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Problem domain

Problem: joint parameter estimation and prediction in Markov
random field.

Tasks: smoothing, denoising, interpolation, missing data, etc.

Applications: signal processing (denoising), machine learning
(smoothing, interpolation), natural language processing
(missing data), etc.
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Approach

Problem (detailed): given samples {X1, . . . ,Xn} from some
unknown underlying model p(·; θ∗), the first step is to form an
estimate of the model parameters. Now suppose that we are
given a noisy observation of a new sample Z ∼ p(·; θ∗), and
that we wish to form a (near-)optimal estimate of Z using the
fitted model, and the noisy observation (denoted Y ).

Principled route to obtaining approximations: relax the
original optimization problem and take the optimal solutions
to the relaxed problem as approximations to the exact values.
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Two routes to a solution

Top route is optimal.

ESTIMATING THE “WRONG” GRAPHICAL MODEL

specifically, our analysis applies to variational methods that are based on convex relaxations. This
class includes a number of existing methods—among them the tree-reweighted sum-product algo-
rithm (Wainwright et al., 2005), reweighted forms of generalized belief propagation (Wiegerinck,
2005), and semidefinite relaxations (Wainwright and Jordan, 2005). Moreover, it is possible to
modify other variational methods—for instance, expectation propagation (Minka, 2001)—so as to
“convexify” them.
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Figure 1: Route A: computationally intractable combination of parameter estimation and predic-
tion. Route B: computationally efficient combination of approximate parameter estima-
tion and prediction.

1.2 Our Contributions

At a high level, the key idea of this paper is the following: given that approximate methods can lead
to errors at both the estimation and prediction phases, it is natural to speculate that these sources
of error might be arranged to partially cancel one another. The theoretical analysis of this paper
confirms this intuition: we show that with respect to end-to-end performance, it is in fact beneficial,
even in the infinite data limit, to learn the “wrong” the model by using inconsistent methods for
parameter estimation. En route to this result, we analyze the asymptotic properties of M-estimators
based on convex variational relaxations, and establish a Lipschitz stability property that holds for
a broad class of variational methods. Such global algorithmic stability is a fundamental concern
given statistical models imperfectly estimated from limited data, or for applications in which “er-
rors” may be introduced into message-passing (e.g., due to quantization or other forms of communi-
cation constraints in sensor networks). Thus, our global stability result provides further theoretical
justification—apart from the obvious benefit of unique global optima—for using message-passing
methods based on convex variational relaxations. Finally, we provide some empirical results to
show that joint estimation/prediction based on the reweighted sum-product algorithm substantially
outperforms a commonly used heuristic based on ordinary sum-product.

The remainder of this paper is organized as follows. Section 2 provides background on Markov
random fields. In Section 3, we introduce background on variational representations, including the
notion of a convex surrogate to the cumulant generating function, and then illustrate this notion via
the tree-reweighted Bethe approximation (Wainwright et al., 2005). In Section 4, we describe how
any convex surrogate defines a particular joint scheme for parameter estimation and prediction. Sec-
tion 5 provides results on the asymptotic behavior of the estimation step, as well as the stability of
the prediction step. Section 6 is devoted to the derivation of performance bounds for joint estimation
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Bottom route introduces two approximations. Can we make these
two errors (estimation and prediction) cancel out?
The bottom route is used in tree-reweighted sum-product,
reweighted GBP, semidefinite relaxations, “convexified”
expectation propagation, etc.
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Markov random field: setup

Undirected graph: G = (V ,E ).

Discrete state space: {0, 1, . . . ,m − 1}.
Singleton potentials:

θs(xs) ,
m−1∑
j=1

θs;jIj [xs ]

with j = 0 excluded to guarantee affine independence.

Pairwise potentials:

θst(xs , xt) ,
m−1∑
j=1

m−1∑
k=1

θst;jkIj [xs ]Ik [xt ]

similarly excluding j = 0 and k = 0.
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Markov random field: global probability

Probability mass function

p(x ; θ) = exp

∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs , xt)− A(θ)


with normalizing term

A(θ) , log

 ∑
x∈X n

exp

∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs , xt)


 .
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Markov random field: exponential family

The collection of distributions is a regular and minimal exponential
family.

Exponential parameter (vector) θ.

Sufficient statistics (vector) φ.

Compactly, p(x ; θ) = exp{〈θ(x), φ〉 − A(θ)}, where θ ∈ Rd with
d = N(m − 1) + |E |(m − 1)2.
Dimensionality of θ assumed not to be a problem.
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Markov random field: properties of normalization term

It is clear that the normalization term is the log-partition function.
We have the following properties (Lemma 1):

(a) A is a convex function of the parameters; strictly so when the
sufficient statistics are affinely independent.

(b) A is infinitely differentiable, with

∂A

∂θα
= Eθ[φα(X )] and

∂2A

∂θα∂θβ
= covθ{φα(X ), φβ(X )}.

Mean parameters correspond to marginal probabilities, e.g.,

µs;j = Eθ[Ij [xs ]] = p(Xs = j ; θ).
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Background: cumulant-generating functions

Given a random variable x ∼ X = P(x), if there exists an h > 0
such that

M(t) ,
〈
etx

〉
is defined for |t| < h, then we say that M(t) is the
moment-generating function for X .
We define the cumulant-generating function by

R(t) , log M(t)

and we have the simple properties

µX = R ′(0) and σ2
X = R ′′(0).
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Exact variational principle: conjugate dual function

Convexity and continuity gaurantee existence of variational
representation, given in terms of conjugate dual function A∗, of the
form

A(θ) = sup
µ∈MARGφ(G)

{θTµ− A∗(µ)}.

But what is A∗? Solving the constrained entropy maximization
problem gives us

A∗(µ) =

{
−H(p(·; θ(µ))) if µ ∈ MARGφ(G )

+∞ otherwise.

Unfortunately, the complexity of the polytope MARGφ(G ) grows
non-polynomially in the size of G (notable exception: trees!).
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Relaxed problem

We work with the relaxed optimization problem

B(θ) , max
τ∈RELφ(G)

{θT τ − B∗(τ)}

where:

we must assume that B∗ is strictly convex and
twice-differentiable,

RELφ(G ) is a convex and compact set that acts as an outer
bound to MARGφ(G ), and,

τ can be understood as pseudomarginals,
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Relaxed problem: properties of convex surrogate

Our surrogate has the following properties:

for each θ, B(θ) obtains a unique optimum τ(θ),

the function B is convex, and,

the function B is differentiable with ∇B(θ) = τ(θ).

These properties resemble the properties of A, so naming it the
“convex surrogate” is justified.
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Danskin’s theorem

Properties follow from noting that the hypotheses are satisfied.

Theorem

(Danskin, 1966) Suppose φ(x , z) is a continous function such that
φ : Rn × Z → R with Z ⊂ Rm compact and assume that φ is
convex in x for every z. Define the set of maximizing points

Z0(x) =

{
z : φ(x , z) = max

z∈Z
φ(x , z)

}
.

Then, letting f (x) = maxz∈Z φ(x , z), we conclude:

(i) f (x) is convex, and,

(ii) f (x) is differentiable where Z0(x) consists of a single point,
and at such points,

∇f (x) =
∂

∂x
φ(x , z).
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Danskin’s theorem: intuition

Example: consider the special case of a single coin-flip with
parameter z = θ the probability of getting heads and x the
outcome of the flip (1 if heads). Then we have

φ(x , z) = P(X = x |θ)

which satisfies the conditions so

f (x) = max
θ

P(X = x |θ)

is convex, differentiable, and has a single point Z0(x) with the
gradient condition.
In fact, this is completely uninteresting since our data are not able
to vary continuous.
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Danskin’s theorem: intuition

Example: consider the special case of a nondegenerate set of i.i.d.
draws x1, . . . , xn (n > 1) from a normal distribution with
parameters z = (µ, σ). Then we have

φ(x , z) = log P(X1 = x1, . . . ,Xn = xn|µ, σ)

is convex and continuous in the data for any fixed parameters.
Then, letting

f (x) = max
µ,σ

P(X1 = x1, . . . ,Xn = xn|µ, σ),

we have that f (x) is convex, differentiable, and has a single point
set Z0(x) at which

∇f (x1, . . . , xn) =
∂

∂x
P(x1, . . . , xn|µ̂, σ̂).
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Example: convexified Bethe surrogate

Introduce standing example, an approximation exact for
tree-structured MRF.
Relaxed polytope: local consistency of singleton and pairwise
pseudomarginals.
Entropy approximation: associate collection T of spanning trees.
Then define strictly convex function

B∗
ρ (τ) ,

∑
T∈T

ρ(T )

∑
s∈V

Hs(τs)−
∑

(s,t)∈E(T )

Ist(τst)

 .

Bethe surrogate and reweighted sum-product: use messages

Mts(xs)←
∑
xt

exp

{
θt(xt)

θst(xs , xt)

ρst

} ∏
u∈Γ(t)\s [Mut(xt)]

ρut

[Mst(xt)]1−ρst
.
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Joint estimation and prediction: setup

We want to find the posterior (predictive) distribution using

p(z |y ; θ) ∝ p(z ; θ)p(y |z).

In the exponential family setting, the posterior can be given the
form θ + γ(y) where determining the function γ can take some
work.
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Joint estimation and prediction: procedure

1. Form parameter estimate θ̂n from initial data {x1, . . . , xn} by
maximizing the surrogate likelihood `B .

2. Given new noisy observation y specified by the factorized
conditional distribution

p(y |z) =
N∏

s=1

p(ys |zs),

incorporate it into the model by forming the new exponential
parameter

θ̂n
s (·) + γs(y).

3. Use message-passing algorithm to compute approximate
marginals τ(θ̂ + γ), and use these marginals to compute
prediction ẑ(y ; τ).
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Estimator: asymptotic results

[Regularizer sneakily introduced: note that this shouldn’t have any
asymptotic effect.]
Under sane conditions (non-negative, convex regularizer with
parameter λn = o(1/

√
n)), we have:

(a) θ̂n P→ θ̂, where θ̂ may be distinct from the true parameter θ∗,
and,

(b) the estimator is asymptotically normal.

Proof: clever use of the gradient and unique optimum properties of
the convex surrogate.
Note that this estimator is inconsistent: the estimated model
differs from the true model in in the limit of large data (even with
the weak regularizer!?).
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Estimator: global stability

Note that standard sum-product message-passing is not stable with
respect to its inputs for tightly coupled MRFs due to the existence
of multiple optima.

ESTIMATING THE “WRONG” GRAPHICAL MODEL

5.2 Global Algorithmic Stability

A desirable property of any algorithm—particularly one applied to statistical data—is that it exhibit
an appropriate form of stability with respect to its inputs. Not all message-passing algorithms have
such stability properties. For instance, the standard sum-product message-passing algorithm, al-
though stable for weakly coupled MRFs (Ihler et al., 2005; Mooij and Kappen, 2005b,a; Tatikonda
and Jordan, 2002; Tatikonda, 2003), can be highly unstable in other regimes due to the appearance
of multiple local optima in the non-convex Bethe problem. However, previous experimental work
has shown that methods based on convex relaxations, including the reweighted sum-product (or
belief propagation) algorithm (Wainwright et al., 2003b), reweighted generalized BP (Wiegerinck,
2005), and log-determinant relaxations (Wainwright and Jordan, 2005) appear to be globally sta-
ble—that is, even for very strongly coupled problems. For instance, Figure 2 provides a simple
illustration of the instability of the ordinary sum-product algorithm, contrasted with the stability of
the tree-reweighted updates. Wiegerinck (2005) provides similar results for reweighted forms of the
generalized belief propagation. Here we provide theoretical support for these empirical observa-
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Figure 2: Contrast of the instability of the ordinary sum-product algorithm with the stability of
the tree-reweighted version (Wainwright et al., 2005). Results shown with a grid with
N = 100 nodes over a range of attractive coupling strengths. The ordinary sum-product
undergoes a phase transition, after which the quality of marginal approximations degrades
substantially. The tree-reweighted algorithm, shown for two different settings of the edge
weights !st , remains stable over the full range of coupling strengths. See Wainwright
et al. (2005) for full details.

tions: in particular, we prove that, in sharp contrast to non-convex methods, any variational method
based on a strongly convex entropy approximation is globally stable. This stability property plays a
fundamental role in providing a performance guarantee on joint estimation/prediction methods.
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Some convex relaxation methods are provably globally stable.
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Performance: problem setup

Measure performance (mean-squared error) loss against Bayes
optimum.

Focus on the infinite data limit.

Assume the multinomial random vector X = {Xs , s ∈ V } is a
label vector for the components in a finite mixture of
Gaussians.

Introduce, for each node s ∈ V , r.v.s Zs and Ys with

p(Zs = zs |Xs = j) ∼ N(νj , σ
2
j )

and
Ys = αZs +

√
1− α2Ws .
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Performance: Bayes least square estimator

Optimal BLSE (minimal MSE) takes the form

ẑopt
s (Y ; θ∗) ,

m−1∑
j=0

µs;j(θ
∗ + γ(Y )) [ωj(α)(Ys − ανj) + νj ]

where

ωj(α) ,
ασ2

j

α2σ2
j + (1− α2)

.

To calculate this, we need θ∗ (unknown) and marginals
(impractical to compute).
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Performance: approximate prediction

Instead, use the surrogate-based predictor

ẑapp
s (Y ; θ̂) ,

m−1∑
j=0

τs;j(θ̂ + γ(Y )) [ωj(α)(Ys − ανj) + νj ] .

Can we bound the (difference in) MSE

∆R(α, θ∗, θ̂) , Rapp(α, θ̂ − Ropt(α, θ∗)

from above?
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Performance: role of stability

In passing, at α ≈ 1 limit, marginals don’t really matter; at α ≈ 0
limit, inconsistency errors cancel variational errors.
Introduce Lipschitz stability

L(θ∗; θ̂) , sup
δ∈Rd

σmax(∇2A(θ∗ + δ)−∇2B(θ̂ + δ)).

Then we have (Theorem 7)

∆R(α, θ∗, θ̂) ≤

E

min

(
1, L(θ∗; θ̂)

||γ(Y ;α)||2√
N

) √∑N
s=1 |g1(Ys)− g0(Ys)|4

N

 .

Taking various limits, we get asymptotic optimality.
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Tree-reweighted sum-product

Specified by collection of edge weights ρst , one for each edge (s, t)
of the graph, where the vector of edge weights belongs to the
spanning tree polytope.
Fix ρ. The procedure is

1 Compute empirical marginal distributions µ̂s;j and µ̂st;jk and
hence approximate parameters

θ̂n
s;j , log µ̂s;j and θ̂n

st;jk , ρst log
µ̂st;jk

µ̂s;j µ̂t;k
.

2 Form new exponential parameter θ̂as
n + γs(Y ), where γs is

appropriate to Gaussian mixture model.

3 Compute approximate marginals τ(θ̂ + γ) by running
tree-reweighted sum-product with edge weights ρst on model
with parameters θ̂ + γ. These give ẑapp.
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Experimental setup: mixtures

We have a mixture of m = 2 Gaussians.

WAINWRIGHT

(a) Mixture ensemble A is bimodal, with components (!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5).

(b) Mixture ensemble B was constructed with mean and variance components (!0,"20) = (0,1)
and (!1,"21) = (0,9); these choices serve to mimic heavy-tailed behavior.

In both cases, each mixture component is equally weighted; see Figure 3 for histograms of the
resulting mixture ensembles.
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Figure 3: Histograms of different Gaussian mixture ensembles. (a) Ensemble A: a bimodal ensem-
ble with (!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). (b) Ensemble B: mimics a heavy-
tailed distribution, with (!0,"20) = (0,1) and (!1,"21) = (0,9).

Here we show results for a 2-D grid with N = 64 nodes. Since the mixture variables have m= 2
states, the coupling distribution can be written as

p(x ; #∗) $ exp
{
!
s∈V

#∗sxs+ !
(s,t)∈E

#∗stxsxt
}
,

where x ∈ {−1,+1}N are “spin” variables indexing the mixture components. In all trials (except
those in Section 7.2), we chose #∗s = 0 for all nodes s ∈ V , which ensures uniform marginal dis-
tributions p(xs ; #∗) = [0.5 0.5]T at each node. We tested two types of coupling in the underlying
Markov random field:

(a) In the case of attractive coupling, for each coupling strength % ∈ [0,1], we chose edge param-
eters as #∗st ∼ U[0,%].

(b) In the case of mixed coupling, for each coupling strength %∈ [0,1], we chose edge parameters
as #∗st ∼ U[−%,%].

Here U[a,b] denotes a uniform distribution on the interval [a,b]. In all cases, we varied the SNR
parameter &, as specified in the observation model (21), in the interval [0,1].

7.2 Comparison between “Incorrect” and True Model

We begin with an experimental comparison to substantiate our earlier claim that applying an ap-
proximate message-passing algorithm to the “incorrect” model yields prediction results superior to

1850

Out graph is a 2D grid with N = 64 nodes, where x ∈ {−1,+1}N
are spins. Consider attractive and mixed coupling.
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Comparison: true model versus approximate model

Attractive couping, equal variances.

ESTIMATING THE “WRONG” GRAPHICAL MODEL

those obtained by applying the same message-passing algorithm to the true underlying model. As
discussed earlier in Section 6.3.1, for any underlying model p(x;!∗) in which approximate message-
passing yields the incorrect marginals (without any additional observations), there exists a range of
SNR around "≈ 0 for which this superior performance will hold.
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Figure 4: Line plots of percentage increase in MSE relative to Bayes optimum for the TRWmethod
applied to the true model (black circles) versus the approximate model (red diamonds) as
a function of observation SNR for grids with N = 64 nodes, and attractive coupling # =
0.70. As predicted by theory, using the “incorrect” model leads to superior performance,
when prediction is performed using the approximate TRW method, for a range of SNR.

Figure 4 provides an empirical demonstration of this claim, when the TRW algorithm for pre-
diction is applied to a grid with N = 64 nodes and attractive coupling strength # = 0.70, and the
node observations chosen randomly as !∗s ∼ N(0,0.5). Plotted versus the SNR parameter " is the
percentage increase in MSE performance relative to the Bayes optimal baseline. Note that for all
SNR parameters up to " ≈ 0.40, applying the TRW algorithm to the true model yields worse per-
formance than applying it to the “incorrect model”. Beyond this point, the pattern reverses, but any
differences between the two methods are rather small for "> 0.40.

7.3 Comparison between Tree-reweighted and Ordinary Sum-product

We now compare the performance of the prediction method based on tree-reweighted sum-product
(TRW) message-passing to that based on ordinary sum-product or belief propagation (BP) message-
passing. Shown in Figure 5 are 2-D surface plots of the average percentage increase in MSE,
taken over 100 trials, as a function of the coupling strength # ∈ [0,1] and the observation SNR
parameter " ∈ [0,1] for the independence model (left column), BP approach (middle column) and
TRW method (right column). The top two rows show performance for attractive coupling, for
mixture ensemble A ((a) through (c)) and ensemble B ((d) through (f)), whereas the bottom two row
show performance for mixed coupling, for mixture ensemble A ((g) through (i)) and ensemble B
((j) through (l)).

First, observe that for weakly coupled problems (#≈ 0), whether attractive or mixed coupling,
all three methods—including the independence model—perform quite well, as should be expected
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Comparison: tree-reweighted and ordinary sum-product

Attractive coupling, equal means.

WAINWRIGHT
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Figure 5: Surface plots of the percentage increase in MSE relative to Bayes optimum for differ-
ent methods as a function of observation SNR for grids with N = 64 nodes. Left col-
umn: independence model (IND). Center column: ordinary belief propagation (BP).
Right column: tree-reweighted algorithm (TRW). First row: Attractive coupling and a
Gaussian mixture with components (!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). Second
row: Attractive coupling and a Gaussian mixture with components (!0,"20) = (0,1) and
(!0,"21) = (0,9). Third row: Mixed coupling and a Gaussian mixture with components
(!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). Fourth row: Mixed coupling and a Gaussian
mixture with components (!0,"20) = (0,1) and (!0,"21) = (0,9).
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Left to right: independence, ordinary BP, tree-reweighted
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Comparison: tree-reweighted and ordinary sum-product

Mixed coupling, equal variances.
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Figure 5: Surface plots of the percentage increase in MSE relative to Bayes optimum for differ-
ent methods as a function of observation SNR for grids with N = 64 nodes. Left col-
umn: independence model (IND). Center column: ordinary belief propagation (BP).
Right column: tree-reweighted algorithm (TRW). First row: Attractive coupling and a
Gaussian mixture with components (!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). Second
row: Attractive coupling and a Gaussian mixture with components (!0,"20) = (0,1) and
(!0,"21) = (0,9). Third row: Mixed coupling and a Gaussian mixture with components
(!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). Fourth row: Mixed coupling and a Gaussian
mixture with components (!0,"20) = (0,1) and (!0,"21) = (0,9).
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Figure 5: Surface plots of the percentage increase in MSE relative to Bayes optimum for differ-
ent methods as a function of observation SNR for grids with N = 64 nodes. Left col-
umn: independence model (IND). Center column: ordinary belief propagation (BP).
Right column: tree-reweighted algorithm (TRW). First row: Attractive coupling and a
Gaussian mixture with components (!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). Second
row: Attractive coupling and a Gaussian mixture with components (!0,"20) = (0,1) and
(!0,"21) = (0,9). Third row: Mixed coupling and a Gaussian mixture with components
(!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). Fourth row: Mixed coupling and a Gaussian
mixture with components (!0,"20) = (0,1) and (!0,"21) = (0,9).
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Figure 5: Surface plots of the percentage increase in MSE relative to Bayes optimum for differ-
ent methods as a function of observation SNR for grids with N = 64 nodes. Left col-
umn: independence model (IND). Center column: ordinary belief propagation (BP).
Right column: tree-reweighted algorithm (TRW). First row: Attractive coupling and a
Gaussian mixture with components (!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). Second
row: Attractive coupling and a Gaussian mixture with components (!0,"20) = (0,1) and
(!0,"21) = (0,9). Third row: Mixed coupling and a Gaussian mixture with components
(!0,"20) = (−1,0.5) and (!1,"21) = (1,0.5). Fourth row: Mixed coupling and a Gaussian
mixture with components (!0,"20) = (0,1) and (!0,"21) = (0,9).
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Connections to Tommi Jaakkola’s PTG talk

Tommi Jaakkola, David Sontag, Amir Globerson, Marina Meila

lem as a linear program:

max η · W =
�n

i=1

�
si∈Pa(i) ηi(si)Wi(si)

s.t. η ∈ P (2)

The optimal value of this linear program is obtained
at a vertex that corresponds to the highest scoring
Bayesian network. The complexity of the structure
learning problem is now entirely hidden in the expo-
nentially many facets (linear half-space constraints)
that are needed to specify P.

We remark that P defined above is different from the
acyclic subgraph polytope Pdag studied extensively in
polyhedral combinatorics. Pdag is defined as the con-
vex hull of the edge indicator vectors for every set of
edges specifying an acyclic graph [Grötschel et al. ,
1985]. However, the score associated with a Bayesian
network is not a linear function of individual edge se-
lections, but rather depends on the set of incoming
edges (parent sets). Thus Pdag would not suffice to
cast the structure learning problem as a linear pro-
gram.

4 LP Relaxation

We seek to relax the linear program by finding an outer
bound approximation to the polytope P. We identify
here two strategies for relaxing the polytope: first, by
projecting η ∈ P to a known polytope defined over
the choice of directed edges, and, second, introducing
a new class of constraints directly outer bounding P.

Any point (interior or vertex) η ∈ P corresponds to
a distribution over parent set choices reflecting one
or more acyclic graphs. Based on η, we can easily
calculate the probability that any directed edge such
as (j, i) (an edge from j to i) is present, i.e.

µji =
�

si∈Pa(i)

ηi(si)δ(j ∈ si), (3)

where δ(j ∈ si) is an indicator function. By concate-
nating all such µji into a vector µ of directed edge
selections, we have defined a linear projection from
η ∈ P to the acyclic subgraph polytope µ ∈ Pdag.
Any known facet of Pdag can consequently be intro-
duced as a constraint on η by lifting. In particular,
cycle inequalities of the form

�

(j,i)∈EC

µji ≤ |EC | − 1, (4)

where a cycle is represented as a sequence of directed
edges EC , are facet defining though not sufficient for
specifying Pdag [Grötschel et al. , 1985]. The corre-

parent set selection
probabilities

edge
appearance
probabilities

projection

cycle inequalities
are not sufficient

invalid parent set selection 
probabilities may project to 

valid edge probabilities

Figure 1: Projection and lifting between parent set
selections and edge selections.

sponding lifted constraint on η is obtained by expand-
ing the definition of µji to obtain:

�

(j,i)∈EC

�

si∈Pa(i)

ηi(si)δ(j ∈ si) ≤ |EC | − 1 (5)

We call the polytope over the parent set selections aris-
ing from all such lifted cycle inequalities, together with
the simple constraints ηi(si) ≥ 0 and

�
si

ηi(si) = 1,
the cycle relaxation Pcycle. It can be shown that these
cycle inequalities are equivalent to the transitivity con-
straints used in Guo & Schuurmans [2006].

The cycle relaxation is not tight in general for two
reasons (see Figure 1). First, cycle inequalities gener-
ally provide an outer bound on Pdag that is not tight.
Thus, they permit marginal edge selections that do
not arise as marginals from any valid distribution over
directed acyclic graphs (DAGs). Note, however, that
there are cases when cycle inequalities are provably ex-
act. For example, when G is planar (i.e., can be drawn
on a plane without crossing edges), the cycle inequal-
ities exactly define Pdag [Grötschel et al. , 1985]. The
setting rarely occurs in practice when n > 4. Other
facet defining inequalities for Pdag are known, such as
the fence inequalities [Grötschel et al. , 1985]. Such
constraints involve edge selection variables that corre-
spond to a non-planar graph (at least 5 nodes).

The second and more subtle reason for why the above
cycle relaxation is not tight is that the parent set selec-
tion variables ηi(si), which were necessary to formulate
a linear objective, couple the edge variables. Rather
than select each parent of i independently, we are
forced to make coordinated selections as specified by
each si ∈ Pa(i). Thus, the edge selection marginals µ
resulting from any distribution over si (such as ηi(si))
are dependent, even for two edges j → i and k → i
that cannot form a cycle. The acyclic subgraph poly-
tope Pdag only represents µ and thus does not consider
correlated choices of edges.

We illustrate this with the following example. Con-
sider estimating a Bayesian network over three binary
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Summary

Punch line: in computation-limited setting, using an inconsistent
parameter estimator is provably and empirically beneficial.
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