Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 23:
Reweighted Sum-Product Belief Propagation, Convex Surrogates for Variational Learning

Some figures and examples courtesy M. Wainwright \& M. Jordan, Graphical Models, Exponential Families, \& Variational Inference, 2008.

Inference as Optimization

$$
\begin{aligned}
p(x \mid \theta) & =\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\} \\
A(\theta) & =\log \sum_{x \in \mathcal{X}} \exp \left\{\theta^{T} \phi(x)\right\} \\
\mathcal{M} & =\operatorname{conv}\{\phi(x) \mid x \in \mathcal{X}\}
\end{aligned}
$$

- Express log-partition as optimization over all distributions \mathcal{Q}

$$
A(\theta)=\sup _{q \in \mathcal{Q}}\left\{\sum_{x \in \mathcal{X}} \theta^{T} \phi(x) q(x)-\sum_{x \in \mathcal{X}} q(x) \log q(x)\right\}
$$

Jensen's inequality gives arg max: $q(x)=p(x \mid \theta)$

- More compact to optimize over relevant sufficient statistics:

$$
\begin{aligned}
A(\theta) & =\sup _{\mu \in \mathcal{M}}\left\{\theta^{T} \mu+H(p(x \mid \theta(\mu))\} \quad \begin{array}{c}
\begin{array}{c}
\text { concave function } \\
\text { (linear plus entropy) } \\
\text { over a convex set }
\end{array} \\
\mu
\end{array}=\sum_{x \in \mathcal{X}} \phi(x) q(x)=\sum_{x \in \mathcal{X}} \phi(x) p(x \mid \theta(\mu))\right.
\end{aligned}
$$

Variational Inference Approximations

$p(x \mid \theta)=\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\}$
$A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\theta^{T} \mu+H(p(x \mid \theta(\mu))\}\right.$

Mean Field: Lower bound log-partition function

- Restrict optimization to some simpler subset $\mathcal{M}_{-} \subset \mathcal{M}$
- Imposing conditional independencies makes entropy tractable

Bethe \& Loopy BP: Approximate log-partition function

- Define tractable outer bound on constraints $\mathcal{M}_{+} \supset \mathcal{M}$
- Tree-based models give approximation to true entropy

Reweighted BP: Upper bound log-partition function

- Define tractable outer bound on constraints $\mathcal{M}_{+} \supset \mathcal{M}$
- Tree-based models give tractable upper bound on true entropy

- For some graph G , denote true marginal polytope by $\mathbb{M}(G)$
- Associate marginals with nodes and edges, and impose the following local consistency constraints $\mathbb{L}(G)$

$\sum_{x_{s}} \mu_{s}\left(x_{s}\right)=1, \quad s \in \mathcal{V}$	$\mu_{s}\left(x_{s}\right) \geq 0, \mu_{s t}\left(x_{s}, x_{t}\right) \geq 0$
$\sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right)=\mu_{s}\left(x_{s}\right)$,	$(s, t) \in \mathcal{E}, x_{s} \in \mathcal{X}_{s}$

- For any graph, this is a convex outer bound: $\mathbb{M}(G) \subseteq \mathbb{L}(G)$
- For any tree-structured graph T, we have $\mathbb{M}(T)=\mathbb{L}(T)$

Tree-Based Entropy Bounds

$$
p(x)=\frac{1}{Z} \exp \left\{-\sum_{(s, t) \in \mathcal{E}} \phi_{s t}\left(x_{s}, x_{t}\right)-\sum_{s \in \mathcal{V}} \phi_{s}\left(x_{s}\right)\right\}
$$

$$
H(\mu(T))=\sum_{s \in \mathcal{V}} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in \mathcal{E}(T)} I_{s t}\left(\mu_{s t}\right)
$$

$H(\mu) \leq H(\mu(T)) \quad$ for any tree T
Maximum entropy property of exponential families: 0 ○ ○ OT

- Original distribution maximizes entropy subject to constraints

$$
\mathbb{E}_{p}\left[\phi_{s t}\left(x_{s}, x_{t}\right)\right]=\mu\left(x_{s}, x_{t}\right), \quad(s, t) \in \mathcal{E}
$$

- Tree-structured distribution maximizes subject to a subset of the full constraints (those corresponding to edges in tree):

$$
\mathbb{E}_{p}\left[\phi_{s t}\left(x_{s}, x_{t}\right)\right]=\mu\left(x_{s}, x_{t}\right), \quad(s, t) \in \mathcal{E}(T)
$$

Tree-Based Entropy Bounds

$$
H(\mu(T))=\sum_{s \in \mathcal{V}} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in \mathcal{E}(T)} I_{s t}\left(\mu_{s t}\right)
$$

$$
H(\mu) \leq H(\mu(T)) \quad \text { for any tree } T
$$

$$
H(\mu) \leq \sum_{s \in \mathcal{V}} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in \mathcal{E}} \rho_{s t} I_{s t}\left(\mu_{s t}\right)
$$

- Family of bounds depends on edge appearance probabilities from some distribution over subtrees in the original graph:

$$
H(\mu) \leq \sum_{T} \rho(T) H(\mu(T)) \quad \rho_{s t}=\mathbb{E}_{\rho}[\mathbb{I}[(s, t) \in E(T)]]
$$

Must only specify a single scalar parameter per edge

Reweighted Bethe Variational Methods

$$
\begin{aligned}
A(\theta) & \leq \sup _{\tau \in \mathbb{L}(G)}\left\{\theta^{T} \tau+H_{\rho}(\tau)\right\} \\
H_{\rho}(\tau) & =\sum_{s \in \mathcal{V}} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in \mathcal{E}} \rho_{s t} I_{s t}\left(\tau_{s t}\right)
\end{aligned}
$$

- Local consistency constraints are convex, but allow globally inconsistent pseudo-marginals on graphs with cycles
- Assuming we pick weights corresponding to some distribution on acyclic sub-graphs, have upper bound on true entropy
- This defines a convex surrogate to true variational problem Issues to resolve:
- Given edge weights, how can we efficiently find the best pseudo-marginals? A message-passing algorithm?
- There are many distributions over spanning trees. How can we find the best edge appearance probabilities?

Reweighted Belief Propagation $p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)$
 Standard Loopy BP:

$$
\begin{aligned}
m_{t s}\left(x_{s}\right) & \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)} \\
q_{t}\left(x_{t}\right) & \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)
\end{aligned}
$$

Reweighted BP:

$$
\begin{aligned}
& m_{t s}\left(x_{s}\right) \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right)^{1 / \rho_{s t}} \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)} \\
& q_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod m_{u t}\left(x_{t}\right)^{\rho_{u t}} \\
& m_{t s}\left(x_{s}\right) \propto\left[\sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right)^{1 / \rho_{s t}} \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)^{1 / \rho_{s t}}}\right]^{\rho_{s t}} \begin{array}{c}
\text { Applying a change } \\
\text { of variables: }
\end{array} \\
& q_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod m_{u t}\left(x_{t}\right) \quad m_{u t}\left(x_{t}\right) \leftarrow m_{u t}\left(x_{t}\right)^{\rho_{u t}}
\end{aligned}
$$

Spanning Tree Polytope

$$
A(\theta) \leq \sup _{\tau \in \mathbb{L}(G)}\left\{\theta^{T} \tau+H_{\rho}(\tau)\right\} \quad H_{\rho}(\tau)=\sum_{s \in \mathcal{V}} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in \mathcal{E}} \rho_{s t} I_{s t}\left(\tau_{s t}\right)
$$

- Bound holds assuming edge weights lie in the spanning tree polytope (generated by some valid distribution on trees)
- Optimize via conditional gradient method:
> Find descent direction by maximizing linear function (gradient) over constraint set
> For spanning tree polytope, this reduces to a maximum weight spanning tree problem
> Iteratively tightens bound on partition function

Bertsekas 1999

MF \& Reweighted BP: Message Passing

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right) \quad \begin{aligned}
\phi_{s t}\left(x_{s}, x_{t}\right) & =-\log \psi_{s t}\left(x_{s}, x_{t}\right) \\
\phi_{s}\left(x_{s}\right) & =-\log \psi_{s}\left(x_{s}\right)
\end{aligned}
$$

Beliefs: pseudomarginals

$$
q_{t}\left(x_{t}\right)=\frac{1}{Z_{t}} \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)
$$

Mean
Field $m_{t s}\left(x_{s}\right) \propto \exp \left\{-\sum_{x_{t}} \phi_{s t}\left(x_{s}, x_{t}\right) q_{t}\left(x_{t}\right)\right\}$
$\underset{\mathbf{B P}}{\text { Loopy }} m_{t s}\left(x_{s}\right) \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)}$
Reweight
$\mathbf{B P}$$m_{t s}\left(x_{s}\right) \propto\left[\sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right)^{1 / \rho_{s t}} \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)^{1 / \rho_{s t}}}\right]^{\rho_{s t}}$

- Reweighted BP becomes loopy BP when $\rho_{s t}=1$
- Reweighted BP approaches mean field as $\rho_{s t} \rightarrow \infty$ Geometric mean is limit of power mean

MF \& Reweighted BP: Variational Objective

$$
\begin{aligned}
A(\theta) & \approx \sup _{\tau \in \mathbb{L}(G)}\left\{\theta^{T} \tau+H_{\rho}(\tau)\right\} \\
H_{\rho}(\tau) & =\sum_{s \in \mathcal{V}} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in \mathcal{E}} \rho_{s t} I_{s t}\left(\tau_{s t}\right)
\end{aligned}
$$

- View edge weights as positive, tunable parameters
- In the limit where they become very large:

$$
\tau_{s t} \rightarrow \infty \longmapsto \begin{aligned}
& \text { optimum sets } \\
& I_{s t}\left(\tau_{s t}\right)=0
\end{aligned} \square \tau_{s t}\left(x_{s}, x_{t}\right)=\tau_{s}\left(x_{s}\right) \tau_{t}\left(x_{t}\right)
$$

Mean Field: For acyclic edge set $\rho_{s t}=1$, otherwise $\rho_{s t} \rightarrow \infty$

- Objective: Lower bounds true $A(\theta)$, but non-convex
- Message-passing: Guaranteed convergent, but local optima

MF \& Reweighted BP: Variational Objective

$$
\begin{aligned}
A(\theta) & \approx \sup _{\tau \in \mathbb{L}(G)}\left\{\theta^{T} \tau+H_{\rho}(\tau)\right\} \\
H_{\rho}(\tau) & =\sum_{s \in \mathcal{V}} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in \mathcal{E}} \rho_{s t} I_{s t}\left(\tau_{s t}\right)
\end{aligned}
$$

Loopy BP: For all edges, set $\rho_{s t}=1$

- Objective: Approximation, possibly poor, generally non-convex
- Message-passing: Multiple optima, may not convergent
- But, for some models gives most accurate marginal estimates Reweighted BP: Respect spanning tree polytope, $0<\rho_{s t} \leq 1$
- Objective: Upper bounds true $A(\theta)$, convex
- Message-passing: Single global optimum, typically convergent Mean Field: For acyclic edge set $\rho_{s t}=1$, otherwise $\rho_{s t} \rightarrow \infty$
- Objective: Lower bounds true $A(\theta)$, but non-convex
- Message-passing: Guaranteed convergent, but local optima

Undirected Graphical Models

$$
\begin{aligned}
p(x \mid \theta) & =\frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f} \mid \theta_{f}\right) \\
Z(\theta) & =\sum_{x} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f} \mid \theta_{f}\right)
\end{aligned}
$$

$\mathcal{F} \longrightarrow \quad$ set of hyperedges linking subsets of nodes $f \subseteq \mathcal{V}$
$\mathcal{V} \longrightarrow$ set of N nodes or vertices, $\{1,2, \ldots, N\}$

- Assume an exponential family representation of each factor:

$$
\begin{aligned}
p(x \mid \theta) & =\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f}\right)-A(\theta)\right\} \\
\psi_{f}\left(x_{f} \mid \theta_{f}\right) & =\exp \left\{\theta_{f}^{T} \phi_{f}\left(x_{f}\right)\right\} \quad A(\theta)=\log Z(\theta)
\end{aligned}
$$

- Partition function globally couples the local factor parameters

Learning for Undirected Models

- Undirected graph encodes dependencies within a single training example:

$$
p(\mathcal{D} \mid \theta)=\prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f, n} \mid \theta_{f}\right) \quad \mathcal{D}=\left\{x_{\mathcal{V}, 1}, \ldots, x_{\mathcal{V}, N}\right\}
$$

- Given N independent, identically distributed, completely observed samples:

$$
\begin{gathered}
\log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta) \\
p(x \mid \theta)=\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f}\right)-A(\theta)\right\}
\end{gathered}
$$

Learning for Undirected Models

- Undirected graph encodes dependencies within a single training example:

$$
p(\mathcal{D} \mid \theta)=\prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f, n} \mid \theta_{f}\right) \quad \mathcal{D}=\left\{x_{\mathcal{V}, 1}, \ldots, x_{\mathcal{V}, N}\right\}
$$

- Given N independent, identically distributed, completely observed samples:

$$
\log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta)
$$

- Take gradient with respect to parameters for a single factor:

$$
\nabla_{\theta_{f}} \log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \phi_{f}\left(x_{f, n}\right)\right]-N \mathbb{E}_{\theta}\left[\phi_{f}\left(x_{f}\right)\right]
$$

- Must be able to compute marginal distributions for factors in current model:
> Tractable for tree-structured factor graphs via sum-product
$>$ What about general factor graphs or undirected graphs?

Convex Likelihood Surrogates

$$
\begin{aligned}
& \log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta) \\
& \log p(\mathcal{D} \mid \theta) \geq\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N B(\theta) \triangleq L_{B}(\theta)
\end{aligned}
$$

where we pick a bound satisfying $A(\theta) \leq B(\theta), B(\theta)$ convex

- Apply reweighted Bethe (generalizes to higher-order factors):

$$
\begin{aligned}
& B(\theta)=\sup _{\tau \in \mathbb{L}(G)}\left\{\theta^{T} \tau+H_{\rho}(\tau)\right\} \quad H_{\rho}(\tau)=\sum_{s \in \mathcal{V}} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in \mathcal{E}} \rho_{s t} I_{s t}\left(\tau_{s t}\right) \\
& \nabla_{\theta_{f}} L_{B}(\theta)=\left[\sum_{n=1}^{N} \phi_{f}\left(x_{f, n}\right)\right]-N \mathbb{E}_{\tau}\left[\phi_{f}\left(x_{f}\right)\right]
\end{aligned}
$$

- Gradients depend on expectations of pseudo-marginals produced by applying reweighted BP to current model

Approximate Learning \& Inference:
 Two Wrongs Make a Right

- Empirical Folk Theorem: Performance is better if the inference approximations used to learn parameters from training data are "matched" to those used for test examples
- Actual Theorem roughly shows: If learn based on convex upper bound to true partition function, can bound error on predictions for test examples which are "close" to training data
- Non-convexity \& local optima bad in theory \& practice

Example: Spatially Coupled Mixtures

Real-valued spatial fields from mixture of two Gaussians, with positive spatial correlation in mixture component selection

Wainwright 2006

Example: Spatially Coupled Mixtures

8×8 grid
Real-valued spatial fields from mixture of two Gaussians, with positive spatial correlation in mixture component selection

Wainwright 2006

