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Multivariate Gaussians

1 _
e Standard form: p(x) o< expi—5(z - p)' pH - )}
where P is symmetricand P > 0.

» Information form: p(x) o< exp{—3x’ Jx+h'x}
where J is symmetricand J > 0.

u=J'h and P=J"

J : Information matrix
h : Potential vector



Multivariate Gaussians

* Rescale the variables so that J;; = 1
e Partial correlation coefficients

A cov(X;;X; \xV\ij) B J::

Fij
\/ var(x;|xp\;;)var(x;|xp;;) Vil

 Define Rsuch that R;; = 0 and R;; = 7y,

J =1—-R

J



Gaussian MRFs

o p(71,%2,%3,T4,%5) can be written as G = (V,E)
where each component z; is a node and r;;
are edge weights.
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Gaussian MRFs

* J encodes pairwise Markov independencies:

Jij =0 iff {i,j} ¢E
1 —ryg 0 —7ryq 0 |
1 — 1923 0 — 195
J = I —ry 0
I —rys
| 1 -
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Gaussian MRFs

 Hammersley-Clifford theorem:

p(x) < exp{—2x"Jx+h'x} can be written as

p(x) e [Twile) TT wijlix))

icV {i,j}€E

Vi (X .c') — exp{ o %J';"*xiz T hfxf}
Yij (x.f-;xj) — exp{ _xf‘];f.fxf}



Problem

* Given the model(Jy, hy/), we want to perform
variable elimination/marginalization

v=ri pulew) = | pxde; = N, P

(!

p(@;) 2/ p(x)day\; = N(p;, ;)
LY\q



Variable elimination in trees

For the acyclic Gaussian case, pU(ﬁU) is obtained by

Ji7 = Juu —Ju.i Ju—l Jiy and },U = hy —Ju J;lhi.
pu(zy) = N(Jy, hy)

How to compute all marginals efficiently?



Belief Propagation

Perform Sum-Product/BP to obtain marginals at
each node.

mis ) = [wiCx)wite) TT i) d
keN(i)\/

P.c‘(x.f) o W.c'(xs') H m/f—hf(xf)
ke N (i)



Cyclic case

* Try Loopy BP
n—1
’ms(—u xf /“lji/ x”x})wi(x!) H 'mﬁf—ﬁ )(xf) dx;
keN(i)\/

* Not guaranteed to converge, energy function
has multiple fixed points.

e Can we exploit Gaussian structure to
guarantee convergence and correctness?



Walk-Sums 101

» Walk w= (wg,wi,...,w;) Wy €V
{WkaWkH}EE

* Weight of a walk w q> H”wz( 1, Wk

e A setof walks W

=Y o(w) (W)= 2, hud(w)

we N we W



Walk-Sum Example

w=1(1,2,3) o(w)=r12rm23

Wl —1): {(1),(1,2,1),(1,3,1),
(1?3?2? 1)?(1?2? 1321 1)1}
(1)(1 — 1) =1 +ri2mi1+rari....

Wix— 1) {(1).(21).3.1).(2,3.1),(1,3,1),...}
Op(x — 1) =h +hary 1 +h3rs +hara3rs ) + ...




Neumann Series

J =

P=J""=(U-R)"

. Maximum absolute
I R value of the
eigenvalues.
z R*, for p(R) <
k=0

. (Rz)z'j can be interpreted as sum of walks from i

to j of length |

[
(R )-f_f' — Z Fiwi Pwiwa e Pwy_y.j = Z d)(w)

Wi.....Wj_]



Neumann Series

Compute (R?)i3

X, rio X A —
" K (0 _riz [0 |1y 0
& ror 0 |rog| 0 o5
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Walk-Sums for Inference

o0

P=J"'=(I-R)""'=Y R for p(R) <1

k=0
* Computing the marginals
Piz':qb(z_wz’)zl_ofi af:q)(l;"l)
hi + 5;

i = Opl* ) =
M Dy (k — 1) I —a



Walk-Sums for Inference

 Example

Pl i=0(1—=1)=14rrm1+r3mi1+ri2rmiri+...

= Op(x — 1) =hy +hary 1 +h3rs ) +hary3r3 )+ ...

Sums are guaranteed to converge!



Walk-Summability

* |f the sum is well-defined (converges absolutely)
then the model is walk summable.

* Equivalent conditions for walk-summability
(1) Xoiesj|0(W)| converges foralli,j V.

L _z
11 R' converges. s 2
(11) D g Define R where R;; = |R;j]

(iii) p(R) < 1. P=J'=(1-R)"!

(iv) I—R = 0. — SR for p(R)< 1
k=0




Walk-Summable models

* Attractive models: If foralli,j R >0

— Attractive models are walk-summable. Proof
follows directly from condition (iv).

* Non-frustrated models: If the graph doesn’t
contain cycles with an odd number of negative
edge weights.

— Non-frustrated models are walk-summable.

— Trees don’t contain any cycles so they are also
walk-summable.



Walk-Summable models

* Pairwise-Normalizable: If for every edge ecF,
Jo =0

* Walk-Summability is equivalent to pairwise
normalizability.

* Diagonally dominant: Zﬁéi ‘Jz]| < Jj
These models are pairwise-normalizable and
hence walk-summable.



Walk-Summable models

* Walk-summable/pairwise normalizable models
include trees, attractive, non-frustrated and
diagonally dominant models.

Valid Models
LBP well—posed

Walksummable

Non—frustrated

Diagonally
dominant

Attractive




Walk-Sum interpretation of BP

* Walk-Sum computation on trees is equivalent to
running BP.

* This framework can be used to analyze loopy BP
behavior in cyclic graphs:

— Loopy BP is equivalent to exact inference on the
computation tree.

— Then, Loopy BP is equivalent to walk sums in the
computation tree.

— Analyze the difference between walk sums in the
computation tree and walk sums in the original graph.



Walk-Sums and BP on trees

e Calculating variances with Walk-Sums:

1
. \J . \J
(X;ZQ)(j—};]): Z ¢(]%]|Z—>;)é z (x£—>;
ieN(/) €N (/)

* Belief equation at node |

b(zj) ocbi(zy) || mujlay)

kEN(H)



Walk-Sums and BP on trees

. VA
Oy Y J) = 2 O(/ 5 j | Timj) = 2 Xi—
ieN(j) 1€EN(J)




Walk-Sums and BP on trees

* How about o;—;? How do they correspond to
messages in BP?




How about loopy BP?

* Can we use the walk-sum framework to
understand the convergence and correctness
of loopy BP in Gaussian models?

— We will do this by comparing the walk-sums in the
original graph to the loopy BP, which is equivalent
to walk-sums in the computation tree.

— Are they the same?



Computation tree

* Running Loopy BP on the original graph is
equivalent to running exact inference on the
computation tree T hence doing walk-sums.




Loopy BP in Walk-Summable Models

e After n iterations, the estimates for node O
(root of the tree) are

Py(T") =60 — 0| ")
(1) = oy (x — 0 | 7))

* Assuming loopy BP has converged, are the
variance and mean estimates correct?




Estimated means

* Lemma: There is a 1-1 relationship between
walks in the original graph and walks in the
computation tree.

'3 4

p
4

2A 3. 34
13 \gt (tl.z f”l.if”l.a \Cz;
1 4 1 10 O 2

* Upon convergence, the estimated means are
correct!

"




Estimated variances

* Lemma: Loopy BP variance estimate is a sum
of backtracking self-return walks, a subset of
all self-return walks.

] I .2 2

* Upon convergence, the estimated variances
are incorrect!



Convergence

o Allwalksin 7" are subsets of walks in the
original graph.

 We have already shown that latter converges
so the former must also converge!

* Loopy BP in walk-summable models will
always converge!



Summary

Introduced Walk-Sum framework.

Shown that many non-trivial classes of models
are walk-summable.

Presented a Walk-Sum interpretation of BP.

Shown that Loopy BP will converge in walk-
summable models and upon convergence, the
means will be correct but variances in general
will not.



