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Problem domain

@ Problem: joint parameter estimation and prediction in Markov
random field.

@ Tasks: smoothing, denoising, interpolation, missing data, etc.

@ Applications: signal processing (denoising), machine learning
(smoothing, interpolation), natural language processing
(missing data), etc.
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Approach

@ Problem (detailed): given samples {Xi, ..., X,} from some
unknown underlying model p(-; 8*), the first step is to form an
estimate of the model parameters. Now suppose that we are
given a noisy observation of a new sample Z ~ p(-;0*), and
that we wish to form a (near-)optimal estimate of Z using the
fitted model, and the noisy observation (denoted Y).

@ Principled route to obtaining approximations: relax the
original optimization problem and take the optimal solutions
to the relaxed problem as approximations to the exact values.
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Two routes to a solution

Top route is optimal.

ROUTE A OPTIMAL PARAMETER
ESTIMATION e %

DATA SOURCE

OPTIMAL PREDICTION
PREDICTION
NEwyoBSERVATIONS Error: |[%(¥;6") — 2200 (¥ ) |
ROUTE B APPRICE)é(Tl{\;\[A/XI'ﬁO}’]\/I\RAMETER APPROXIMATE PRI:D]( TION
S 5 PREDICTION 2P (v0)

Bottom route introduces two approximations. Can we make these
two errors (estimation and prediction) cancel out?

The bottom route is used in tree-reweighted sum-product,
reweighted GBP, semidefinite relaxations, “convexified”
expectation propagation, etc.

X7}
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Markov random field: setup

e Undirected graph: G = (V, E).
e Discrete state space: {0,1,...,m—1}.

@ Singleton potentials:

with j = 0 excluded to guarantee affine independence.

@ Pairwise potentials:
est(x&xt) £ gst;ijj[Xs]Hk[Xt]

similarly excluding j = 0 and k = 0.
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Markov random field: global probability

Probability mass function

p(x; 0) = exp {Z Os(xs) + Y Oselxs,x) — A(e)}

seV (s,t)€E

with normalizing term

A(9) £ log |:Z exp {Zes(xs) + Z Hst(X57Xt)}] .

xeXn seV (s,t)EE
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Markov random field: exponential family

The collection of distributions is a regular and minimal exponential
family.

@ Exponential parameter (vector) 6.

e Sufficient statistics (vector) ¢.

Compactly, p(x;0) = exp{(A(x), ) — A(A)}, where § € R with
d=N(m-1)+|E|(m—1)2
Dimensionality of 8 assumed not to be a problem.
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Markov random field: properties of normalization term

It is clear that the normalization term is the log-partition function.
We have the following properties (Lemma 1):

(a) Ais a convex function of the parameters; strictly so when the
sufficient statistics are affinely independent.

(b) A is infinitely differentiable, with

OA 9%A
— = Ey[pa(X)] and 90,005

904 = covg{¢a(X), d3(X)}.

Mean parameters correspond to marginal probabilities, e.g.,

pis;j = Eollj[xs]] = p(Xs = j; 0).
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Background: cumulant-generating functions

Given a random variable x ~ X = P(x), if there exists an h > 0
such that
M(t) £ (e™)

is defined for |t| < h, then we say that M(t) is the
moment-generating function for X.
We define the cumulant-generating function by

R(t) = log M(t)
and we have the simple properties

px = R'(0) and o% = R"(0).
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Exact variational principle: conjugate dual function

Convexity and continuity gaurantee existence of variational
representation, given in terms of conjugate dual function A*, of the
form
AB) = sup  {0Tpu—A*(u)}.
HEMARG,(G)
But what is A*? Solving the constrained entropy maximization
problem gives us

+o00 otherwise.

() {—H(p(-:e(u») if 11 € MARG,(G)

Unfortunately, the complexity of the polytope MARG,(G) grows
non-polynomially in the size of G (notable exception: trees!).



Relaxed problem

We work with the relaxed optimization problem

Y T  p*
BO) 2 _max (77— (1)

where:

@ we must assume that B* is strictly convex and
twice-differentiable,

@ REL4(G) is a convex and compact set that acts as an outer
bound to MARG,(G), and,

@ 7 can be understood as pseudomarginals,
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Relaxed problem: properties of convex surrogate

Our surrogate has the following properties:
e for each 6, B(6) obtains a unique optimum 7(0),
@ the function B is convex, and,
@ the function B is differentiable with VB(6) = 7(6).

These properties resemble the properties of A, so naming it the
“convex surrogate” is justified.



Danskin's theorem

Properties follow from noting that the hypotheses are satisfied.

Theorem

(Danskin, 1966) Suppose ¢(x,z) is a continous function such that
¢:R"x Z — R with Z C R™ compact and assume that ¢ is
convex in x for every z. Define the set of maximizing points

200 = {7 02) = maxo(x.2) |

Then, letting f(x) = max,cz ¢(x, z), we conclude:
(i) f(x) is convex, and,

(ii) f(x) is differentiable where Zy(x) consists of a single point,
and at such points,

Vi(x) = %gb(x,?).
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Danskin's theorem: intuition

Example: consider the special case of a single coin-flip with
parameter z = 6 the probability of getting heads and x the
outcome of the flip (1 if heads). Then we have

¢(x,2) = P(X = x|0)
which satisfies the conditions so

f(x) = max P(X = x|6)
is convex, differentiable, and has a single point Zy(x) with the
gradient condition.

In fact, this is completely uninteresting since our data are not able
to vary continuous.
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Danskin's theorem: intuition

Example: consider the special case of a nondegenerate set of i.i.d.
draws xi,...,x, (n > 1) from a normal distribution with
parameters z = (u,0). Then we have

d(x,z) =log P(X1 = x1,..., Xp = Xn|it, 0)

is convex and continuous in the data for any fixed parameters.
Then, letting

f(x) = max P(X1 = x1,..., Xy = xp|p, 0),
11,0

we have that f(x) is convex, differentiable, and has a single point
set Zp(x) at which

Vi(x1,. .. xn) = == P(x1, ..., Xn|1, 5).
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Example: convexified Bethe surrogate

Introduce standing example, an approximation exact for
tree-structured MRF.

Relaxed polytope: local consistency of singleton and pairwise
pseudomarginals.

Entropy approximation: associate collection 7 of spanning trees.
Then define strictly convex function

B;(T) £ Z p(T) Z Hs(7s) — Z Is¢(Tst)

TeT seV (s,t)€E(T)
Bethe surrogate and reweighted sum-product: use messages

st(Xs,Xt) Luer(ens[Mut(xe)]
Mis(xs) Zexp { } [Mst(Xt)]lfpst

Pst
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Joint estimation and prediction: setup

We want to find the posterior (predictive) distribution using

p(zly; 0) o< p(z; 0)p(y|z).

In the exponential family setting, the posterior can be given the
form 6 + ~v(y) where determining the function ~ can take some
work.
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Joint estimation and prediction: procedure

1. Form parameter estimate 0" from initial data {x!,... x"} by
maximizing the surrogate likelihood /.

2. Given new noisy observation y specified by the factorized
conditional distribution

N

p(ylz) = [ ] p(yslz),

s=1

incorporate it into the model by forming the new exponential
parameter

B2() + s(y)-

3. Use message-passing algorithm to compute approximate
marginals 7(6 + 7), and use these marginals to compute
prediction 2(y; 7).
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Estimator: asymptotic results

[Regularizer sneakily introduced: note that this shouldn’t have any
asymptotic effect.]

Under sane conditions (non-negative, convex regularizer with
parameter A" = o(1/4/n)), we have:

(a) 0" .0, where § may be distinct from the true parameter 6*,
and,

(b) the estimator is asymptotically normal.

Proof: clever use of the gradient and unique optimum properties of
the convex surrogate.

Note that this estimator is inconsistent: the estimated model
differs from the true model in in the limit of large data (even with
the weak regularizer!?).
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Estimator: global stability

Note that standard sum-product message-passing is not stable with
respect to its inputs for tightly coupled MRFs due to the existence
of multiple optima.

Grid with attractive coupling

+++- Bethe

Error in marginals
o o o o
N w0 » o

o

OO 02 04 06 08 1 12 14 16 18 2

Coupling strength

Some convex relaxation methods are provably globally stable.
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Performance: problem setup

@ Measure performance (mean-squared error) loss against Bayes
optimum.

@ Focus on the infinite data limit.

@ Assume the multinomial random vector X = {Xs,s € V} is a
label vector for the components in a finite mixture of
Gaussians.

@ Introduce, for each node s € V, r.v.s Zs and Y5 with
p(Zs = ZS‘XS :J) ~ N(Vj,sz)

and

Y, =aZ;++vV1—a2W,.
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Performance: Bayes least square estimator

Optimal BLSE (minimal MSE) takes the form

3
—_

2PN Y07) 2 ) sy (07 +(Y)) [wile)(Ys — avy) + ]

.
Il
o

where )
Qo

WJ’(O‘)é 2 2 . 2"

a?of +(1—a?)

To calculate this, we need 6* (unknown) and marginals
(impractical to compute).
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Performance: approximate prediction

Instead, use the surrogate-based predictor

3

-1
227°(Y:0) 2 3 10+ A(V)) fy(@)(Ys — ary) + 1],

.
I
o

Can we bound the (difference in) MSE
AR(a, 0%,0) 2 R%P(a, 6 — R%P*(av, )

from above?
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Performance: role of stability

In passing, at « = 1 limit, marginals don’t really matter; at a = 0
limit, inconsistency errors cancel variational errors.
Introduce Lipschitz stability

L(6%;0) 2 sup omax(V2A(6* + 8) — V2B(0 + 6)).
SERY

Then we have (Theorem 7)

AR(a,0*,0) <

. el (Yol | (X lea(Ye) — go(Yo)*
E mm<1,L(9,9) N >\/ 1 N

Taking various limits, we get asymptotic optimality.
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Tree-reweighted sum-product

Specified by collection of edge weights ps:, one for each edge (s, t)
of the graph, where the vector of edge weights belongs to the
spanning tree polytope.
Fix p. The procedure is
@ Compute empirical marginal distributions fis.; and fis jx and
hence approximate parameters
ﬁst;jk

An A A An A
95;j = log fls;; and est;jk = pgt log ———.
Hsjtbe;k

© Form new exponential parameter éas" + 7s(Y), where s is
appropriate to Gaussian mixture model.

© Compute approximate marginals T(é-i— ) by running
tree-reweighted sum-product with edge weights ps; on model
with parameters 6 + . These give 27PP.
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Experimental setup: mixtures

We have a mixture of m = 2 Gaussians.

o
5 E E 0
Value

(b)

Figure 3: Histograms of different Gaussian mixture ensembles. (a) Ensemble A: a bimodal ensem-
ble with (vo,03) = (—1,0.5) and (vi,0?) = (1,0.5). (b) Ensemble B: mimics a heavy-
tailed distribution, with (vo,02) = (0,1) and (vi,0%) = (0,9).

Out graph is a 2D grid with N = 64 nodes, where x € {1, +1}N
are spins. Consider attractive and mixed coupling.
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Comparison: true model versus approximate model

Attractive couping, equal variances.

True versus incorrect model

MSE increase (percentage)
N © a o o

0.2 0.4 0.6 0.8
SNR parameter

Figure 4: Line plots of percentage increase in MSE relative to Bayes optimum for the TRW method
applied to the true model (black circles) versus the approximate model (red diamonds) as
a function of observation SNR for grids with N = 64 nodes, and attractive coupling § =
0.70. As predicted by theory, using the “incorrect” model leads to superior performance,
when prediction is performed using the approximate TRW method, for a range of SNR.
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Comparison: tree-reweighted and ordinary sum-product

Attractive coupling, equal means.

Left to right: independence, ordinary BP, tree-reweighted
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Comparison: tree-reweighted and ordinary sum-product

Mixed coupling, equal variances.

[

Left to right: independence, ordinary BP, tree-reweighted
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Comparison: tree-reweighted and ordinary sum-product

Mixed coupling, equal means.

Left to right: independence, ordinary BP, tree-reweighted
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Comparison: tree-reweighted and ordinary sum-product

Left to right: independence, ordinary BP, tree-reweighted
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Connections to Tommi Jaakkola's PTG talk

projection
S Wi = Z ni(s1)d(j € si)
parent set selection ° .
$i€Pa(1)

probabilities
°

invalid parent set selection ~ \_ = =
probabilities may project to

\ s34
valid edge probabilities 3

JUS
edge
appearance
probabilities

cycle inequalities
are not sufficient



Conclusion

Summary

Punch line: in computation-limited setting, using an inconsistent
parameter estimator is provably and empirically beneficial.
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