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Learning from Structured Data



Hidden Markov Models (HMMs)

“Conditioned on the present, the past and
future are statistically independent”

Visual Tracking
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Nearest-Neighbor Grids

unobserved or hidden variable

local observation of

Low Level Vision

• Image denoising

• Stereo

• Optical flow

• Shape from shading

• Superresolution

• Segmentation



Wavelet Decompositions

• Bandpass decomposition

of images into multiple

scales & orientations

• Dense features which

simplify statistics of

natural images

*



Hidden Markov Trees

• Hidden states model

evolution of image

patterns across scale

and location



Validation: Image Denoising

Original Image: Barbara Corrupted by Additive

White Gaussian Noise

(PSNR = 24.61 dB)



Denoising Results: Barbara

Noisy Input (24.61 dB) HDP-HMT (32.10 dB)

• Posterior mean of wavelet coefficients averages samples

with varying numbers of states (model averaging)



Denoising: Input

24.61 dB



Denoising: Binary HMT

Crouse, Nowak, & Baraniuk, 1998
29.35 dB



Denoising: HDP-HMT

32.10 dB



Visual Object Recognition

Can we transfer knowledge from one object category to another?



Describing Objects with Parts

Pictorial Structures
Fischler & Elschlager, 1973

Constellation Model
Perona et. al., 2000 to present

Generalized Cylinders
Marr & Nishihara, 1978

Recognition by Components
Biederman, 1987 



A Graphical Model for Object Parts
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3D Scenes

G0

H

R
Global Density

Object category
Part size & shape

Transformation prior

F

J

Gj

Transformed Densities
Object category
Part size & shape

Transformed locations

w v

2D Image Features
Appearance Descriptors
2D Pixel Coordinates

N

o

u

3D Scene Features
Object category
3D Location



Stereo Test Image



Many Other Applications

• Speech recognition & speaker diarization

• Natural language processing: parsing, topic models, …

• Robotics: mapping, navigation & control, …

• Error correcting codes & wireless communications

• Bioinformatics

• Nuclear test monitoring

• ………



set of      nodes

set of edges             connecting nodes

Nodes             are associated with random variables

An undirected graph     is defined by

Undirected Graphical Models

Graph Separation

Conditional

Independence



Inference in Graphical Models

Maximum a Posteriori (MAP) Estimates

• Provide both estimators and confidence measures

• Sufficient statistics for iterative parameter estimation

Posterior Marginal Densities

observations (implicitly encoded via compatibilities)



Why the Partition Function?

• Sensitivity of physical systems to external stimuli

Statistical Physics

Hierarchical Bayesian Models

• Marginal likelihood of observed data

• Fundamental in hypothesis testing & model selection

Cumulant Generating Function

• For exponential families, derivatives with respect

to parameters provide marginal statistics

PROBLEM:  Computing Z in general graphs is NP-complete 



What do you want to

learn about?



Graphical Models

x
3

x
4

x
5

x
1

x
2

x
3

x
4

x
5

x
1

x
2

x
3

x
4

x
5

x
1

x
2

Directed

Bayesian Network
Factor Graph

Undirected

Graphical Model



Exact Inference

MESSAGES:  Sum-product or belief propagation algorithm

number of nodes

discrete states 

for each node

Belief Prop:

Brute Force:

Computational cost:



Continuous Variables

Discrete State Variables

Messages are finite vectors

Updated via matrix-vector products

Gaussian State Variables

Messages are mean & covariance

Updated via information Kalman filter

Continuous Non-Gaussian State Variables

Closed parametric forms unavailable

Discretization can be intractable even

with 2 or 3 dimensional states



Variational Inference: An Example

• Choose a family of approximating distributions

which is tractable.  The simplest example:

• Define a distance to measure the quality of

different approximations.  One possibility:

• Find the approximation minimizing this distance



Advanced Variational Methods

• Exponential families

• Mean field methods: naïve and structured

• Variational EM for parameter estimation

• Loopy belief propagation (BP)

• Bethe and Kikuchi entropies

• Generalized BP, fractional BP

• Convex relaxations and bounds

• MAP estimation and linear programming

• ………



Markov Chain Monte Carlo

…

…

Metropolis-Hastings, Gibbs sampling, Rao-Blackwellization, …



Sequential Monte Carlo
Particle Filters, Condensation, Survival of the Fittest,…

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Nonparametric approximation

to optimal BP estimates

• Represent messages and

posteriors using a set of

samples, found by simulation



Nonparametric Belief Propagation

Belief Propagation

• General graphs

• Discrete or Gaussian

Particle Filters

• Markov chains

• General potentials

Nonparametric BP

• General graphs

• General potentials



Nonparametric Bayes

• Model complexity grows as data observed:

Small training sets give simple, robust predictions

Reduced sensitivity to prior assumptions

Nonparametric No Parameters

• Literature showing attractive asymptotic properties

• Leads to simple, effective computational methods

Avoids challenging model selection issues

Flexible but Tractable

Dirichlet process mixture model



Prereq: Intro Machine Learning
Supervised Learning Unsupervised Learning
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classification or

categorization

regression

clustering

dimensionality

reduction

• Bayesian and frequentist estimation

• Model selection, cross-validation, overfitting

• Expectation-Maximization (EM) algorithm



Textbook & Readings

• Variational tutorial by Wainwright and Jordan (2008)

• Background chapter of Prof. Sudderth’s thesis

• Many classic and contemporary research articles…



Grading

• Attend class and participate in discussions

• Prepare summary overview presentation, and lead class
discussion, for ~2 papers

Prof. Sudderth will lecture 50% of the time

• Upload comments about the assigned reading before
each lecture (due at 9am)

Class Participation: 30%

• Proposal: 1-2 pages, due in March (10%)

• Presentation: ~10 minutes, during finals week (10%)

• Conference-style technical report (50%)

Final Project: 70%



Reading Comments

• What is the most exciting or interesting model, idea, or
technique described here?  Why is it important?

• Don’t just copy the abstract - what do you think?

The Good: 1-2 sentences

• No method is perfect, and many are far from it!

• What is the biggest weakness of this model or approach?

• Problems could be a lack of empirical validation, missing
theory, unacknowledged assumptions, …

The Bad: 1-2 sentences

• Poorly written or unclear sections of the paper: terse
explanations, steps you didn’t follow, etc.

• What would you like to have explained in class?

The Ugly: 1-2 sentences



Final Projects

• Propose a new family of graphical models suitable for a
particular application, try baseline learning algorithms

• Propose, develop, and experimentally test an extension of
some existing learning or inference algorithm

• Experimentally compare different models or algorithms on
an interesting, novel dataset

• Survey the latest advances in a particular application
area, or for a particular type of learning algorithm

• …

Key Requirements: Novelty, use of graphical models

Best case: Application of course

material to your own area of research



Administration

• Your name

• Your CS account username

• Your department, major, and year

• Your experience in machine learning
If you took CS195-F in Fall 2009, just say so

Otherwise, 1-2 sentences about previous exposure

Mailing List: E-mail sudderth@cs.brown.edu with

Readings for Monday:

• Introductory chapters of Koller & Friedman; specific
sections announced via e-mail

• No comments required for Monday’s lecture


