Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 24:
Conditional Random Fields, MAP Estimation \& Max-Product BP

Some figures and examples courtesy C. Sutton and A. McCallum, An Introduction to Conditional Random Fields, 2012.

Supervised Learning

Generative ML or MAP Learning: Naïve Bayes
$\max _{\pi, \theta} \log p(\pi)+\log p(\theta)+\sum_{i=1}^{N}\left[\log p\left(y_{i} \mid \pi\right)+\log p\left(x_{i} \mid y_{i}, \theta\right)\right]$

Test
Discriminative ML or MAP Learning: Logistic regression
$\max _{\theta} \log p(\theta)+\sum_{i=1}^{N} \log p\left(y_{i} \mid x_{i}, \theta\right)$

Binary Logistic Regression

$p\left(y_{i} \mid x_{i}, \theta\right)=\operatorname{Ber}\left(y_{i} \mid \operatorname{sigm}\left(\theta^{T} \phi\left(x_{i}\right)\right)\right)$

- Linear discriminant analysis:

$$
\phi\left(x_{i}\right)=\left[1, x_{i 1}, x_{i 2}, \ldots, x_{i d}\right]
$$

- Quadratic discriminant analysis:

$\phi\left(x_{i}\right)=\left[1, x_{i 1}, \ldots, x_{i d}, x_{i 1}^{2}, x_{i 1} x_{i 2}, x_{i 2}^{2}, \ldots\right]$
- Can derive weights from Gaussian generative model if that happens to be known, but more generally:
- Choose any convenient feature set $\phi(x)$
- Do discriminative Bayesian learning:

$$
p(\theta \mid x, y) \propto p(\theta) \prod_{i=1} \operatorname{Ber}\left(y_{i} \mid \operatorname{sigm}\left(\theta^{T} \phi\left(x_{i}\right)\right)\right)
$$

Generative versus Discriminative

Generative ML or MAP Learning: Naïve Bayes

$$
p(y, x)=p(y) \prod_{m=1}^{M} p\left(x_{m} \mid y\right)
$$

- Class-specific distributions for each of M features

Discriminative ML or MAP Learning: Logistic regression

$$
\begin{aligned}
p(y=k \mid x, \theta) & =\frac{1}{Z(x, \theta)} \prod_{m=1}^{M} \exp \left\{\theta_{k}^{T} \phi\left(x_{m}\right)\right\} \\
Z(x, \theta) & =\sum_{k=1}^{K} \prod_{m=1}^{M} \exp \left\{\theta_{k}^{T} \phi\left(x_{m}\right)\right\}
\end{aligned}
$$

- Exponential family distribution (maximum entropy classifier)
- Different distribution, and normalization constant, for each x

Mixture Models versus HMMs

Recover mixture model when all rows of state transition matrix are equal.

Modeling Sequential Data

Hidden

 Markov Model

$$
\begin{aligned}
& p\left(y_{t} \mid \pi, \theta, y_{t-1}, y_{t-2}, \ldots\right)=\operatorname{Cat}\left(y_{t} \mid \pi_{y_{t-1}}\right) \\
& p\left(x_{t} \mid y_{t}=k, \pi, \theta\right)=\exp \left\{\theta_{k}^{T} \phi\left(x_{t}\right)-A\left(\theta_{k}\right)\right\}
\end{aligned}
$$

$$
p\left(y_{t}=k \mid y_{t-1}, x_{t}\right)=\exp \left\{\theta_{k}^{T} \phi\left(y_{t-1}, x_{t}\right)-A\left(y_{t-1}, x_{t}, \theta\right)\right\}
$$

Most graphical models have equal claim to max-entropy terminology...

The "Label Bias" Problem

- Directed MEMM structure gives simple local learning problem: "classifier" for next state, given current state \& observations
- But the MEMM structure has a major modeling weakness: future observations provide no information about current state

$$
\begin{aligned}
p\left(y_{1} \mid x_{1}, x_{2}, x_{3}\right) & =\sum_{y_{2}} \sum_{y_{3}} p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid y_{1}, x_{2}\right) p\left(y_{3} \mid y_{2}, x_{3}\right) \\
& =p\left(y_{1} \mid x_{1}\right)\left[\sum_{y_{2}} p\left(y_{2} \mid y_{1}, x_{2}\right)\left[\sum_{y_{3}} p\left(y_{3} \mid y_{2}, x_{3}\right)\right]\right]
\end{aligned}
$$

Sum-product algorithm has uninformative backward messages

(Generative) Markov Random Fields

$$
\begin{aligned}
p(x \mid \theta) & =\frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f} \mid \theta_{f}\right) \\
Z(\theta) & =\sum_{x} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f} \mid \theta_{f}\right)
\end{aligned}
$$

$\mathcal{F} \longrightarrow$ set of hyperedges linking subsets of nodes $f \subseteq \mathcal{V}$
$\mathcal{V} \longrightarrow$ set of N nodes or vertices, $\{1,2, \ldots, N\}$

- Assume an exponential family representation of each factor:

$$
\begin{aligned}
p(x \mid \theta) & =\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f}\right)-A(\theta)\right\} \\
\psi_{f}\left(x_{f} \mid \theta_{f}\right) & =\exp \left\{\theta_{f}^{T} \phi_{f}\left(x_{f}\right)\right\} \quad A(\theta)=\log Z(\theta)
\end{aligned}
$$

- Partition function globally couples the local factor parameters

(Discriminative) Conditional Random Fields

$$
\begin{aligned}
p(y \mid x, \theta) & =\frac{1}{Z(\theta, x)} \prod_{f \in \mathcal{F}} \psi_{f}\left(y_{f} \mid x, \theta_{f}\right) \\
Z(\theta, x) & =\sum_{y} \prod_{f \in \mathcal{F}} \psi_{f}\left(y_{f} \mid x, \theta_{f}\right)
\end{aligned}
$$

- Assume an exponential family representation of each factor:

$$
p(y \mid x, \theta)=\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(y_{f}, x\right)-A(\theta, x)\right\}
$$

$$
\psi_{f}\left(y_{f} \mid x, \theta_{f}\right)=\exp \left\{\theta_{f}^{T} \phi_{f}\left(y_{f}, x\right)\right\} \quad A(\theta, x)=\log Z(\theta, x)
$$

- Log-probability is a linear function of fixed, possibly very complex features of input x and output y
- Partition function globally couples the local factor parameters, and every training example has a different normalizer

CRF Models for Sequential Data

Direct
Extension of HMM

-••

$$
p(y \mid x) \propto \prod \psi_{t}\left(y_{t}, x_{t}\right) \psi_{t, t+1}\left(y_{t}, y_{t+1}\right)
$$

State
Transitions depend on x

Observations

$$
p(y \mid x) \propto \prod \psi_{t}\left(y_{t}, x_{t}\right) \psi_{t, t+1}\left(y_{t}, y_{t+1}, x_{t}\right)
$$

Arbitrary Non-Local Features

Families of Graphical Models

Naive Bayes

Logistic Regression
-eyine

$$
p(y \mid \theta)=\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(y_{f}\right)-A(\theta)\right\}
$$

$$
p(y \mid x, \theta)=\exp \left\{\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(y_{f}, x\right)-A(\theta, x)\right\}
$$

With informative observations (good features), the posterior may have a simpler graph (Markov) structure than the prior

Generative Learning for MRFs

- Undirected graph encodes dependencies within a single training example:

$$
p(\mathcal{D} \mid \theta)=\prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f, n} \mid \theta_{f}\right) \quad \mathcal{D}=\left\{x_{\mathcal{V}, 1}, \ldots, x_{\mathcal{V}, N}\right\}
$$

- Given N independent, identically distributed, completely observed samples:

$$
\log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(x_{f, n}\right)\right]-N A(\theta)
$$

- Take gradient with respect to parameters for a single factor:

$$
\nabla_{\theta_{f}} \log p(\mathcal{D} \mid \theta)=\left[\sum_{n=1}^{N} \phi_{f}\left(x_{f, n}\right)\right]-N \mathbb{E}_{\theta}\left[\phi_{f}\left(x_{f}\right)\right]
$$

- Must be able to compute prior marginal distributions for factors
- At each gradient step, must solve a single inference problem to find the marginal statistics of the prior distribution

Discriminative Learning for CRFs

- Undirected graph encodes dependencies within a single training example:

$$
p(y \mid x, \theta)=\prod_{n=1}^{N} \frac{1}{Z\left(\theta, x_{\mathcal{V}, n}\right)} \prod_{f \in \mathcal{F}} \psi_{f}\left(y_{f, n} \mid x_{\mathcal{V}, n}, \theta_{f}\right)
$$

- Given N independent, identically distributed, completely observed samples:

$$
\log p(y \mid x, \theta)=\sum_{n=1}^{N}\left[\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(y_{f, n}, x_{\mathcal{V}, n}\right)-A\left(\theta, x_{\mathcal{V}, n}\right)\right]
$$

- Take gradient with respect to parameters for a single factor:

$$
\nabla_{\theta_{f}} \log p(y \mid x, \theta)=\sum_{n=1}^{N}\left[\phi_{f}\left(y_{f, n}, x_{\mathcal{V}, n}\right)-\mathbb{E}_{\theta}\left[\phi_{f}\left(y_{f}, x_{\mathcal{V}, n}\right) \mid x_{\mathcal{V}, n}\right]\right]
$$

- Must be able to compute conditional marginal distributions for factors
- At each gradient step, must solve a N inference problems to find the conditional marginal statistics of the posterior for every training example

Convex Conditional Likelihood Surrogates

- To train CRF models on graphs with cycles:

$$
\begin{aligned}
& \log p(y \mid x, \theta)=\sum_{n=1}^{N}\left[\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(y_{f, n}, x_{\mathcal{V}, n}\right)-A\left(\theta, x_{\mathcal{V}, n}\right)\right] \\
& \log p(y \mid x, \theta) \geq \sum_{n=1}^{N}\left[\sum_{f \in \mathcal{F}} \theta_{f}^{T} \phi_{f}\left(y_{f, n}, x_{\mathcal{V}, n}\right)-B\left(\theta, x_{\mathcal{V}, n}\right)\right]
\end{aligned}
$$

for a convex bound satisfying $A(\theta, x) \leq B(\theta, x)$

- Apply tree-reweighted Bethe variational bound:
$\nabla_{\theta_{f}} \log p(y \mid x, \theta)=\sum_{n=1}^{N}\left[\phi_{f}\left(y_{f, n}, x_{\mathcal{V}, n}\right)-\mathbb{E}_{\tau}\left[\phi_{f}\left(y_{f}, x_{\mathcal{V}, n}\right) \mid x_{\mathcal{V}, n}\right]\right]$
- Gradients depend on expectations of pseudo-marginals produced by applying tree-reweighted BP with current model parameters, for features of every training example

Inference in Graphical Models

$x_{E} \longrightarrow$ observed evidence variables (subset of nodes)
$x_{F} \longrightarrow$ unobserved query nodes we'd like to infer
$x_{R} \longrightarrow \quad$ remaining variables, extraneous to this query but part of the given graphical representation

$$
p\left(x_{E}, x_{F}\right)=\sum p\left(x_{E}, x_{F}, x_{R}\right) \quad R=V \backslash\{E, F\}
$$

Maximum a Posteriori (MAP) Estimates

$$
\hat{x}_{F}=\arg \max _{x_{F}} p\left(x_{F} \mid x_{E}\right)=\arg \max _{x_{F}} p\left(x_{E}, x_{F}\right)
$$

Posterior Marginal Densities

$$
p\left(x_{F} \mid x_{E}\right)=\frac{p\left(x_{E}, x_{F}\right)}{p\left(x_{E}\right)} \quad p\left(x_{E}\right)=\sum_{x_{F}} p\left(x_{E}, x_{F}\right)
$$

Provides Bayesian estimators, confidence measures, and sufficient statistics for iterative parameter estimation

Global versus Local MAP Estimation

Maximum a Posteriori (MAP) Estimates

$$
\hat{x}_{F}=\arg \max _{x_{F}} p\left(x_{F} \mid x_{E}\right)=\arg \max _{x_{F}} p\left(x_{E}, x_{F}\right)
$$

Maximizer of Posterior Marginals (MPM) Estimates

$$
\begin{gathered}
p\left(x_{s} \mid x_{E}\right)=\sum_{x_{F \backslash s}} p\left(x_{F} \mid x_{E}\right) \\
\hat{x}_{s}=\arg \max _{x_{s}} p\left(x_{s} \mid x_{E}\right)
\end{gathered}
$$

MAP and MPM estimators are not equivalent

1	.6
2	.2
3	.2
$p(x)$	

123						
1	0	. 6	. 4		2	
2	1	0	0	. 4	. 3	. 2

MPM: $(1,1)$
MAP: $(1,2)$

MAP in Directed Graphs

$$
\begin{aligned}
& \max _{x} p(x)=\max _{x_{1}} \max _{x_{2}} \max _{x_{3}} \max _{x_{4}} \max _{x_{5}} \max _{x_{6}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(x_{6} \mid x_{2}, x_{5}\right) \\
= & \max _{x_{1}} p\left(x_{1}\right) \max _{x_{2}} p\left(x_{2} \mid x_{1}\right) \max _{x_{3}} p\left(x_{3} \mid x_{1}\right) \max _{x_{4}} p\left(x_{4} \mid x_{2}\right) \max _{x_{5}} p\left(x_{5} \mid x_{3}\right) \max _{x_{6}} p\left(x_{6} \mid x_{2}, x_{5}\right)
\end{aligned}
$$

A MAP Elimination Algorithm

Algebraic Maximization Operations

- Determine maximal setting of variable being eliminated, for every possible configuration of its neighbors
- Compute a new potential table involving all other variables which depend on the just-marginalized variable

Graph Manipulation Operations

- Remove, or eliminate, a single node from the graph
- Add edges (if they don't already exist) between all pairs of nodes who were neighbors of the just-removed node
A Graph Elimination Algorithm
- Choose an elimination ordering
- Eliminate a node, remove its incoming edges, add edges between all pairs of its neighbors
- Iterate until all non-observed nodes are eliminated

Graph Elimination Example

Elimination Order: $(6,5,4,3,2,1)$

Graph Elimination Example

Elimination Order: (6,5,4,3,2,1)

Elimination Algorithm Complexity

- Elimination cliques: Sets of neighbors of eliminated nodes
- Maximization cost: Exponential in number of variables in each elimination clique (dominated by largest clique)
- Treewidth of graph: Over all possible elimination orderings, the smallest possible max-elimination-clique size, minus one
- NP-Hard: Finding the best elimination ordering for an arbitrary input graph (but heuristic algorithms often effective)

The Generalized Distributive Law

- A commutative semiring is a pair of generalized "multiplication" and "addition" operations which satisfy:
Commutative: $a+b=b+a$
$a \cdot b=b \cdot a$
Associative: $a+(b+c)=(a+b)+c \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c$
Distributive: $\quad a \cdot(b+c)=a \cdot b+a \cdot c$
(Why not a ring? May be no additive/multiplicative inverses.)
- Examples:

Addition
sum
max
max
min

Multiplication product product
sum
sum

- For each of these cases, our factorization-based dynamic programming derivation of belief propagation is still valid
- Leads to max-product and min-sum belief propagation algorithms for exact MAP estimation in trees

Belief Propagation (Max-Product)

Max-Marginals:

$$
\begin{aligned}
\hat{p}_{t}\left(x_{t}\right) & \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right) \\
\hat{p}_{t}\left(x_{t}\right) & \propto \arg \max _{x} p(x) \mathbb{I}\left(X_{t}=x_{t}\right)
\end{aligned}
$$

MESSAGES:

$$
m_{t s}\left(x_{s}\right) \propto \max _{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)
$$

- If MAP is unique, find via arg-max of each max-marginal independently
- Otherwise, must backtrack from some chosen root node

