maximum; instead, as shown in the curve for q = 0.01, the global max-
imum is achieved at the two points ±τ∗ on either side of τ = 0. Thus,
for sufficiently small q, the maximum of the objective function (5.22)
occurs at a pair µ∗

1 != µ∗
2, even though the original model is always sym-

metric. This phenomenon, known in the physics literature as “sponta-
neous symmetry-breaking”, is a manifestation of nonconvexity, since
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sponding to intersection with the hyperplane µ1 = µ2. In this case, the
four inequalities reduce to three simpler ones — namely:
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1, yielding a quadratic curve lying within
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Figure 5.2(b). Since this quadratic set is not convex, this establishes
that MF0(G) is not convex either. Indeed, if it were convex, then its
intersection with any hyperplane would also be convex.
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µ1 = µ2. The nonconvex quadratic set µ12 = µ2
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