Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 21:
Convexity, Duality, and Mean Field Methods

Some figures and examples courtesy M. Wainwright \& M. Jordan,
Graphical Models, Exponential Families, \& Variational Inference, 2008.

Tree Structured Variational Methods

- Trees exactly factorize as
$q(x)=\prod_{(s, t) \in \mathcal{E}} \frac{q_{s t}\left(x_{s}, x_{t}\right)}{q_{s}\left(x_{s}\right), q_{t}\left(x_{t}\right)} \prod_{s \in \mathcal{V}} q_{s}\left(x_{s}\right)$
- We may then optimize over all distributions which are Markov with respect to a tree-structured graph:

$$
\begin{aligned}
& D(q \| p)=-H(q)+\sum_{x} q(x) E(x)+\log Z \\
& \sum_{x} q(x) E(x)=\sum_{(s, t) \in \mathcal{E}} \sum_{x_{s}, x_{t}} q_{s t}\left(x_{s}, x_{t}\right) \phi_{s t}\left(x_{s}, x_{t}\right)+\sum_{s \in \mathcal{V}} \sum_{x_{s}} q_{s}\left(x_{s}\right) \phi_{s}\left(x_{s}\right) \\
& H(q)=\sum_{s \in \mathcal{V}} H_{s}\left(q_{s}\right)-\sum_{(s, t) \in \mathcal{E}} I_{s t}\left(q_{s t}\right) \\
& \begin{array}{l}
\text { Marginal } \\
\text { Entropies }
\end{array}
\end{aligned}
$$

Tree Structured Variational Methods

- Trees exactly factorize as

$$
q(x)=\prod_{(s, t) \in \mathcal{E}} \frac{q_{s t}\left(x_{s}, x_{t}\right)}{q_{s}\left(x_{s}\right), q_{t}\left(x_{t}\right)} \prod_{s \in \mathcal{V}} q_{s}\left(x_{s}\right)
$$

- We may then optimize over all distributions which are Markov with respect to a tree-structured graph:

$$
\begin{aligned}
D(q \| p) & =-H(q)+\sum_{x} q(x) E(x)+\log Z \\
\sum_{x} q(x) E(x) & =\sum_{(s, t) \in \mathcal{E}} \sum_{x_{s}, x_{t}} q_{s t}\left(x_{s}, x_{t}\right) \phi_{s t}\left(x_{s}, x_{t}\right)+\sum_{s \in \mathcal{V}} \sum_{x_{s}} q_{s}\left(x_{s}\right) \phi_{s}\left(x_{s}\right) \\
H(q) & =\sum_{s \in \mathcal{V}} H_{s}\left(q_{s}\right)-\sum_{(s, t) \in \mathcal{E}} I_{s t}\left(q_{s t}\right)
\end{aligned}
$$

$$
H_{s}\left(q_{s}\right)=-\sum_{x_{s}} q_{s}\left(x_{s}\right) \log q_{s}\left(x_{s}\right) \quad I_{s t}\left(q_{s t}\right)=\sum_{x_{s}, x_{t}} q_{s t}\left(x_{s}, x_{t}\right) \log \frac{q_{s t}\left(x_{s}, x_{t}\right)}{q_{s}\left(x_{s}\right) q_{t}\left(x_{t}\right)}
$$

Mean Field \& Belief Propagation

 $p(x)=\frac{1}{Z} \prod_{(s, t) \in \varepsilon} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{v_{\in \mathcal{V}}} \psi_{s}\left(x_{s}\right)$ $\phi_{s t}\left(x_{s}, x_{t}\right)=-\log \psi_{s t}\left(x_{s}, x_{t}\right)$ $\phi_{s}\left(x_{s}\right)=-\log \psi_{s}\left(x_{s}\right)$

Original Graph (Loopy BP)

Naïve Mean Field

Structured Mean Field

Partition the graph edges into two sets:
$\mathcal{E}_{c} \longrightarrow$ core edges, dependence directly modeled: $q_{s t}\left(x_{s}, x_{t}\right)$
$\mathcal{E}_{r} \longrightarrow$ residual edges, assume nodes factorize: $q_{s}\left(x_{s}\right) q_{t}\left(x_{t}\right)$

MF \& BP: Variational Objective

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right) \quad \begin{aligned}
\phi_{s t}\left(x_{s}, x_{t}\right) & =-\log \psi_{s t}\left(x_{s}, x_{t}\right) \\
\phi_{s}\left(x_{s}\right) & =-\log \psi_{s}\left(x_{s}\right)
\end{aligned}
$$

$\mathcal{L}(q, \lambda)=$
$+\sum_{s \in \mathcal{V}} \sum_{x_{s}} q_{s}\left(x_{s}\right)\left(\phi_{s}\left(x_{s}\right)+\log q_{s}\left(x_{s}\right)\right)$
$+\sum \sum q_{s}\left(x_{s}\right) q_{t}\left(x_{t}\right) \phi_{s t}\left(x_{s}, x_{t}\right)$
$+\sum_{(s, t) \in \mathcal{E}_{c}} \sum_{x_{s}, x_{t}}^{(s, t) \in \mathcal{E}_{r}} q_{s t}\left(x_{s}, x_{t}\right)\left(\phi_{s t}\left(x_{s}, x_{t}\right)+\log \frac{q_{s t}\left(x_{s}, x_{t}\right)}{q_{s}\left(x_{s}\right) q_{t}\left(x_{t}\right)}\right)$
$+\sum_{s \in \mathcal{V}} \lambda_{s s}\left(1-\sum_{x_{s}} q_{s}\left(x_{s}\right)\right)$
$+\sum_{(s, t) \in \mathcal{E}_{c}}\left[\sum_{x_{s}} \lambda_{t s}\left(x_{s}\right)\left(q_{s}\left(x_{s}\right)-\sum_{x_{t}} q_{s t}\left(x_{s}, x_{t}\right)\right)+\sum_{x_{t}} \lambda_{s t}\left(x_{t}\right)\left(q_{t}\left(x_{t}\right)-\sum_{x_{s}} q_{s t}\left(x_{s}, x_{t}\right)\right)\right]$

MF \& BP: Message Passing

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right) \quad \begin{aligned}
\phi_{s t}\left(x_{s}, x_{t}\right) & =-\log \psi_{s t}\left(x_{s}, x_{t}\right) \\
\phi_{s}\left(x_{s}\right) & =-\log \psi_{s}\left(x_{s}\right)
\end{aligned}
$$

Beliefs:
pseudo-
marginals

$$
q_{t}\left(x_{t}\right)=\frac{1}{Z_{t}} \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)
$$

$\begin{aligned} \text { MF: } & m_{t s}\left(x_{s}\right) \propto \exp \left\{-\sum_{x_{t}} \phi_{s t}\left(x_{s}, x_{t}\right) q_{t}\left(x_{t}\right)\right\}\end{aligned}$

BP: $m_{t s}\left(x_{s}\right) \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)}$

- Naïve mean field: All edges in residual, guaranteed convergent
- Structured mean field: Acyclic subset of edges in core, remainder in residual, guaranteed convergent and strictly more expressive
- Loopy belief propagation: All edges in core, captures most direct dependences, but approximation uncontrolled and may not converge
- All methods: Exist one, or more, fixed points (possibly non-convex). Strongest convergence guarantees for sequential message updates.

Exponential Families: Inference \& Learning

$p(x \mid \theta)=\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\} \quad A(\theta)=\log \int_{\mathcal{X}} \exp \left\{\theta^{T} \phi(x)\right\} d x$
Alternative Representations:
Canonical parameters or moments
$\Omega \triangleq\left\{\theta \in \mathbb{R}^{d} \mid A(\theta)<+\infty\right\}$
$\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ such that $\left.\mathbb{E}_{p}[\phi(x)]=\mu\right\}$

Inference: Find moments of model with known parameters

$$
\mu=\nabla_{\theta} A(\theta)=\mathbb{E}_{\theta}[\phi(x)]=\int_{\mathcal{X}} \phi(x) p(x \mid \theta) d x
$$

Learning: Find model parameters matching data moments
$\mathbb{E}_{\hat{\theta}}[\phi(x)]=\hat{\mu} \quad$ inverse of mapping required for inference
ML:

$$
\hat{\mu}=\frac{1}{N} \sum_{\ell=1}^{N} \phi\left(x^{(\ell)}\right) \quad \begin{gathered}
\text { MAP: } \\
\begin{array}{c}
\text { (conjugate } \\
\text { prior) }
\end{array} \\
\hat{\mu}
\end{gathered}=\frac{1}{\alpha+N}\left(\alpha \mu_{0}+\sum_{\ell=1}^{N} \phi\left(x^{(\ell)}\right)\right)
$$

Discrete Variables \& Marginal Polytopes

$$
\begin{aligned}
& p(x \mid \theta)=\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\} \quad A(\theta)=\log \sum_{\mathcal{X}} \exp \left\{\theta^{T} \phi(x)\right\} \\
& \mu=\nabla_{\theta} A(\theta)=\mathbb{E}_{\theta}[\phi(x)]=\sum_{\mathcal{X}} \phi(x) p(x \mid \theta)
\end{aligned}
$$

$\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ such that $\left.\mathbb{E}_{p}[\phi(x)]=\mu\right\} \subseteq[0,1]^{d}$
$\mathcal{M}=\operatorname{conv}\{\phi(x) \mid x \in \mathcal{X}\} \quad$ convex hull of possible configurations

General Convex Polytope

Pair of Binary Variables

Marginal Polytope: Vertices \& Faces

- Number of vertices always

$$
\mu_{s}=\mathbb{E}_{p}\left[X_{s}\right]=\mathbb{P}\left[X_{s}=1\right]
$$ exponential in number of variables

$$
\mu_{s t}=\mathbb{E}_{p}\left[X_{s} X_{t}\right]=\mathbb{P}\left[\left(X_{s}, X_{t}\right)=(1,1)\right]
$$

$$
\mathcal{M}=\operatorname{conv}\{\phi(x) \mid x \in \mathcal{X}\} \quad \operatorname{conv}\{(0,0,0),(1,0,0),(0,1,0),(1,1,1)\}
$$

- Number of faces exponential in general, but grows linearly with problem size for certain graph topologies
$\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid\left\langle a_{j}, \mu\right\rangle \geq b_{j} \forall j \in \mathcal{J}\right\}$

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\mu_{12}
\end{array}\right] \geq\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1
\end{array}\right]
$$

General Convex Polytope

Pair of Binary Variables

Conjugate Duality

Proposition 3.2. The gradient mapping $\nabla A: \Omega \rightarrow \mathcal{M}$ is one-to-one if and only if the exponential representation is minimal.

Conjugate Duality

Theorem 3.3. In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M}, denoted by \mathcal{M}°. Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

For any $\mu \in \mathcal{M}^{\circ}$, denote by $\theta(\mu)$ the unique canonical parameter satisfying the dual matching condition (3.43).
The conjugate dual function A^{*} takes the form

$$
A^{*}(\mu)= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{3.44}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

$$
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\nabla A(\theta(\mu))=\mu
$$

Conjugate Duality

For all $\theta \in \Omega$, the supremum in Equation (3.45) is attained uniquely at the vector $\mu \in \mathcal{M}^{\circ}$ specified by the momentmatching conditions

$$
\mu=\int_{\mathcal{X}^{m}} \phi(x) p_{\theta}(x) \nu(d x)=\mathbb{E}_{\theta}[\phi(X)]
$$

For any $\mu \in \mathcal{M}^{\circ}$, denote by $\theta(\mu)$ the unique canonical parameter satisfying the dual matching condition (3.43).
The conjugate dual function A^{*} takes the form

$$
A^{*}(\mu)= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{3.44}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

$$
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\nabla A(\theta(\mu))=\mu
$$

Duality and Variational Inference

To infer or approximate moments for known model, we can:

- Represent, or approximate, the marginal polytope
- Compute, bound, or approximate the entropy function
- Derive algorithms for resulting constrained optimization problem

Non-Convexity of Naïve Mean Field

$$
\begin{aligned}
& p_{\theta}(x) \propto \exp \left(\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{12} x_{1} x_{2}\right) x_{i} \in\{-1,+1\} \\
& f\left(\mu_{1}, \mu_{2} ; \theta\right)=\theta_{12} \mu_{1} \mu_{2}+\theta_{1} \mu_{1}+\theta_{2} \mu_{2}+H\left(\mu_{1}\right)+H\left(\mu_{2}\right) \\
& H\left(\mu_{i}\right)=-\frac{1}{2}\left(1+\mu_{i}\right) \log \frac{1}{2}\left(1+\mu_{i}\right)-\frac{1}{2}\left(1-\mu_{i}\right) \log \frac{1}{2}\left(1-\mu_{i}\right) \\
&\left(\theta_{1}, \theta_{2}, \theta_{12}\right)=\left(0,0, \frac{1}{4} \log \frac{q}{1-q}\right)=: \theta(q) \\
& \mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[X_{2}\right]=0 \\
& q=\mathbb{P}\left[X_{1}=X_{2}\right]
\end{aligned}
$$

$$
f(\tau,-\tau ; \theta(q))
$$

