Learning and Inference in Probabilistic Graphical Models

CSCI 2950-P: Special Topics in Machine Learning Spring 2010 Prof. Erik Sudderth

Learning from Structured Data

Speaker A	Speaker B	Speaker C	Sp. A		Speaker B
internet, para interneting setting the pinton association in the se-	danie Aronard Al	and the provident of the second s	pilinanonna	1	100 performentes
with the state of a party of the results of the	himmen also and the	and the state of the second	weihoreneihensch		en stateli filite en sta

Hidden Markov Models (HMMs) Visual Tracking

"Conditioned on the present, the past and future are statistically independent"

Kinematic Hand Tracking

Kinematic Prior Structural Prior

Dynamic Prior

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation
- $x_s \longrightarrow$ unobserved or hidden variable
- $y_s \longrightarrow \text{local observation of } x_s$

Wavelet Decompositions

- Bandpass decomposition of images into multiple scales & orientations
- Dense features which simplify statistics of natural images

Hidden Markov Trees

 Hidden states model evolution of image patterns across scale and location

Validation: Image Denoising

Original Image: Barbara

Corrupted by Additive White Gaussian Noise (*PSNR* = 24.61 dB)

Denoising Results: Barbara

Noisy Input (24.61 dB)

HDP-HMT (32.10 dB)

 Posterior mean of wavelet coefficients averages samples with varying numbers of states (model *averaging*)

Denoising: Input

24.61 dB

Denoising: Binary HMT

29.35 dB

Crouse, Nowak, & Baraniuk, 1998

Denoising: HDP-HMT

32.10 dB

Visual Object Recognition

Can we transfer knowledge from one object category to another?

Describing Objects with Parts

Pictorial Structures Fischler & Elschlager, 1973

Recognition by Components Biederman, 1987

Generalized Cylinders Marr & Nishihara, 1978

Constellation Model Perona et. al., 2000 to present

Stereo Test Image

Many Other Applications

- Speech recognition & speaker diarization
- Natural language processing: parsing, topic models, ...
- Robotics: mapping, navigation & control, ...
- Error correcting codes & wireless communications
- Bioinformatics
- Nuclear test monitoring

•

Undirected Graphical Models

An undirected graph \mathcal{G} is defined by

$$\mathcal{V} \longrightarrow$$
 set of N nodes $\{1, 2, \dots, N\}$

 \mathcal{E} \longrightarrow set of edges (s,t) connecting nodes $s,t\in\mathcal{V}$

Nodes $s \in \mathcal{V}$ are associated with random variables x_s

 $p(x_A, x_C | x_B) = p(x_A | x_B) p(x_C | x_B)$

Inference in Graphical Models $p(x \mid y) = \frac{1}{Z} \prod_{s \in \mathcal{V}} \psi_s(x_s) \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t)$

 $y \rightarrow$ observations (implicitly encoded via compatibilities)

Maximum a Posteriori (MAP) Estimates

$$\widehat{x} = \arg\max_{x} p(x \mid y)$$

Posterior Marginal Densities

$$p_t(x_t \mid y) = \sum_{x_{\mathcal{V} \setminus t}} p(x \mid y)$$

- Provide both estimators and confidence measures
- Sufficient statistics for iterative *parameter estimation*

Why the Partition Function? $Z = \sum_{x} \prod_{s \in \mathcal{V}} \psi_s(x_s) \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t)$

Statistical Physics

• Sensitivity of physical systems to external stimuli

Hierarchical Bayesian Models

- Marginal likelihood of observed data
- Fundamental in hypothesis testing & model selection

Cumulant Generating Function

• For exponential families, derivatives with respect to parameters provide marginal statistics

PROBLEM: Computing Z in general graphs is NP-complete

What do you want to learn about?

Graphical Models

Directed Bayesian Network

Factor Graph

Undirected Graphical Model

Exact Inference

MESSAGES: Sum-product or belief propagation algorithm

 $m_{ts}(x_s) = \alpha \sum_{x_t} \psi_{st}(x_s, x_t) \psi_t(x_t, y) \prod_{u \in \Gamma(t) \setminus s} m_{ut}(x_t)$

Computational cost:

 $N \longrightarrow$ number of nodes $M \longrightarrow$ discrete states for each node Belief Prop: $\mathcal{O}(NM^2)$ Brute Force: $\mathcal{O}(M^N)$

Continuous Variables

 $m_{ij}(x_j) \propto \int_{x_i} \psi_{j,i}(x_j, x_i) \psi_i(x_i, y) \prod_{k \in \Gamma(i) \setminus j} m_{ki}(x_i) dx_i$

Discrete State Variables

- Messages are finite vectors
- Updated via matrix-vector products

Gaussian State Variables

- Messages are mean & covariance
- Updated via information Kalman filter

Continuous Non-Gaussian State Variables

- Closed parametric forms unavailable
- Discretization can be *intractable* even with 2 or 3 dimensional states

Variational Inference: An Example $p(x \mid y) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s, y)$

• Choose a family of approximating distributions which is tractable. The simplest example:

$$q(x) = \prod_{s \in \mathcal{V}} q_s(x_s)$$

• Define a distance to measure the quality of different approximations. One possibility:

$$D(q \mid\mid p) = \sum_{x} q(x) \log \frac{q(x)}{p(x \mid y)}$$

• Find the approximation minimizing this distance

Advanced Variational Methods

- Exponential families
- Mean field methods: naïve and structured
- Variational EM for parameter estimation
- Loopy belief propagation (BP)
- Bethe and Kikuchi entropies
- Generalized BP, fractional BP
- Convex relaxations and bounds
- MAP estimation and linear programming

Markov Chain Monte Carlo

Metropolis-Hastings, Gibbs sampling, Rao-Blackwellization, ...

Sequential Monte Carlo

Particle Filters, Condensation, Survival of the Fittest,...

- Nonparametric approximation to optimal BP estimates
- Represent messages and posteriors using a set of samples, found by simulation

Weight by observation likelihood

Sample-based density estimate

Resample & propagate by dynamics

Nonparametric Belief Propagation

Belief Propagation

- General graphs
- Discrete or Gaussian

Particle Filters

- Markov chains
- General potentials

Nonparametric BP

- General graphs
- General potentials

Nonparametric Bayes

$$p(x) = \sum_{k=1}^{\infty} \pi_k \mathcal{N}(x \mid 0, \Lambda_k)$$

Dirichlet process mixture model

Nonparametric \neq No Parameters

- Model complexity grows as data observed:
 - Small training sets give simple, robust predictions
 - Reduced sensitivity to prior assumptions

Flexible but Tractable

- Literature showing attractive asymptotic properties
- Leads to simple, effective computational methods
 Avoids challenging model selection issues

Prereq: Intro Machine Learning

Supervised Learning Unsupervised Learning

Discrete	classification or categorization	clustering		
Continuous	regression	dimensionality reduction		

- Bayesian and frequentist estimation
- Model selection, cross-validation, overfitting
- Expectation-Maximization (EM) algorithm

Textbook & Readings

- Variational tutorial by Wainwright and Jordan (2008)
- Background chapter of Prof. Sudderth's thesis
- Many classic and contemporary research articles...

Grading

Class Participation: 30%

- Attend class and participate in discussions
- Prepare summary overview presentation, and lead class discussion, for ~2 papers
 - ➢ Prof. Sudderth will lecture 50% of the time
- Upload comments about the assigned reading before each lecture (due at 9am)

Final Project: 70%

- Proposal: 1-2 pages, due in March (10%)
- Presentation: ~10 minutes, during finals week (10%)
- Conference-style technical report (50%)

Reading Comments

The Good: 1-2 sentences

- What is the most exciting or interesting model, idea, or technique described here? Why is it important?
- Don't just copy the abstract what do you think?

The Bad: 1-2 sentences

- No method is perfect, and many are far from it!
- What is the biggest weakness of this model or approach?
- Problems could be a lack of empirical validation, missing theory, unacknowledged assumptions, ...

The Ugly: 1-2 sentences

- Poorly written or unclear sections of the paper: terse explanations, steps you didn't follow, etc.
- What would you like to have explained in class?

Final Projects

Best case: Application of course material to your own area of research

Key Requirements: Novelty, use of graphical models

- Propose a new family of graphical models suitable for a particular application, try baseline learning algorithms
- Propose, develop, and experimentally test an extension of some existing learning or inference algorithm
- Experimentally compare different models or algorithms on an interesting, novel dataset
- Survey the latest advances in a particular application area, or for a particular type of learning algorithm

• ...

Administration

Mailing List: E-mail sudderth@cs.brown.edu with

- Your name
- Your CS account username
- Your department, major, and year
- Your experience in machine learning
 - ➢ If you took CS195-F in Fall 2009, just say so
 - Otherwise, 1-2 sentences about previous exposure

Readings for Monday:

- Introductory chapters of Koller & Friedman; specific sections announced via e-mail
- No comments required for Monday's lecture