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Pairwise Markov Random Fields

• Product of arbitrary positive clique potential functions

• Guaranteed Markov with respect to corresponding graph

set of      nodes

set of edges             connecting nodes

normalization constant (partition function)



Markov Chain Factorizations



Energy Functions

• Terminology drawn from statistical physics

• Log-likelihood interpretation allows statistical learning



Probabilistic Inference

• Bayes least squares estimate

• Maximizer of the Posterior Marginals (MPM)

• Measures of confidence in these estimates

Maximum a Posteriori (MAP) Estimate

Posterior Marginal Densities



Inference via the Distributed Law
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Inference via the Distributed Law



Belief Propagation (Sum-Product)
BELIEFS:  Posterior marginals (possibly approximate)

MESSAGES:  Sufficient statistics (possibly approximate)

neighborhood of node t

(adjacent nodes)

I) Message Product

II) Message Propagation



Belief Propagation for Trees

• Dynamic programming algorithm which exactly

computes all marginals

• On Markov chains, BP equivalent to alpha-beta

or forward-backward algorithms for HMMs

• Sequential message schedules require each

message to be updated only once

• Computational cost:

number of nodes

discrete states 

for each node

Belief Prop:

Brute Force:



Inference for Graphs with Cycles
• For graphs with cycles, the dynamic

programming BP derivation breaks

Junction Tree Algorithm

• Cluster nodes to break cycles

• Run BP on the tree of clusters

• Exact, but often intractable

Loopy Belief Propagation

• Iterate local BP message updates

on the graph with cycles

• Hope beliefs converge

• Empirically, often very effective…



A Brief History of Loopy BP
• 1993:  Turbo codes (and later LDPC codes,

rediscovered from Gallager’s 1963 thesis)

revolutionize error correcting codes  (Berrou et. al.)

• 1995-1997:  Realization that turbo decoding

algorithm is equivalent to loopy BP  (MacKay & Neal)

• 1997-1999:  Promising results in other domains, &

theoretical analysis via computation trees (Weiss)

• 2000:  Connection between loopy BP & variational

approximations, using ideas from statistical physics
(Yedidia, Freeman, & Weiss)

• 2001-2007:  Many results interpreting, justifying,

and extending loopy BP



Approximate Inference Framework

• Choose a family of approximating distributions

which is tractable.  The simplest example:

• Define a distance to measure the quality of

different approximations.  Two possibilities:

• Find the approximation minimizing this distance



Fully Factored Approximations

• Trivially minimized  by setting

• Doesn’t provide a computational method…

Marginal

Entropies

Joint

Entropy



Variational Approximations

(Multiply by one)

(Jensen’s inequality)

• Minimizing KL divergence maximizes a lower

bound on the data likelihood



Free Energies

Negative

Entropy

Average

Energy

Gibbs Free Energy

Normalization

• Free energies equivalent to KL divergence,

up to a normalization constant



Mean Field Free Energy



Mean Field Equations

• Add Lagrange multipliers to enforce

• Taking derivatives and simplifying, we

find a set of fixed point equations:

• Updating one marginal at a time gives

convergent coordinate descent



Structured Mean Field

Original Graph Naïve Mean Field
Structured

Mean Field

• Any subgraph for which inference is tractable

leads to a mean field style approximation for which

the update equations are tractable



Tree Structured Free Energies

• Trees exactly factorize as

• We may then optimize over all distributions which

are Markov with respect to a tree-structured graph:

Marginal

Entropies

Mutual

Information



Bethe Free Energy

• Bethe approximation uses the

tree-structured free energy form

even though the graph has cycles

Average Energy (exact for pairwise MRFs)

Approximate Entropy



Minimizing Bethe Free Energy

• Add Lagrange multipliers to enforce normalizations:

•  Taking derivatives and simplifying,



Bethe and Belief Propagation

Belief Propagation

Bethe Fixed Points

Correspondence



Implications for Loopy BP

Bethe Free Energy is an Approximation

• BP may have multiple fixed points (non-convex)

• BP is not guaranteed to converge

• Few general guarantees on BP’s accuracy

Characterizations of BP Fixed Points

• All graphical models have at least one BP fixed point

• Stable fixed points are local minima of Bethe

• For graphs with cycles, BP is almost never exact

• As cycles grow long, BP becomes exact (coding)



Why Does Loopy BP Work?

• Folk theorems about loopy BP on dense graphs:

Convergence behavior correlated with accuracy

Accurate when local potentials “consistent” with global

posterior (quantifiable in case where all potentials weak)

Systems with “frustrated” potentials cause problems

BP as approximate E-step for learning works “sometimes”



Double-Loop Algorithms

• Directly minimize Bethe free energy

• Guaranteed to converge to a local optimum

• Much slower than loopy BP

• Some theory and experimental results suggesting

that when BP doesn’t converge, it’s a sign that

Bethe approximation is bad

(Yuille & Rangarajan, Neural Comp. 2003)




