Estimating the "Wrong" Graphical Model:
 Benefits in the Computation-Limited Setting Martin J. Wainwright

Daniel L. Klein

APMA 2950P

March 24, 2010

Outline

(1) Introduction

- Scope
- Wainwright's contributions
- Review of MRFs and variational approximation
(2) Method
- Convex surrogates to the cumulant-generating function
- Approximate parameter estimation
- Joint estimation and prediction
(3) Results
- Analysis
- Performance bounds
- Experimental results
(4) Conclusion

Problem domain

- Problem: joint parameter estimation and prediction in Markov random field.
- Tasks: smoothing, denoising, interpolation, missing data, etc.
- Applications: signal processing (denoising), machine learning (smoothing, interpolation), natural language processing (missing data), etc.

Approach

- Problem (detailed): given samples $\left\{X_{1}, \ldots, X_{n}\right\}$ from some unknown underlying model $p\left(\cdot ; \theta^{*}\right)$, the first step is to form an estimate of the model parameters. Now suppose that we are given a noisy observation of a new sample $Z \sim p\left(\cdot ; \theta^{*}\right)$, and that we wish to form a (near-)optimal estimate of Z using the fitted model, and the noisy observation (denoted Y).
- Principled route to obtaining approximations: relax the original optimization problem and take the optimal solutions to the relaxed problem as approximations to the exact values.

Two routes to a solution

Top route is optimal.

Bottom route introduces two approximations. Can we make these two errors (estimation and prediction) cancel out?
The bottom route is used in tree-reweighted sum-product, reweighted GBP, semidefinite relaxations, "convexified" expectation propagation, etc.

Markov random field: setup

- Undirected graph: $G=(V, E)$.
- Discrete state space: $\{0,1, \ldots, m-1\}$.
- Singleton potentials:

$$
\theta_{s}\left(x_{s}\right) \triangleq \sum_{j=1}^{m-1} \theta_{s ; j} \mathbb{I}_{j}\left[x_{s}\right]
$$

with $j=0$ excluded to guarantee affine independence.

- Pairwise potentials:

$$
\theta_{s t}\left(x_{s}, x_{t}\right) \triangleq \sum_{j=1}^{m-1} \sum_{k=1}^{m-1} \theta_{s t ; j k} \mathbb{I}_{j}\left[x_{s}\right] \mathbb{I}_{k}\left[x_{t}\right]
$$

similarly excluding $j=0$ and $k=0$.

Markov random field: global probability

Probability mass function

$$
p(x ; \theta)=\exp \left\{\sum_{s \in V} \theta_{s}\left(x_{s}\right)+\sum_{(s, t) \in E} \theta_{s t}\left(x_{s}, x_{t}\right)-A(\theta)\right\}
$$

with normalizing term

$$
A(\theta) \triangleq \log \left[\sum_{x \in X^{n}} \exp \left\{\sum_{s \in V} \theta_{s}\left(x_{s}\right)+\sum_{(s, t) \in E} \theta_{s t}\left(x_{s}, x_{t}\right)\right\}\right] .
$$

Markov random field: exponential family

The collection of distributions is a regular and minimal exponential family.

- Exponential parameter (vector) θ.
- Sufficient statistics (vector) ϕ.

Compactly, $p(x ; \theta)=\exp \{\langle\theta(x), \phi\rangle-A(\theta)\}$, where $\theta \in \mathbb{R}^{d}$ with $d=N(m-1)+|E|(m-1)^{2}$.
Dimensionality of θ assumed not to be a problem.

Markov random field: properties of normalization term

It is clear that the normalization term is the log-partition function.
We have the following properties (Lemma 1):
(a) A is a convex function of the parameters; strictly so when the sufficient statistics are affinely independent.
(b) A is infinitely differentiable, with

$$
\frac{\partial A}{\partial \theta_{\alpha}}=\mathbb{E}_{\theta}\left[\phi_{\alpha}(X)\right] \quad \text { and } \quad \frac{\partial^{2} A}{\partial \theta_{\alpha} \partial \theta_{\beta}}=\operatorname{cov}_{\theta}\left\{\phi_{\alpha}(X), \phi_{\beta}(X)\right\}
$$

Mean parameters correspond to marginal probabilities, e.g.,

$$
\mu_{s ; j}=\mathbb{E}_{\theta}\left[\mathbb{I}_{j}\left[x_{s}\right]\right]=p\left(X_{s}=j ; \theta\right)
$$

Background: cumulant-generating functions

Given a random variable $x \sim X=P(x)$, if there exists an $h>0$ such that

$$
M(t) \triangleq\left\langle e^{t x}\right\rangle
$$

is defined for $|t|<h$, then we say that $M(t)$ is the moment-generating function for X.
We define the cumulant-generating function by

$$
R(t) \triangleq \log M(t)
$$

and we have the simple properties

$$
\mu_{X}=R^{\prime}(0) \quad \text { and } \quad \sigma_{X}^{2}=R^{\prime \prime}(0)
$$

Exact variational principle: conjugate dual function

Convexity and continuity gaurantee existence of variational representation, given in terms of conjugate dual function A^{*}, of the form

$$
A(\theta)=\sup _{\mu \in \operatorname{MARG}_{\phi}(G)}\left\{\theta^{T} \mu-A^{*}(\mu)\right\} .
$$

But what is A^{*} ? Solving the constrained entropy maximization problem gives us

$$
A^{*}(\mu)= \begin{cases}-H(p(\cdot ; \theta(\mu))) & \text { if } \mu \in \operatorname{MARG}_{\phi}(G) \\ +\infty & \text { otherwise }\end{cases}
$$

Unfortunately, the complexity of the polytope $\mathrm{MARG}_{\phi}(G)$ grows non-polynomially in the size of G (notable exception: trees!).

Relaxed problem

We work with the relaxed optimization problem

$$
B(\theta) \triangleq \max _{\tau \in \operatorname{REL}_{\phi}(G)}\left\{\theta^{T} \tau-B^{*}(\tau)\right\}
$$

where:

- we must assume that B^{*} is strictly convex and twice-differentiable,
- $\operatorname{REL}_{\phi}(G)$ is a convex and compact set that acts as an outer bound to $\mathrm{MARG}_{\phi}(G)$, and,
- τ can be understood as pseudomarginals,

Relaxed problem: properties of convex surrogate

Our surrogate has the following properties:

- for each $\theta, B(\theta)$ obtains a unique optimum $\tau(\theta)$,
- the function B is convex, and,
- the function B is differentiable with $\nabla B(\theta)=\tau(\theta)$.

These properties resemble the properties of A, so naming it the "convex surrogate" is justified.

Danskin's theorem

Properties follow from noting that the hypotheses are satisfied.

Theorem

(Danskin, 1966) Suppose $\phi(x, z)$ is a continous function such that $\phi: \mathbb{R}^{n} \times Z \rightarrow \mathbb{R}$ with $Z \subset \mathbb{R}^{m}$ compact and assume that ϕ is convex in x for every z. Define the set of maximizing points

$$
Z_{0}(x)=\left\{\bar{z}: \phi(x, \bar{z})=\max _{z \in Z} \phi(x, z)\right\} .
$$

Then, letting $f(x)=\max _{z \in Z} \phi(x, z)$, we conclude:
(i) $f(x)$ is convex, and,
(ii) $f(x)$ is differentiable where $Z_{0}(x)$ consists of a single point, and at such points,

$$
\nabla f(x)=\frac{\partial}{\partial x} \phi(x, \bar{z})
$$

Danskin's theorem: intuition

Example: consider the special case of a single coin-flip with parameter $z=\theta$ the probability of getting heads and x the outcome of the flip (1 if heads). Then we have

$$
\phi(x, z)=P(X=x \mid \theta)
$$

which satisfies the conditions so

$$
f(x)=\max _{\theta} P(X=x \mid \theta)
$$

is convex, differentiable, and has a single point $Z_{0}(x)$ with the gradient condition.
In fact, this is completely uninteresting since our data are not able to vary continuous.

Danskin's theorem: intuition

Example: consider the special case of a nondegenerate set of i.i.d. draws $x_{1}, \ldots, x_{n}(n>1)$ from a normal distribution with parameters $z=(\mu, \sigma)$. Then we have

$$
\phi(x, z)=\log P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid \mu, \sigma\right)
$$

is convex and continuous in the data for any fixed parameters.
Then, letting

$$
f(x)=\max _{\mu, \sigma} P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid \mu, \sigma\right),
$$

we have that $f(x)$ is convex, differentiable, and has a single point set $Z_{0}(x)$ at which

$$
\nabla f\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial}{\partial x} P\left(x_{1}, \ldots, x_{n} \mid \hat{\mu}, \hat{\sigma}\right) .
$$

Example: convexified Bethe surrogate

Introduce standing example, an approximation exact for tree-structured MRF.
Relaxed polytope: local consistency of singleton and pairwise pseudomarginals.
Entropy approximation: associate collection \mathcal{T} of spanning trees. Then define strictly convex function

$$
B_{\rho}^{*}(\tau) \triangleq \sum_{T \in \mathcal{T}} \rho(T)\left\{\sum_{s \in V} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in E(T)} I_{s t}\left(\tau_{s t}\right)\right\}
$$

Bethe surrogate and reweighted sum-product: use messages

$$
M_{t s}\left(x_{s}\right) \leftarrow \sum_{x_{t}} \exp \left\{\theta_{t}\left(x_{t}\right) \frac{\theta_{s t}\left(x_{s}, x_{t}\right)}{\rho_{s t}}\right\} \frac{\prod_{u \in \Gamma(t) \backslash s}\left[M_{u t}\left(x_{t}\right)\right]^{\rho_{u t}}}{\left[M_{s t}\left(x_{t}\right)\right]^{1-\rho_{s t}}} .
$$

Joint estimation and prediction: setup

We want to find the posterior (predictive) distribution using

$$
p(z \mid y ; \theta) \propto p(z ; \theta) p(y \mid z)
$$

In the exponential family setting, the posterior can be given the form $\theta+\gamma(y)$ where determining the function γ can take some work.

Joint estimation and prediction: procedure

1. Form parameter estimate $\hat{\theta}^{n}$ from initial data $\left\{x^{1}, \ldots, x^{n}\right\}$ by maximizing the surrogate likelihood ℓ_{B}.
2. Given new noisy observation y specified by the factorized conditional distribution

$$
p(y \mid z)=\prod_{s=1}^{N} p\left(y_{s} \mid z_{s}\right)
$$

incorporate it into the model by forming the new exponential parameter

$$
\hat{\theta}_{s}^{n}(\cdot)+\gamma_{s}(y)
$$

3. Use message-passing algorithm to compute approximate marginals $\tau(\hat{\theta}+\gamma)$, and use these marginals to compute prediction $\hat{z}(y ; \tau)$.

Estimator: asymptotic results

[Regularizer sneakily introduced: note that this shouldn't have any asymptotic effect.]
Under sane conditions (non-negative, convex regularizer with parameter $\left.\lambda^{n}=o(1 / \sqrt{n})\right)$, we have:
(a) $\hat{\theta}^{n} \xrightarrow{P} \hat{\theta}$, where $\hat{\theta}$ may be distinct from the true parameter θ^{*}, and,
(b) the estimator is asymptotically normal.

Proof: clever use of the gradient and unique optimum properties of the convex surrogate.
Note that this estimator is inconsistent: the estimated model differs from the true model in in the limit of large data (even with the weak regularizer!?).

Estimator: global stability

Note that standard sum-product message-passing is not stable with respect to its inputs for tightly coupled MRFs due to the existence of multiple optima.

Grid with attractive coupling

Some convex relaxation methods are provably globally stable.

Performance: problem setup

- Measure performance (mean-squared error) loss against Bayes optimum.
- Focus on the infinite data limit.
- Assume the multinomial random vector $X=\left\{X_{s}, s \in V\right\}$ is a label vector for the components in a finite mixture of Gaussians.
- Introduce, for each node $s \in V$, r.v.s Z_{s} and Y_{s} with

$$
p\left(Z_{s}=z_{s} \mid X_{s}=j\right) \sim N\left(\nu_{j}, \sigma_{j}^{2}\right)
$$

and

$$
Y_{s}=\alpha Z_{s}+\sqrt{1-\alpha^{2}} W_{s} .
$$

Performance: Bayes least square estimator

Optimal BLSE (minimal MSE) takes the form

$$
\hat{z}_{s}^{\text {opt }}\left(Y ; \theta^{*}\right) \triangleq \sum_{j=0}^{m-1} \mu_{s ; j}\left(\theta^{*}+\gamma(Y)\right)\left[\omega_{j}(\alpha)\left(Y_{s}-\alpha \nu_{j}\right)+\nu_{j}\right]
$$

where

$$
\omega_{j}(\alpha) \triangleq \frac{\alpha \sigma_{j}^{2}}{\alpha^{2} \sigma_{j}^{2}+\left(1-\alpha^{2}\right)} .
$$

To calculate this, we need θ^{*} (unknown) and marginals (impractical to compute).

Performance: approximate prediction

Instead, use the surrogate-based predictor

$$
\hat{z}_{s}^{a p p}(Y ; \hat{\theta}) \triangleq \sum_{j=0}^{m-1} \tau_{s ; j}(\hat{\theta}+\gamma(Y))\left[\omega_{j}(\alpha)\left(Y_{s}-\alpha \nu_{j}\right)+\nu_{j}\right]
$$

Can we bound the (difference in) MSE

$$
\Delta R\left(\alpha, \theta^{*}, \hat{\theta}\right) \triangleq R^{a p p}\left(\alpha, \hat{\theta}-R^{o p t}\left(\alpha, \theta^{*}\right)\right.
$$

from above?

Performance: role of stability

In passing, at $\alpha \approx 1$ limit, marginals don't really matter; at $\alpha \approx 0$ limit, inconsistency errors cancel variational errors.
Introduce Lipschitz stability

$$
L\left(\theta^{*} ; \hat{\theta}\right) \triangleq \sup _{\delta \in \mathbb{R}^{d}} \sigma_{\max }\left(\nabla^{2} A\left(\theta^{*}+\delta\right)-\nabla^{2} B(\hat{\theta}+\delta)\right)
$$

Then we have (Theorem 7)

$$
\begin{aligned}
& \Delta R\left(\alpha, \theta^{*}, \hat{\theta}\right) \leq \\
& \mathbb{E}\left\{\min \left(1, L\left(\theta^{*} ; \hat{\theta}\right) \frac{\|\gamma(Y ; \alpha)\|_{2}}{\sqrt{N}}\right) \sqrt{\frac{\sum_{s=1}^{N}\left|g_{1}\left(Y_{s}\right)-g_{0}\left(Y_{s}\right)\right|^{4}}{N}}\right\}
\end{aligned}
$$

Taking various limits, we get asymptotic optimality.

Tree-reweighted sum-product

Specified by collection of edge weights $\rho_{s t}$, one for each edge (s, t) of the graph, where the vector of edge weights belongs to the spanning tree polytope.
Fix ρ. The procedure is
(1) Compute empirical marginal distributions $\hat{\mu}_{s ; j}$ and $\hat{\mu}_{s t ; j k}$ and hence approximate parameters

$$
\hat{\theta}_{s ; j}^{n} \triangleq \log \hat{\mu}_{s ; j} \quad \text { and } \quad \hat{\theta}_{s t ; j k}^{n} \triangleq \rho_{s t} \log \frac{\hat{\mu}_{s t ; j k}}{\hat{\mu}_{s ; j} \hat{\mu}_{t ; k}} .
$$

(2) Form new exponential parameter $\hat{\theta}_{a} s^{n}+\gamma_{s}(Y)$, where γ_{s} is appropriate to Gaussian mixture model.
(3) Compute approximate marginals $\tau(\hat{\theta}+\gamma)$ by running tree-reweighted sum-product with edge weights $\rho_{\text {st }}$ on model with parameters $\hat{\theta}+\gamma$. These give $\hat{z}^{a p p}$.

Experimental setup: mixtures

We have a mixture of $m=2$ Gaussians.

Figure 3: Histograms of different Gaussian mixture ensembles. (a) Ensemble A: a bimodal ensemble with $\left(v_{0}, \sigma_{0}^{2}\right)=(-1,0.5)$ and $\left(v_{1}, \sigma_{1}^{2}\right)=(1,0.5)$. (b) Ensemble B: mimics a heavytailed distribution, with $\left(v_{0}, \sigma_{0}^{2}\right)=(0,1)$ and $\left(v_{1}, \sigma_{1}^{2}\right)=(0,9)$.

Out graph is a 2D grid with $N=64$ nodes, where $x \in\{-1,+1\}^{N}$ are spins. Consider attractive and mixed coupling.

Comparison: true model versus approximate model

Attractive couping, equal variances.

Figure 4: Line plots of percentage increase in MSE relative to Bayes optimum for the TRW method applied to the true model (black circles) versus the approximate model (red diamonds) as a function of observation SNR for grids with $N=64$ nodes, and attractive coupling $\beta=$ 0.70 . As predicted by theory, using the "incorrect" model leads to superior performance, when prediction is performed using the approximate TRW method, for a range of SNR.

Comparison: tree-reweighted and ordinary sum-product

Attractive coupling, equal means.

Left to right: independence, ordinary BP, tree-reweighted

Comparison: tree-reweighted and ordinary sum-product

Mixed coupling, equal variances.

Left to right: independence, ordinary BP, tree-reweighted

Comparison: tree-reweighted and ordinary sum-product

Mixed coupling, equal means.

Left to right: independence, ordinary BP, tree-reweighted

Comparison: tree-reweighted and ordinary sum-product

Left to right: independence, ordinary BP, tree-reweighted

Connections to Tommi Jaakkola's PTG talk

Summary

Punch line: in computation-limited setting, using an inconsistent parameter estimator is provably and empirically beneficial.

