Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 25:
Reweighted Max-Product \& LP Relaxations, Survey of Advanced Topics

Max Marginals
 $$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

- A max-marginal gives the probability of the most likely state in which some variables are constrained to take specified values:

$$
\begin{aligned}
\nu_{s}\left(x_{s}\right) & =\max _{\left\{x^{\prime} \mid x_{s}^{\prime}=x_{s}\right\}} p\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{N}^{\prime}\right) \\
\nu_{s t}\left(x_{s}, x_{t}\right) & =\max _{\left\{x^{\prime} \mid x_{s}^{\prime}=x_{s}, x_{t}^{\prime}=x_{t}\right\}} p\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{N}^{\prime}\right)
\end{aligned}
$$

- For a pairwise MRF, a solution \hat{x} is guaranteed to be one (of possibly many) global MAP estimates if and only if:

$$
\begin{aligned}
\hat{x}_{s} & \in \arg \max _{x_{s}} \nu_{s}\left(x_{s}\right) & s & \in \mathcal{V} \\
\left(\hat{x}_{s}, \hat{x}_{t}\right) & \in \arg \max _{x_{s}, x_{t}} \nu_{s t}\left(x_{s}, x_{t}\right) & (s, t) & \in \mathcal{E}
\end{aligned}
$$

Belief Propagation (Max-Product)

Max-Marginals:

$$
\nu_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)
$$

Messages:

$$
m_{t s}\left(x_{s}\right) \propto \max _{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)
$$

Belief Propagation (Min-Sum)

Negative Log-Max-Marginals:

$$
\begin{gathered}
\bar{\nu}_{t}\left(x_{t}\right)=\phi_{t}\left(x_{t}\right)+\sum_{u \in \Gamma(t)} \bar{m}_{u t}\left(x_{t}\right) \\
\phi_{t}\left(x_{t}\right)=-\log \psi_{t}\left(x_{t}\right) \\
\phi_{s t}\left(x_{s}, x_{t}\right)=-\log \psi_{s t}\left(x_{s}, x_{t}\right)
\end{gathered}
$$

Messages:
$\bar{m}_{t s}\left(x_{s}\right)=\min _{x_{t}} \phi_{s t}\left(x_{s}, x_{t}\right)+\phi_{t}\left(x_{t}\right)+\sum_{u \in \Gamma(t) \backslash s} \bar{m}_{u t}\left(x_{t}\right)$

The Generalized Distributive Law

- A commutative semiring is a pair of generalized "multiplication" and "addition" operations which satisfy:
Commutative: $a+b=b+a$
$a \cdot b=b \cdot a$
Associative: $a+(b+c)=(a+b)+c \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c$
Distributive: $\quad a \cdot(b+c)=a \cdot b+a \cdot c$
(Why not a ring? May be no additive/multiplicative inverses.)
- Examples:

Addition
sum
max
max
min

Multiplication product product
sum
sum

- For each of these cases, our factorization-based dynamic programming derivation of belief propagation is still valid
- Leads to max-product and min-sum belief propagation algorithms for exact MAP estimation in trees

Max-Product to MAP Estimates

Global Directed Factorization: $p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)$

- Choose some node as the root of the tree, order by depth
- Define directed factorization from root to leaves:

$$
p(x)=p\left(x_{\mathrm{Root}}\right) \prod_{s} p\left(x_{s} \mid x_{\mathrm{Pa}(s)}\right)
$$

Bottom-Up Message Passing:

- Pass max-product messages $m_{t s}\left(x_{s}\right) \propto \max _{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)$ recursively from leaves to root
- Find max-marginal of root node:

$$
\nu_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)
$$

Top-Down Recursive Selection:

- Take maximizing root, then maximize by depth given parent:

$$
\nu_{s}\left(x_{s} \mid X_{t}=\hat{x}_{t}, t=\operatorname{Pa}(s)\right) \propto \psi_{t s}\left(\hat{x}_{t}, x_{s}\right) \psi_{s}\left(x_{s}\right) \prod_{u \in \Gamma(s) \backslash t} m_{u s}\left(x_{s}\right)
$$

Discriminative Graphical Models

Naive Bayes

Logistic Regression

HMMs

Linear-chain CRFs

GRAPHS

GENERAL GRAPHS

Generative directed models conoitinnal

General CRFs

- A CRF is trained to match marginals:
- A max-margin Markov network or structural SVM adapts hinge loss, and is trained via MAP estimation

Approximate MAP Estimation

- Greedy coordinate ascent: Iterative Conditional Modes (ICM)

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)
$$

$$
q_{i}\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod m_{j i}\left(x_{i}\right) \quad m_{i j}\left(x_{j}\right) \propto \psi_{i j}\left(\hat{x}_{i}, x_{j}\right)
$$

$$
\hat{x}_{i}=\arg \max _{x_{i}} q_{i}\left(x_{i}\right)
$$

$$
p^{\beta}(x)=\frac{1}{Z(\beta)} \prod_{(s, t) \in \mathcal{E}} \psi_{s t}\left(x_{s}, x_{t}\right)^{\beta} \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right)^{\beta}
$$

- Limit of both Gibbs sampling and mean field in limit $\beta \rightarrow \infty$
- Physical interpretation: Temperature $\beta^{-1} \rightarrow 0$
- The simulated annealing method applies Gibbs sampling as temperature is (very, very slowly) decreased

Marginalization as Convex Optimization

$$
\begin{aligned}
p(x \mid \theta) & =\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\} \\
A(\theta) & =\log \sum_{x \in \mathcal{X}} \exp \left\{\theta^{T} \phi(x)\right\} \\
\mathcal{M} & =\operatorname{conv}\{\phi(x) \mid x \in \mathcal{X}\}
\end{aligned}
$$

- Express log-partition as optimization over all distributions \mathcal{Q}

$$
A(\theta)=\sup _{q \in \mathcal{Q}}\left\{\sum_{x \in \mathcal{X}} \theta^{T} \phi(x) q(x)-\sum_{x \in \mathcal{X}} q(x) \log q(x)\right\}
$$

Jensen's inequality gives arg max: $q(x)=p(x \mid \theta)$

- More compact to optimize over relevant sufficient statistics:

$$
\begin{aligned}
A(\theta) & =\sup _{\mu \in \mathcal{M}}\left\{\theta^{T} \mu+H(p(x \mid \theta(\mu))\} \quad \begin{array}{c}
\begin{array}{c}
\text { concave function } \\
\text { (linear plus entropy) } \\
\text { over a convex set }
\end{array} \\
\mu
\end{array}=\sum_{x \in \mathcal{X}} \phi(x) q(x)=\sum_{x \in \mathcal{X}} \phi(x) p(x \mid \theta(\mu))\right.
\end{aligned}
$$

MAP Estimation as Convex Optimization

 $p(x \mid \theta)=\exp \left\{\theta^{T} \phi(x)-A(\theta)\right\}$ $\max _{x \in \mathcal{X}} \theta^{T} \phi(x)=\max _{x \in \mathcal{X}} p(x \mid \theta)$ $\max _{x \in \mathcal{X}} \theta^{T} \phi(x)=\max _{\mu \in \mathcal{M}} \theta^{T} \mu$
$\mathcal{M}=\operatorname{conv}\{\phi(x) \mid x \in \mathcal{X}\}$

- This is a linear program: Maximization of a linear function over a convex polytope, with one vertex for each $x \in \mathcal{X}$
- No need to directly consider entropy for MAP estimation
- MAP also arises as limit of standard variational objective:

$$
\begin{aligned}
& \max _{x \in \mathcal{X}} \theta^{T} \phi(x)=\lim _{\beta \rightarrow \infty} \frac{A(\beta \theta)}{\beta} \quad \begin{array}{r}
\text { convexity allows } \\
\text { order of limit and } \\
\text { optimization to } \\
\text { interchange }
\end{array} \\
& A(\beta \theta)=\sup _{\mu \in \mathcal{M}}\left\{\beta \theta^{T} \mu+H(p(x \mid \theta(\mu))\}\right.
\end{aligned}
$$

- For some graph G , denote true marginal polytope by $\mathbb{M}(G)$
- Associate marginals with nodes and edges, and impose the following local consistency constraints $\mathbb{L}(G)$

$\sum_{x_{s}} \mu_{s}\left(x_{s}\right)=1, \quad s \in \mathcal{V}$	$\mu_{s}\left(x_{s}\right) \geq 0, \mu_{s t}\left(x_{s}, x_{t}\right) \geq 0$
$\sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right)=\mu_{s}\left(x_{s}\right)$,	$(s, t) \in \mathcal{E}, x_{s} \in \mathcal{X}_{s}$

- For any graph, this is a convex outer bound: $\mathbb{M}(G) \subseteq \mathbb{L}(G)$
- For any tree-structured graph T, we have $\mathbb{M}(T)=\mathbb{L}(T)$

MAP Linear Programming Relaxations

$$
\max _{x \in \mathcal{X}} \theta^{T} \phi(x)=\max _{\mu \in \mathbb{M}(G)} \theta^{T} \mu \leq \max _{\tau \in \mathbb{L}(G)} \theta^{T} \tau
$$

$\mathbb{L}(G)$

- Spanning tree polytope has linear number of constraints, so we can solve linear program in polynomial time
- If we find "integral" vertex of original polytope, we have certificate guaranteeing solution of original MAP problem
- Otherwise, "round" solution to find approximate MAP estimate

Possible Efficient Solution: Reweighted Max-Product BP
$m_{t s}\left(x_{s}\right) \propto \sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right)^{1 / \rho_{s t}} \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)} \quad q_{t}\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{u \in \Gamma(t)} m_{u t}\left(x_{t}\right)^{\rho_{u t}}$
$m_{t s}\left(x_{s}\right) \propto \max _{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right)^{1 / \rho_{s t}} \frac{q_{t}\left(x_{t}\right)}{m_{s t}\left(x_{t}\right)}$
Edge appearance weights as in reweighted sum-product

When Does BP Solve LP Relaxation?

$$
\max _{x \in \mathcal{X}} \theta^{T} \phi(x) \leq \lim _{\beta \rightarrow \infty} \frac{B(\beta \theta)}{\beta} \quad \begin{gathered}
\text { For some convex upper } \\
\text { bound on true log-partition }
\end{gathered}
$$

Informal summary of results of Wainwright et al., Weiss et al.:

- Zero-temperature limit of "convexified" sum-product algorithms are guaranteed to solve MAP LP relaxation
- Reweighted max-product closely related, but not identical
- Standard max-product only approximates LP relaxation

Current Research: Structure Learning

Unknown Graphs for Known Variables

- Objective: Likelihood with MDL or Bayesian penalty
- Classic approach: Stochastic search in space of graphs
- Modern approach: Convex optimization with sparsity priors, which encourage some parameters to be set to zero

Deep Learning

- Hierarchical models, with observations at finest scale, and many layers of hidden variables
- Classic neural networks: Directed graphical models
- Modern restricted Boltzmann machines: Undirected models
- Challenge: Extraordinarily non-convex, extensive heuristics (partially understood) required to avoid local optima
Bayesian Nonparametrics
- Allow model complexity to grow as observations observed
- "Infinite" models via stochastic process priors on distributions

