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To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as
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These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.

Pair of Binary Variables 

M = conv{�(x) | x 2 X} convex hull of possible configurations 
3.4 Mean Parameterization and Inference Problems 55

Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | 〈aj , µ〉 ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V ) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].

General Convex Polytope 

M , {µ 2 Rd | 9 p such that Ep[�(x)] = µ} ✓ [0, 1]d
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Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

p(x | ✓) = exp{✓T�(x)�A(✓)}

•  Express log-partition as optimization over all distributions 
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Bethe & Loopy BP:  Approximate log-partition function 
•  Define tractable outer bound on constraints 
•  Tree-based models give approximation to true entropy 

M+ � M

Mean Field:  Lower bound log-partition function 
•  Restrict optimization to some simpler subset 
•  Imposing conditional independencies makes entropy tractable 

M� ⇢ M

Reweighted BP:  Upper bound log-partition function 
•  Define tractable outer bound on constraints 
•  Tree-based models give tractable upper bound on true entropy 

M+ � M
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Fig. 5.3 Cartoon illustration of the set MF (G) of mean parameters that arise from tractable
distributions is a nonconvex inner bound on M(G). Illustrated here is the case of discrete
random variables where M(G) is a polytope. The circles correspond to mean parameters
that arise from delta distributions, and belong to both M(G) and MF (G).

a finite convex hull3

M(G) = conv{φ(e), e ∈ X m} (5.24)

in d-dimensional space, with extreme points of the form µe := φ(e) for
some e ∈ X m. Figure 5.3 provides a highly idealized illustration of this
polytope, and its relation to the mean field inner bound MF (G).

We now claim that MF (G) — assuming that it is a strict subset
of M(G) — must be a nonconvex set. To establish this claim, we first
observe that MF (G) contains all of the extreme points µx = φ(x) of
the polytope M(G). Indeed, the extreme point µx is realized by the
distribution that places all its mass on x, and such a distribution is
Markov with respect to any graph. Therefore, if MF (G) were a con-
vex set, then it would have to contain any convex combination of such
extreme points. But from the representation (5.24), taking convex com-
binations of all such extreme points generates the full polytope M(G).
Therefore, whenever MF (G) is a proper subset of M(G), it cannot be
a convex set.

Consequently, nonconvexity is an intrinsic property of mean field
approximations. As suggested by Example 5.4, this nonconvexity

3 For instance, in the discrete case when the sufficient statistics φ are defined by indicator
functions in the standard overcomplete basis (3.34), we referred to M(G) as a marginal
polytope.

G F 

Equivalent views of mean field approximations: 
•  Assume some independencies not valid for true model 
•  Consider distributions on subgraph of original graphical model 
•  Constrain some exponential family parameters to equal zero 

Consequences for mean field algorithms: 
•  Extreme points (degenerate distributions) always in family 
•  But mean field is a strict subset of full marginal polytope 
•  Thus, the inner approximation is never a convex set 

A(✓) � sup
µ2MF

⇢
✓Tµ+HF (µ)
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Non-Convexity of Naïve Mean Field 
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Fig. 5.2 Two different perspectives on the nonconvexity of naive mean field for the Ising
model. (a) Illustration of the naive mean field objective function (5.22) for three different
parameter values: q ∈ {0.50,0.04,0.01}. For q = 0.50 and q = 0.04, the global maximum is
achieved at (µ1,µ2) = (0,0), whereas for q = 0.01, the point (0,0) is no longer a global
maximum. Instead the global maximum is achieved at two nonsymmetric points, (+µ,−µ)
and (−µ,+µ). (b) Nonconvexity can also be seen by examining the shape of the set of fully
factorized marginals for a pair of binary variables. The gray area shows the polytope defined
by the inequality (5.23), corresponding to the intersection of M(G) with the hyperplane
µ1 = µ2. The nonconvex quadratic set µ12 = µ2

1 corresponds to the intersection of this
projected polytope with the set MF0 (G) of fully factorized marginals.

where q ∈ (0,1) is a parameter. By construction, this model is
symmetric in X1 and X2, so that for any value of q ∈ (0,1),
we have E[X1] = E[X2] = 0. Moreover, some calculation shows that
q = P[X1 = X2].

For q = 0.50, the objective function f(µ1,µ2;θ(0.50)) achieves its
global maximum at (µ1,µ2) = (0,0), so that the mean field approxima-
tion is exact. (This exactness is to be expected since θ(0.50) = (0,0,0),
corresponding to a completely decoupled model.) As q decreases away
from 0.50, the objective function f starts to change, until for suitably
small q, the point (µ1,µ2) = (0,0) is no longer the global maximum —
in fact, it is not even a local maximum.

To illustrate this behavior explicitly, we consider the cross-section of
f obtained by setting µ1 = τ and µ2 = −τ , and then plot the 1D func-
tion f(τ,−τ ;θ(q)) for different values of q. As shown in Figure 5.2(a),
for q = 0.50, this 1D objective function has a unique global maximum at
τ = 0. As q decreases away from 0.50, the objective function gradually
flattens out, as shown in the change between q = 0.50 and q = 0.04.
For q sufficiently close to zero, the point τ = 0 is no longer a global
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maximum; instead, as shown in the curve for q = 0.01, the global max-
imum is achieved at the two points ±τ∗ on either side of τ = 0. Thus,
for sufficiently small q, the maximum of the objective function (5.22)
occurs at a pair µ∗

1 != µ∗
2, even though the original model is always sym-

metric. This phenomenon, known in the physics literature as “sponta-
neous symmetry-breaking”, is a manifestation of nonconvexity, since
the optimum of any convex function will always respect symmetries in
the underlying problem. Symmetry-breaking is not limited to this toy
example, but also occurs with mean field methods applied to larger and
more realistic graphical models, for which there may be a large number
of competing modes in the objective function.

Alternatively, nonconvexity in naive mean field can be understood
in terms of the shape of the constraint set as an inner approximation to
M. For a pair of binary variates {X1,X2} ∈ {−1,1}2, the set M is eas-
ily characterized: the mean parameters µi = E[Xi] and µ12 = E[X1X2]
are completely characterized by the four inequalities 1 + abµ12 + aµ1 +
bµ2 ≥ 0, where {a,b} ∈ {−1,1}2. So as to facilitate visualization, con-
sider a particular projection of this polytope — namely, that corre-
sponding to intersection with the hyperplane µ1 = µ2. In this case, the
four inequalities reduce to three simpler ones — namely:

µ12 ≤ 1, µ12 ≥ 2µ1 − 1, µ12 ≥ −2µ1 − 1. (5.23)

Figure 5.2(b) shows the resulting 2D polytope, shaded in gray. Now
consider the intersection between this projected polytope and the set of
factorized marginals MF0(G). The factorization condition imposes an
additional constraint µ12 = µ2

1, yielding a quadratic curve lying within
the 2D polytope described by the Equations (5.23), as illustrated in
Figure 5.2(b). Since this quadratic set is not convex, this establishes
that MF0(G) is not convex either. Indeed, if it were convex, then its
intersection with any hyperplane would also be convex.

The geometric perspective on the set M(G) and its inner approxi-
mation MF (G) reveals that more generally, mean field optimization is
always nonconvex for any exponential family in which the state space
X m is finite. Indeed, for any such exponential family, the set M(G) is

µ1 = µ2



Tree-Based Outer Approximations 

•  Associate marginals with nodes and edges, and impose 
the following local consistency constraints 

X

xt

µ

st

(x
s

, x

t

) = µ

s

(x
s

), (s, t) 2 E , x
s

2 X
s

X

xs

µ

s

(x
s

) = 1, s 2 V µs(xs) � 0, µst(xs, xt) � 0

•  For some graph G, denote true marginal polytope by M(G)

L(G)

90 Sum-Product, Bethe–Kikuchi, and Expectation-Propagation

Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.

•  For any graph, this is a convex outer bound: 
•  For any tree-structured graph T, we have 

M(G) ✓ L(G)
M(T ) = L(T )



Marginals and Pseudo-Marginals 
Local Constraints Exactly Represent Trees: 
Construct joint consistent with any marginals 
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the family of pseudomarginals

τs(xs) :=
[
0.5 0.5

]
, and (4.9a)

τst(xs,xt) :=
[

βst 0.5 − βst

0.5 − βst βst

]
, (4.9b)

where for each edge (s, t) ∈ E, the quantity βst ∈ R is a parameter to
be specified.

We first observe that for any βst ∈ [0,0.5], these pseudomarginals
satisfy the normalization (4.5) and marginalization constraints (4.6),
so the associated pseudomarginals (4.9) belong to L(C3). As a partic-
ular choice, consider the collection τ of pseudomarginals generated by
setting β12 = β23 = 0.4, and β13 = 0.1, as illustrated in Figure 4.1(a).
With these settings, the vector τ is an element of L(C3); however, as
a candidate set of global marginal distributions, certain features of the
collection τ should be suspicious. In particular, according to the puta-
tive marginals τ , the events {X1 = X2} and {X2 = X3} should each
hold with probability 0.8, whereas the event {X1 = X3} should only
hold with probability 0.2. At least intuitively, this set-up appears likely
to violate some type of global constraint.

In order to prove the global invalidity of τ , we first specify the con-
straints that actually define the marginal polytope M(G). For ease of

Fig. 4.1 (a) A set of pseudomarginals associated with the nodes and edges of the graph:
setting β12 = β23 = 0.4 and β13 = 0.1 in Equation (4.9) yields a pseudomarginal vector τ
which, though locally consistent, is not globally consistent. (b) Marginal polytope M(C3)
for the three node cycle; in a minimal exponential representation, it is a 6D object. Illus-
trated here is the slice {µ1 = µ2 = µ3 = 1

2}, as well as the outer bound L(C3), also for this
particular slice.
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Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.
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•  Number of faces upper bounded by 
for graphs with N nodes, E edges, K discrete states per node 

O(KN +K2E)

•  Contains all of the degenerate vertices of true marginal 
polytope, as well as additional fractional vertices 
(total number unknown in general) 
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inconsistent pseudo-marginals on graphs with cycles 
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Example:  Four binary variables 
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We begin by considering the Bethe entropy approximation, and its
potential inexactness:

Example 4.2 (Inexactness of HBethe). Consider the fully
connected graph K4 on four vertices, and the collection of singleton
and pairwise marginal distributions given by

µs(xs) =
[
0.5 0.5

]
for s = 1,2,3,4 (4.26a)

µst(xs,xt) =
[
0.5 0
0 0.5

]
∀ (s, t) ∈ E. (4.26b)

It can be verified that these marginals are globally valid, generated
in particular by the distribution that places mass 0.5 on each of the
configurations (0, 0, 0, 0) and (1, 1, 1, 1). Let us calculate the Bethe
entropy approximation. Each of the four singleton entropies are given
by Hs(µs) = log2, and each of the six (one for each edge) mutual infor-
mation terms are given by Ist(µst) = log2, so that the Bethe entropy
is given by

HBethe(µ) = 4log2 − 6log2 = −2log2 < 0,

which cannot be a true entropy. In fact, for this example, the
true entropy (or value of the negative dual function) is given by
−A∗(µ) = log2 > 0.

In addition to the inexactness of HBethe as an approximation to the
negative dual function, the Bethe variational principle also involves
relaxing the marginal polytope M(G) to the first-order constraint set
L(G). As illustrated in Example 4.1, the inclusion M(C3) ⊆ L(C3) holds
strictly for the 3-node cycle C3. The constructive procedure of Exam-
ple 4.1 can be substantially generalized to show that the inclusion
M(G) ⊂ L(G) holds strictly for any graph G with cycles. Figure 4.2
provides a highly idealized illustration3 of the relation between M(G)
and L(G): both sets are polytopes, and for a graph with cycles, M(G)
is always strictly contained within the outer bound L(G).

3 In particular, this picture is misleading in that it suggests that L(G) has more facets and
more vertices than M(G); in fact, the polytope L(G) has fewer facets and more vertices,
but this is difficult to convey in a 2D representation.

H(µ) = log 2

HB(µ) = 4 log 2� 6 log 2 = �2 log 2

pµ(0, 0, 0, 0) = pµ(1, 1, 1, 1) = 0.5
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of loopy BP for some graphical model: 
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Let us now demonstrate how, for an appropriately chosen
distribution pθ on the graph, the sum-product algorithm can be
“fooled” into converging to this pseudomarginal vector τ . Using the
canonical overcomplete representation (3.34), consider a set of canoni-
cal parameters of the form:

θs(xs) := logτs(xs) = log
[
0.5 0.5

]
∀ s ∈ V , and (4.28a)

θst(xs,xt) := log
τst(xs,xt)
τs(xs)τt(xt)

= log4
[

βst 0.5 − βst

0.5 − βst βst

]
∀ (s, t) ∈ E, (4.28b)

where we have adopted the short-hand notation from Equation (4.2).
With these canonical parameters, suppose that we apply the sum-
product algorithm to the Markov random field pθ, using the uniform
message initialization Mts(xs) ∝

[
0.5 0.5

]
. A little bit of algebra using

the sum-product update (4.25) shows that for this parameter choice, the
uniform messages M already define a fixed point of the sum-product
algorithm. Moreover, if we compute the associated pseudomarginals
specified by M and θ, they are equal to the previously specified
τs,τst. In summary, the sum-product algorithm — when applied to
the distribution pθ defined by the canonical parameters (4.28) — pro-
duces as its output the pseudomarginal τ as its estimate of the true
marginals.

The reader might object to the fact that the problem construc-
tion ensured the sum-product algorithm was already at this particular
fixed point, and so obviates the possibility of the updates converging
to some other fixed point if initialized in a different way. However,
it is known [110, 249] that for any discrete Markov random field in
exponential family form with at most a single cycle, sum-product has
a unique fixed point, and always converges to it. Therefore, the sum-
product fixed point that we have constructed (4.28) is the unique fixed
point for this problem, and the algorithm converges to it from any
initialization of the messages.
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•  Consider a collection of d target statistics           , whose 
expectations with respect to some distribution           are p̃(x)

�a(x)
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Proof. Expanding the KL divergence from p̃(x) (eq. (2.13)), we have

D(p̃ || pθ) =

∫

X
p̃(x) log p̃(x) dx −

∫

X
p̃(x) log p(x | θ) dx

= −H(p̃) −
∫

X

1

L

L∑

"=1

δ
(
x, x(")

)
log p(x | θ) dx

= −H(p̃) − 1

L

L∑

"=1

log p(x(") | θ)

Because H(p̃) does not depend on θ, the parameters minimizing D(p̃ || pθ) and maxi-
mizing the expected log–likelihood coincide, establishing eq. (2.14). The unique char-
acterization of θ̂ via moment–matching (eq. (2.15)) then follows from Prop. 2.1.2.

In principle, Prop. 2.1.2 and 2.1.3 suggest a straightforward procedure for learning ex-
ponential familes: estimate appropriate sufficient statistics, and then find correspond-
ing canonical parameters via convex optimization [6, 15, 36, 52]. In practice, however,
significant difficulties may arise. For example, practical applications often require semi-
supervised learning from partially labeled training data, so that the needed statistics
cannot be directly measured. Even when sufficient statistics are available, calculation
of the corresponding parameters can be intractable in large, complex models.

These results also have important implications for the selection of appropriate ex-
ponential families. In particular, because the chosen statistics are sufficient for param-
eter estimation, the learned model cannot capture aspects of the target distribution
neglected by these statistics. These concerns motivate our later development of non-
parametric methods (see Sec. 2.5) which extend exponential families to learn richer,
more flexible models.

Maximum Entropy Models

In the previous section, we argued that certain statistics are sufficient to characterize
the best exponential family approximation of a given target density. The following
theorem shows that if these statistics are the only available information about a target
density, then the corresponding exponential family provides a natural model.

Theorem 2.1.1. Consider a collection of statistics {φa | a ∈ A}, whose expectations
with respect to some target density p̃(x) are known:

∫

X
φa(x) p̃(x) dx = µa a ∈ A (2.16)

The unique distribution p̂(x) maximizing the entropy H(p̂), subject to these moment
constraints, is then a member of the exponential family of eq. (2.1), with ν(x) = 1 and
canonical parameters θ̂ chosen so that Eθ̂[φa(x)] = µa.

•  The unique distribution            maximizing the entropy           , 
subject to the constraint that these moments are exactly 
matched, is then an exponential family distribution with 

p̂(x) H(p̂)
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Out of all distributions which reproduce the observed 
sufficient statistics, the exponential family distribution 
(roughly) makes the fewest additional assumptions.  
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7.2 Variational Methods from Convex Relaxations 171

defined at each vertex s ∈ V , and a joint pairwise marginal distribu-
tion µst( · , ·) defined for each edge (s, t) ∈ E(T ). As discussed earlier
in Section 4, the factorization (4.8) of any tree-structured probability
distribution yields the entropy decomposition

H(µ(T )) =
∑

s∈V

Hs(µs) −
∑

(s,t)∈E(T )

Ist(µst). (7.9)

Now consider the averaged form of the bound (7.5). Since the trees are
all spanning, the entropy term Hs for node s ∈ V receives a weight of
one in this average. On the other hand, the mutual information term
Ist for edge (s, t) receives the weight ρst = Eρ

[
I [(s, t) ∈ E(T )]

]
, where

I [(s, t) ∈ E(T )] is an indicator function for the event that edge (s, t) is
included in the edge set E(T ) of a given tree T . Overall, we obtain the
following upper bound on the exact entropy:

H(µ) ≤
∑

s∈V

Hs(µs) −
∑

(s,t)∈E

ρstIst(µst). (7.10)

We refer to the edge weight ρst as the edge appearance probability,
since it reflects the probability mass associated with edge (s, t). The
vector ρ = (ρst, (s, t) ∈ E) of edge appearance probabilities belong to
a set called the spanning tree polytope, as discussed at more length in
Theorem 7.2 to follow.

Let us now consider the form of the outer bound L(G;T) on the
set M. For the pairwise MRF with the overcomplete parameterization
under consideration, the set M is simply the marginal polytope M(G).
On the other hand, the set M(T ) is simply the marginal polytope for
the tree T , which from our earlier development (see Proposition 4.1) is
equivalent to L(T ). Consequently, the constraint µ(T ) ∈M(T ) is equiv-
alent to enforcing nonnegativity constraints, normalization (at each
vertex) and marginalization (across each edge) of the tree. Enforc-
ing the inclusion µ(T ) ∈M(T ) for all trees T ∈ T is equivalent to
enforcing the marginalization on every edge of the full graph G.
We conclude that in this particular case, the set L(G;T) is equiva-
lent to the set L(G) of locally consistent pseudomarginals, as defined
earlier (4.7).

Must only specify a single scalar parameter per edge 
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Overall, then, we obtain a variational problem that can be viewed as
a “convexified” form of the Bethe variational problem. We summarize
our findings in the following result [243, 246]:

Theorem 7.2 (Tree-Reweighted Bethe and Sum-Product).

(a) For any choice of edge appearance vector (ρst, (s, t) ∈ E)
in the spanning tree polytope, the cumulant function A(θ)
evaluated at θ is upper bounded by the solution of the tree-
reweighted Bethe variational problem (BVP):

BT(θ;ρe) := max
τ∈L(G)

{
〈τ, θ〉 +

∑

s∈V

Hs(τs) −
∑

(s,t)∈E

ρstIst(τst)
}

.

(7.11)

For any edge appearance vector such that ρst > 0 for all
edges (s, t), this problem is strictly convex with a unique
optimum.

(b) The tree-reweighted BVP can be solved using the tree-
reweighted sum-product updates

Mts(xs)← κ
∑

x′
t∈Xt

ϕst(xs,x
′
t)

∏
v∈N(t)\s

[
Mvt(x′

t)
]ρvt

[
Mst(x′

t)
](1−ρts)

, (7.12)

where ϕst(xs,x′
t) := exp

(
1
ρst
θst(xs,x′

t) + θt(x′
t)
)

. The

updates (7.12) have a unique fixed point under the
assumptions of part (a).

We make a few comments on Theorem 7.2, before providing the proof.

Valid edge weights: Observe that the tree-reweighted Bethe variational
problem (7.11) is closely related to the ordinary Bethe problem (4.16).
In particular, if we set ρst = 1 for all edges (s, t) ∈ E, then the two for-
mulations are equivalent. However, the condition ρst = 1 implies that
every edge appears in every spanning tree of the graph with proba-
bility one, which can happen if and only if the graph is actually tree-
structured. More generally, the set of valid edge appearance vectors ρe
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the guarantee of convexity, and (hence) that of a unique global opti-
mum. On the other hand, Weiss et al. [251] have pointed out that other
choices of weights ρst, not necessarily in the spanning tree polytope, can
also lead to convex variational problems. In general, convexity and the
upper bounding property are not equivalent. For instance, for any single
cycle graph, setting ρst = 1 for all edges (i.e., the ordinary BVP choice)
yields a convex variational problem [251], but the value of the Bethe
variational problem does not upper bound the cumulant function value.
Various other researchers [110, 167, 188, 189] also discuss the choice of
edge/clique weights in Bethe/Kikuchi approximations, and its conse-
quences for convexity.

Properties of tree-reweighted sum-product : In analogy to the ordinary
Bethe problem and sum-product algorithm, the fixed point of tree-
reweighted sum-product (TRW) message-passing (7.12) specifies the
optimal solution of the variational problem (7.11) as follows:

τ∗
s (xs) = κ exp

{
θs(xs)

} ∏

v∈N(s)

[
M∗

vs(xs)
]ρvs (7.13a)

τ∗
st(xs,xt) = κ ϕst(xs,xt)

∏
v∈N(s)\t

[
M∗

vs(xs)
]ρvs

[
M∗

ts(xs)
](1−ρst)

∏
v∈N(t)\s

[
M∗

vt(xt)
]ρvt

[
M∗

st(xt)
](1−ρts)

,

(7.13b)
where ϕst(xs,xt) := exp{ 1

ρst
θst(xs,xt) + θs(xs) + θt(xt)}. In contrast

to the ordinary sum-product algorithm, the fixed point (and associ-
ated optimum (τ∗

s ,τ∗
st)) is unique for any valid vector of edge appear-

ances. Roosta et al. [204] provide sufficient conditions for convergence,
based on contraction arguments such as those used for ordinary sum-
product [90, 118, 178, 230]. In practical terms, the updates (7.12)
appear to always converge if damped forms of the updates are used
(i.e., setting logMnew = (1 − λ) logMold + λ logM , where Mold is the
previous vector of messages, and λ ∈ (0,1] is the damping parameter).
As an alternative, Globerson and Jaakkola [96] proposed a related
message-passing algorithm based on oriented trees that is guaran-
teed to converge, but appears to do so more slowly than damped
TRW-message passing. Another possibility would be to adapt other
double-loop algorithms [110, 111, 254, 270], originally developed for
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