Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 22:
Reparameterization \& Loopy BP, Reweighted Belief Propagation

Some figures and examples courtesy M. Wainwright \& M. Jordan, Graphical Models, Exponential Families, \& Variational Inference, 2008.

Discrete Variables \& Marginal Polytopes

$$
\begin{aligned}
& p(x \mid \theta)=\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\} \quad A(\theta)=\log \sum_{\mathcal{X}} \exp \left\{\theta^{T} \phi(x)\right\} \\
& \mu=\nabla_{\theta} A(\theta)=\mathbb{E}_{\theta}[\phi(x)]=\sum_{\mathcal{X}} \phi(x) p(x \mid \theta)
\end{aligned}
$$

$\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ such that $\left.\mathbb{E}_{p}[\phi(x)]=\mu\right\} \subseteq[0,1]^{d}$
$\mathcal{M}=\operatorname{conv}\{\phi(x) \mid x \in \mathcal{X}\} \quad$ convex hull of possible configurations

General Convex Polytope

Pair of Binary Variables

Inference as Optimization

$$
\begin{aligned}
p(x \mid \theta) & =\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\} \\
A(\theta) & =\log \sum_{x \in \mathcal{X}} \exp \left\{\theta^{T} \phi(x)\right\}
\end{aligned}
$$

- Express log-partition as optimization over all distributions \mathcal{Q}

$$
A(\theta)=\sup _{q \in \mathcal{Q}}\left\{\sum_{x \in \mathcal{X}} \theta^{T} \phi(x) q(x)-\sum_{x \in \mathcal{X}} q(x) \log q(x)\right\}
$$

Jensen's inequality gives arg max: $q(x)=p(x \mid \theta)$

- More compact to optimize over relevant sufficient statistics:

$$
\begin{aligned}
A(\theta) & =\sup _{\mu \in \mathcal{M}}\left\{\theta^{T} \mu+H(p(x \mid \theta(\mu))\} \quad \begin{array}{c}
\text { concave function } \\
\text { (linear plus entropy) } \\
\text { over a convex set }
\end{array}\right. \\
\mu & =\sum_{x \in \mathcal{X}} \phi(x) q(x)=\sum_{x \in \mathcal{X}} \phi(x) p(x \mid \theta(\mu))
\end{aligned}
$$

Variational Inference Approximations

$p(x \mid \theta)=\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\}$
$A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\theta^{T} \mu+H(p(x \mid \theta(\mu))\}\right.$

Mean Field: Lower bound log-partition function

- Restrict optimization to some simpler subset $\mathcal{M}_{-} \subset \mathcal{M}$
- Imposing conditional independencies makes entropy tractable

Bethe \& Loopy BP: Approximate log-partition function

- Define tractable outer bound on constraints $\mathcal{M}_{+} \supset \mathcal{M}$
- Tree-based models give approximation to true entropy

Reweighted BP: Upper bound log-partition function

- Define tractable outer bound on constraints $\mathcal{M}_{+} \supset \mathcal{M}$
- Tree-based models give tractable upper bound on true entropy

Marginal Polytope: Inner Approximations

$A(\theta) \geq \sup _{\mu \in \mathcal{M}_{F}}\left\{\theta^{T} \mu+H_{F}(\mu)\right\}$
Equivalent views of mean field approximations:

- Assume some independencies not valid for true model
- Consider distributions on subgraph of original graphical model
- Constrain some exponential family parameters to equal zero

Consequences for mean field algorithms:

- Extreme points (degenerate distributions) always in family
- But mean field is a strict subset of full marginal polytope
- Thus, the inner approximation is never a convex set

Non-Convexity of Naïve Mean Field

$$
\begin{aligned}
p_{\theta}(x) & \propto \exp \left(\theta_{12} x_{1} x_{2}\right) \\
\theta_{12} & =\frac{1}{4} \log \frac{q}{1-q}
\end{aligned}
$$

$$
\begin{gathered}
x_{i} \in\{-1,+1\} \\
\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[X_{2}\right]=0 \\
q=\mathbb{P}\left[X_{1}=X_{2}\right]
\end{gathered}
$$

True: $\theta_{12} \mu_{12}+H\left(\mu_{1}, \mu_{2}, \mu_{12}\right)$

$$
\begin{aligned}
\mu_{12} & =\mathbb{E}\left[x_{1} x_{2}\right] \\
\mu_{i} & =\mathbb{E}\left[x_{i}\right]
\end{aligned}
$$

$$
\mu_{12} \leq 1, \quad \mu_{12} \geq 2 \mu_{1}-1, \quad \mu_{12} \geq-2 \mu_{1}-1
$$

- For some graph G , denote true marginal polytope by $\mathbb{M}(G)$
- Associate marginals with nodes and edges, and impose the following local consistency constraints $\mathbb{L}(G)$

$\sum_{x_{s}} \mu_{s}\left(x_{s}\right)=1, \quad s \in \mathcal{V}$	$\mu_{s}\left(x_{s}\right) \geq 0, \mu_{s t}\left(x_{s}, x_{t}\right) \geq 0$
$\sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right)=\mu_{s}\left(x_{s}\right)$,	$(s, t) \in \mathcal{E}, x_{s} \in \mathcal{X}_{s}$

- For any graph, this is a convex outer bound: $\mathbb{M}(G) \subseteq \mathbb{L}(G)$
- For any tree-structured graph T, we have $\mathbb{M}(T)=\mathbb{L}(T)$

Marginals and Pseudo-Marginals

Local Constraints Exactly Represent Trees: Construct joint consistent with any marginals

$$
p_{\mu}(x)=\prod_{(s, t) \in \mathcal{E}} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)} \prod_{s \in \mathcal{V}} \mu_{s}\left(x_{s}\right)
$$

For Any Graph with Cycles, Local Constraints are Loose:

Consider three binary variables and restrict $\mu_{1}=\mu_{2}=\mu_{3}=0.5$
$\tau_{s}\left(x_{s}\right):=\left[\begin{array}{ll}0.5 & 0.5\end{array}\right] \quad \tau_{s t}\left(x_{s}, x_{t}\right):=\left[\begin{array}{cc}\beta_{s t} & 0.5-\beta_{s t} \\ 0.5-\beta_{s t} & \beta_{s t}\end{array}\right]$
denote potentially invalid pseudo-marginals by $\tau_{s}, \tau_{s t}$

Properties of Local Constraint Polytope

 $\begin{array}{ll}\sum_{x_{s}} \mu_{s}\left(x_{s}\right)=1, \quad s \in \mathcal{V} & \mu_{s}\left(x_{s}\right) \geq 0, \mu_{s t}\left(x_{s}, x_{t}\right) \geq 0 \\ \sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right)=\mu_{s}\left(x_{s}\right), & (s, t) \in \mathcal{E}, x_{s} \in \mathcal{X}_{s}\end{array}$

- Number of faces upper bounded by $\mathcal{O}\left(K N+K^{2} E\right)$ for graphs with N nodes, E edges, K discrete states per node
- Contains all of the degenerate vertices of true marginal polytope, as well as additional fractional vertices (total number unknown in general)

Bethe Variational Methods

$$
\begin{aligned}
A(\theta) & \approx \sup _{\tau \in \mathbb{L}(G)}\left\{\theta^{T} \tau+H_{B}(\tau)\right\} \\
H_{B}(\tau) & =\sum_{s \in \mathcal{V}} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in \mathcal{E}} I_{s t}\left(\tau_{s t}\right)
\end{aligned}
$$

- Local consistency constraints are convex, but allow globally inconsistent pseudo-marginals on graphs with cycles
- Bethe entropy approximation may be not be concave, and may not even be a valid (non-negative) entropy

Example: Four binary variables $p_{\mu}(0,0,0,0)=p_{\mu}(1,1,1,1)=0.5$

$$
\begin{gathered}
\mu_{s}\left(x_{s}\right)=\left[\begin{array}{cc}
0.5 & 0.5
\end{array}\right] \text { for } s=1,2,3,4 \\
\mu_{s t}\left(x_{s}, x_{t}\right)=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] \quad \forall(s, t) \in E . \\
H_{B}(\mu)=4 \log 2-6 \log 2=-2 \log 2 \quad H(\mu)=\log 2
\end{gathered}
$$

Loopy BP and Reparameterization

$$
p_{\theta}(x)=\frac{1}{Z(\theta)} \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s} ; \theta\right) \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t} ; \theta\right)
$$

$$
p_{\tau^{*}}(x)=\frac{1}{Z\left(\tau^{*}\right)} \prod_{s \in \mathcal{V}} \tau_{s}^{*}\left(x_{s}\right) \prod_{(s, t) \in \mathcal{E}}^{(s, t) \mathcal{E}} \frac{\tau_{s t}^{*}\left(x_{s}, x_{t}\right)}{\tau_{s}^{*}\left(x_{s}\right) \tau_{t}^{*}\left(x_{t}\right)}
$$

- If τ^{*} are pseudo-marginals corresponding to a fixed point of loopy BP on the graphical model $p_{\theta}(x)$

$$
p_{\theta}(x)=p_{\tau^{*}}(x) \quad \text { for all } x \in \mathcal{X}
$$

- On a tree, this reparameterization is our standard local factorization, and the normalization $Z\left(\tau^{*}\right)=1$
- Any locally consistent pseudo-marginals are thus a fixed point of loopy BP for some graphical model:

$$
\begin{aligned}
\theta_{s}\left(x_{s}\right) & :=\log \tau_{s}\left(x_{s}\right)=\log \left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] \quad \forall s \in V, \text { and } \\
\theta_{s t}\left(x_{s}, x_{t}\right) & :=\log \frac{\tau_{s t}\left(x_{s}, x_{t}\right)}{\tau_{s}\left(x_{s}\right) \tau_{t}\left(x_{t}\right)}=\log 4\left[\begin{array}{cc}
\beta_{s t} & 0.5-\beta_{s t} \\
0.5-\beta_{s t} & \beta_{s t}
\end{array}\right] \quad \forall(s, t) \in E
\end{aligned}
$$

fixed point is invalid pseudo-marginals from previous slide

Reminder: Maximum Entropy Models

$$
\begin{aligned}
p(\mathbf{x} \mid \boldsymbol{\theta}) & =\frac{1}{Z(\boldsymbol{\theta})} h(\mathbf{x}) \exp \left[\boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x})\right] & & Z(\boldsymbol{\theta})=\int_{\mathcal{X}^{m}} h(\mathbf{x}) \exp \left[\boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x})\right] d \mathbf{x} \\
& =h(\mathbf{x}) \exp \left[\boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x})-A(\boldsymbol{\theta})\right] & & A(\boldsymbol{\theta})=\log Z(\boldsymbol{\theta})
\end{aligned}
$$

- Consider a collection of d target statistics $\phi_{a}(x)$, whose expectations with respect to some distribution $\tilde{p}(x)$ are

$$
\int_{\mathcal{X}} \phi_{a}(x) \tilde{p}(x) d x=\mu_{a}
$$

- The unique distribution $\hat{p}(x)$ maximizing the entropy $H(\hat{p})$, subject to the constraint that these moments are exactly matched, is then an exponential family distribution with

$$
\mathbb{E}_{\hat{\theta}}\left[\phi_{a}(x)\right]=\mu_{a} \quad h(x)=1
$$

Out of all distributions which reproduce the observed sufficient statistics, the exponential family distribution (roughly) makes the fewest additional assumptions.

Tree-Based Entropy Bounds

$$
H(\mu(T))=\sum_{s \in \mathcal{V}} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in \mathcal{E}(T)} I_{s t}\left(\mu_{s t}\right)
$$

$$
H(\mu) \leq H(\mu(T)) \quad \text { for any tree } T
$$

$$
H(\mu) \leq \sum_{s \in \mathcal{V}} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in \mathcal{E}} \rho_{s t} I_{s t}\left(\mu_{s t}\right)
$$

- Family of bounds depends on edge appearance probabilities from some distribution over subtrees in the original graph:

$$
H(\mu) \leq \sum_{T} \rho(T) H(\mu(T)) \quad \rho_{s t}=\mathbb{E}_{\rho}[\mathbb{I}[(s, t) \in E(T)]]
$$

Must only specify a single scalar parameter per edge

Reweighted Sum-Product

Theorem 7.2 (Tree-Reweighted Bethe and Sum-Product).
(a) For any choice of edge appearance vector $\left(\rho_{s t},(s, t) \in E\right)$ in the spanning tree polytope, the cumulant function $A(\theta)$ evaluated at θ is upper bounded by the solution of the treereweighted Bethe variational problem (BVP):

$$
\begin{equation*}
B_{\mathfrak{T}}\left(\theta ; \rho_{e}\right):=\max _{\tau \in \mathbb{L}(G)}\left\{\langle\tau, \theta\rangle+\sum_{s \in V} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in E} \rho_{s t} I_{s t}\left(\tau_{s t}\right)\right\} \tag{7.11}
\end{equation*}
$$

For any edge appearance vector such that $\rho_{s t}>0$ for all edges (s, t), this problem is strictly convex with a unique optimum.
(b) The tree-reweighted BVP can be solved using the treereweighted sum-product updates

$$
\begin{equation*}
M_{t s}\left(x_{s}\right) \leftarrow \kappa \sum_{x_{t}^{\prime} \in \mathcal{X}_{t}} \varphi_{s t}\left(x_{s}, x_{t}^{\prime}\right) \frac{\prod_{v \in N(t) \backslash s}\left[M_{v t}\left(x_{t}^{\prime}\right)\right]^{\rho_{v t}}}{\left[M_{s t}\left(x_{t}^{\prime}\right)\right]^{\left(1-\rho_{t s}\right)}} \tag{7.12}
\end{equation*}
$$

where $\quad \varphi_{s t}\left(x_{s}, x_{t}^{\prime}\right):=\exp \left(\frac{1}{\rho_{s t}} \theta_{s t}\left(x_{s}, x_{t}^{\prime}\right)+\theta_{t}\left(x_{t}^{\prime}\right)\right)$. The updates (7.12) have a unique fixed point under the assumptions of part (a).

$$
\tau_{s}^{*}\left(x_{s}\right)=\kappa \exp \left\{\theta_{s}\left(x_{s}\right)\right\} \prod_{v \in N(s)}\left[M_{v s}^{*}\left(x_{s}\right)\right]^{\rho_{v s}} \quad \tau_{s t}^{*}\left(x_{s}, x_{t}\right)=\kappa \varphi_{s t}\left(x_{s}, x_{t}\right) \frac{\prod_{v \in N(s) \backslash t}\left[M_{v s}^{*}\left(x_{s}\right)\right]^{\rho_{v s}}}{\left[M_{t s}^{*}\left(x_{s}\right)\right]^{\left(1-\rho_{s t}\right)}} \frac{\prod_{v \in N(t) \backslash s}\left[M_{v t}^{*}\left(x_{t}\right)\right]^{\rho_{v t}}}{\left[M_{s t}^{*}\left(x_{t}\right)\right]^{\left(1-\rho_{t s}\right)}}
$$

