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Variational Inference

e Our model (directed graphical model)

e X=(VH)

e V are visible variables

e H are latent variables — includes parameters
e Our dilemma

 Exact inference algorithms are ‘computationally
intractable for all but the simplest models.’

e Our goal
« Find tractable approximate: Q(H) ~ P(H | V)




Variational Inference

» Note the natural decomposition of log likelihood:

InP(V) = /(Q) + KL(Q Il P)

where
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KL(QIIP) =~ O(H)In




Variational Inference
e For arbitrary Q

InP(V) = £(Q) +KL(Q Il P)
) ) )

fixed maximize minimize

e Minimize KL(Q || P) w.r.t unrestricted Q? We get:

OH) = PHIV)

e but this is what we're trying to avoid...




Variational Inference

o Family of distributions explored by Winn:
o) =] |om)
i

where {H.} are disjoint groups of latent variables

» Vastly reduces space
e e.g. assuming a fully disjoint set of discrete variables:

H| =N, H €{1,..K}

e Q reduces P space:

K" —-KN




Variational Inference

* Plug in factorized Q to lower bound equation:

(@ =] [o®m)nPE.Y) - Y > 0.H)nQ,H)

o Separate out all terms in one factor Q
((Q) =-KL(Q, 11Q,) + terms not in Q,

e Introduce some new distribution Q*;
e Minimize this KL divergence




Variational Inference

 Maximizing the lower bound w.r.t. some factor Q;:
InQ;(H,) = <lnP(H,V)>~Q(Hj) + const.
—

0, ,) =~ exp|(PHLV) |

» Can see that solutions are coupled, each Q; depends
on expectations w.r.t. factors Q,;

» Variational optimization proceeds by initializing each
Q; and then cycling through each factor




Variational Inference (recap)

1. Choose a family, Q(H) of variational
distributions:

2. Use Kullback-Leibler divergence, KL(Q ||P), as
a measure of ‘distance’ between P(H | V) and

Q(H).

3. Find Q that minimizes divergence (or
equivalently, maximizes the lower bound).




KL Divergence
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KL Divergence
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Variational Inference in Directed Model

e Assuming a directed graphical model, full
distribution:

P(X) = HP(Xi | pa,)

» Winn assumes fully factorized Q

O(H) = HQ,- (H,)




Variational Inference in Directed Model

 Plugging factorized joint into optimized form of
factor j:

InQ; = <ElnP(Xi Ipai)> + const.

~Q(H )

» Terms not depending on H; will be constant,
yielding:

InQ(H,) = (InP(H, | pa, )>~Q(H) Ekah (InP(X, I pay))_,,, ,+const.

e Distribution only relies on parents, children and
co-parents




Variational Inference in Directed Model

» For a factorized Q, each update equation relies only
on variables in the Markov blanket

Q ©

» Can decompose the overall optimization into a set of
local computations




Conjugate-Exponential Models

» Simplify update equations
 conditional distributions from the exponential family
e conjugate w.r.t. distributions over parent variables

X

()

A parent distribution p(x/y) is said to be

conjugate to child distribution p(w/x) if p(x/y)
has the same functional form, with respect to
X, as p(w/x).

p(xlw,y) < p(wlx)p(xly)
) ) t+9

same family = same functional
form




Conjugate-Exponential Models

e Conditional distributions expressed in exponential
family form:

InP(X [0) =0 u(X)+g(0)+ f(X)
*

‘natural’ sufficient
parameter statistics
vector vector

e E.g. univariate Gausian:

mpexen=| |

-y/2| | x° +%lnan_5W2+O




Conjugate-Exponential Models

» Parents and children are chosen to be conjugate,
i.e. have the same functional form

In P(X [0) =0 u(X)+g(0)+ f(X)

‘ same

InP(Z|X,Y)=0(Y,2) u(X)+g(X)+ ['(Y,Z)

* E.q.
» (Gaussian for the mean of a Gaussian
o Gamma for the precision of a Gaussian
 Dirichlet for the parameters of a discrete distribution




Conjugate-Exponential Models

pay

,‘Y,y.
[ N )
chy

PYI1X,pa,)=P(XIY,cp,)P(Y | pa,)
) ) L

same family same form (wrt Y)




Conjugate-Exponential Models
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InP(Y | pa,) = ¢, (pay) u,(Y) + f,(Y) +g, (pa,)
InP(X 1Y,cp,)=0¢,Y,cp,) u, (X)+ fr (X)+g, (Y ,cp,)
= ¢,y (X,cp, )TuY Y)+ A(X,cpy)




Conjugate-Exponential Models
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IHQ; (Y) = <¢Y (paY)TuY(Y) +y(¥) + 8y (pay)>~Q(Y)

+ Ekedzj <¢XY (X,.cp,) u, (Y) +A(X k,cpk)>~Q(Y) + const.

T

= <¢Y(Pay)>~Q(Y) + E<¢XY(Xkank)>~Q(Y) u, (Y)+f, (Y)+ const.
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Conjugate-Exponential Models
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Variational Message Passing

e Conditional distributions:
InP(X[0)=0"u(X)+g(0)+ f(X)
InP(Z|X,Y)=9(Y,2) u(X)+g'(X)+ ["(Y,Z)

e Messages:

Parent to child (X—2)
My .; = <”(X)>Q(X) \ \

Child to parent (Z—X)
m,_, = <¢(Y»Z)>Q(Y)Q(Z)




Varational Message Passing

o Optimal Q(X) has the same form as P(X/6), but
with updated parameter vector 6*

0 = </{9> + EChE(Xn)q

Computed from
messages from parents

J—=X




VMP Example: defining the model

e Learning parameters of a Gaussian from N data
points.

mean preC|S|on
(inverse
variance)

data

N

NG J

N
Pxluy™ =] NG, luwy™
n=1




VMP Example: defining the model

e Learning parameters of a Gaussian from N data
points.

mean preC|S|on
(inverse
variance)

-
data u(x)=[x,, i]T

N Nj/

T
yw | (x| 1
InP(xluy™) = "|+=(ny —yu’ —1In2
nP(x|uy™) [—V/2] L@f +2(ny yw —In2r)




VMP Example: defining the model

e Learning parameters of a Gaussian from N data
points.

mean preC|S|on
(inverse
variance)

.
data u,(w=[uu'l

N Nj/

T
_ X, wil 1
InP(xluy™")= [—y /2] [ 5 +5(lny —yx? —1n2m)




VMP Example: defining the model

e Learning parameters of a Gaussian from N data

mean preC|S|on
(inverse
variance)

points.

data
\_ N)
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— x —
InP(xluy™) = 2 (%0 = 1)

N | —
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VMP Example: defining the model

e Learning parameters of a Gaussian from N data
points.

Gaussian distribution with hyper Gamma distribution with hyper

params (m, ) params (a, b)
_1 ﬁm ! Au _b T y
InP(ulm,p) = /5/2 —(ln/j /g’m —1n2x) InP(ylab) = +a1nb—1nF(a)
mean preC|S|on
mverse
varlance
data




VMP Example: passing messages

Variational Distribution: Q(w.y) = QO(wQO(y)

3

N

NG J

Find initial values: (u,(w) and (u, (7))




VMP Example: passing messages

Message from 7 to all x.
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VMP Example: passing messages

Messages from each x, to u.

<V>xn?§\ J;\D

M ™ [—<y>/z

N’

InP(x|uy™) =




VMP Example: passing messages
Update O(u) parameter vector
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VMP Example: passing messages

Message from updated u to all x.
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VMP Example: passing messages

Messages from each x, to y.
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VMP Example: passing messages
Update (J(y) parameter vector

6 =g+ dm,
QR@ZD ' —bn='1
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VMP Example: converged distribution

Variational posterior True posterior




Features of VMP

e Guaranteed to converge to a local minimum of

KL(Q[[P)

 Flexible message passing schedule — factors can
be updated in any order (thought it may alter
convergence)

» Graph does not need to be a tree (needs to be
acyclic)




Allowable Models and Constraints

» Parent-child edges must satisfy conjugacy

e Gaussian variable:
Gaussian parent for its mean
Gamma parent for its precision
e Gamma variable:
Gamma scale parameter b
e Discrete Variable
Dirichlet prior




Allowable Models and Constraints

Distribution 1% parent Conjugate dist. | 2"¢ parent | Conjugate dist.
Gaussian mean u Gaussian precision y gamma
gamma shape a None scale b gamma
discrete probabilities p Dirichlet parents {x;} discrete
Dirichlet pseudo-counts a None
Exponential scale a gamma
Poisson mean A gamma

Table 1: Distributions for each parameter of a number of exponential family
distributions if the model is to satisfy conjugacy constraints. Conjugacy also
holds if the distributions are replaced by their multivariate counterparts e.g.
the distribution conjugate to the precision matrix of a multivariate Gaussian
is @ Wishart distribution. Where “"None” is specified, no standard distribution
satisfies conjugacy.




Allowable Models and Constraints

e Truncated Distributions

 Incorporates deterministic variables
» Mixture distributions

o Multivariate distributions




Allowable Models: Mixture Models

e Not in the exponential family:

P(X {m,} 401 = > mP(X16,)

 Introduce latent variable, A, which indicates
component

PxIA{0 ) =] [P (x10,)

InP(X 1246,3) = 009,00, (X) + £,(X) + £,(6,)]




Allowable Models: Mixture Models

e Require that all component distributions have the
same natural statistic vector:

A
u, (X)=u(X)=..=u,(X)
e Can rewrite log conditional:

InP(X 11{60,}) = ¢ (A{0. ) 0 (X) + £, (X)+ 2(d, (L.{0,}))

where Oy = Eé()"ak)qbk(ek)




Allowable Models: Mixture Models

* Now the messages are defined as:

m, _, =0(A=k)gy, )
my .;c, = <ux (X)>

m, , =(InP,(X16,))




Allowable Models

» General architecture: arbitrary directed acyclic
subgraphs of multinomial discrete variables (with
Dirichlet priors)

o Arbitrary subgraphs of univariate and multivariate
linear Gaussian nodes (having gamma and Wishart
priors)

 Arbitrary mixture nodes providing connections from
discrete to continuous subgraphs

e Can include deterministic nodes

e Any continuous distribution can be truncated to
restrict range of allowable values

e Includes: HMMs, Kalman Filters, Factor Analysis, PCA,
ICA




VIBES

e VIBES — inspired by WinBUGS
» Graphically specify models, and run inference

—

eno VIBES
File Help
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Extensions

e Can introduce additional variational parameters to
use non-conjugate distributions

» Logistic Sigmoid function can be estimated by
Gaussian-like bound

» Next step would be achieve a posterior estimate

with some dependency structure (i.e. structured
variational inference)




