"Fast Approximate Energy Minimization via Graph Cuts" Yuri Boykov, Olga Veksler, Ramin Zabih

> Aggeliki Tsoli Brown University, CS295P

Motivation

Image Restoration

noisy image

denoised image

MRF for image restoration

 $egin{array}{c} f_p \ : ext{latent intensity} \ I_p \ : ext{observed intensity} \end{array}$

Image restoration in math...

<u>Goal</u>: labeling $f : \mathcal{P} \to \mathcal{L}$, \mathcal{P} : set of all pixels, \mathcal{L} : set of possible labels

Properties of f:

- piecewise smooth
 - varies smoothly on object surface
 - dramatic change at object boundaries
- consistent with data

Image restoration as MAP estimation

Most probable configuration of distribution over all pixel values

Max of cost function (W&J, eq. (8.5)): $\max_{\mu \in L(T)} < \mu, \theta > = \max_{x \in X^m} \left[\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right]$

energy function

Energy minimization challenge

- Global min NP-hard for most interesting energies
- Opt for local min
 - Standard moves, e.g. simulated annealing
 - Change label of 1 pixel each time till no 1-pixel change reduces energy further
 - This paper: improved convergence rate of sim. annealing style approaches
 - larger moves, e.g. swaps, expansions
 - optimal move based on graph cuts

Energy function

 $E(f) = E_{smooth}(f) +$

 I_p : observed intensity

: latent intensity

 ${\cal N}$: neighborhood

 f_p

 ${\mathcal P}\,$: set of all pixels

Graph-based energy minimization

1. Swap algorithm

2. Expansion algorithm

1. Swap algorithm

α - β swap move

- labeling $f \Leftrightarrow$ partition $\mathbf{P} = \{\mathcal{P}_l \mid l \in \mathcal{L}\}\$ $\mathcal{P}_l = \{p \in \mathcal{P} \mid f_p = l\}$
- α - β -swap : $\mathbf{P} \rightarrow \mathbf{P}'$, $\mathcal{P}_l = \mathcal{P}'_l$ for any label $l \neq \alpha, \beta$

after $\alpha\text{-}\beta$ swap

Swap algorithm (1/2)

- Energy minimization based on α - β swaps
- Challenge: exponential number of swap moves!
 - exp time even for checking for min!
- Linear time when standard moves are allowed
 - \Rightarrow extend standard move concept:
 - standard move \rightarrow optimal α - β swap move

Swap algorithm (2/2)

- 1. Start with an arbitrary labeling f
- 2. Set success := 0
- 3. For each pair of labels $\{\alpha, \beta\} \subset \mathcal{L}$
 - **3.1.** Find $\hat{f} = \arg \min E(f')$ among f' within one $\alpha \beta$ swap of f
 - 3.2. If $E(\hat{f}) < E(f)$, set $f := \hat{f}$ and success := 1
- 4. If success = 1 goto 2
- 5. Return f

Finding optimal α - β swap move

Min cut on swap graph $\mathcal{G}_{\alpha\beta} = \langle \mathcal{V}_{\alpha\beta}, \mathcal{E}_{\alpha\beta} \rangle$

a. What is a (min) graph cut?

- b. How is the swap graph formulated?
- c. Why optimal swap corresponds to a min cut on the swap graph?

a. Graph cut

- G = ⟨V, E⟩: weighted graph, 2 terminals
 cut C ⊂ E : minimal set of edges s.t. terminals separated in G(C) = ⟨V, E − C⟩
- min cut problem: find cheapest cut that separates terminals
- min cut calculation based on max-flow
 - nearly linear running time

b. Swap graph $\mathcal{G}_{\alpha\beta}$ formulation

c. Why optimal swap = min cut? (1/3)

Any cut C includes only 1 t-link per pixel

- 0 t-links in C \rightarrow path between terminals
- 2 t-links in C \rightarrow cut subset of C

Cut C defines natural labeling

$$f_p^{\mathcal{C}} = \begin{cases} \alpha & \text{if } t_p^{\alpha} \in \mathcal{C} \text{ for } p \in \mathcal{P}_{\alpha\beta} \\ \beta & \text{if } t_p^{\beta} \in \mathcal{C} \text{ for } p \in \mathcal{P}_{\alpha\beta} \\ f_p & \text{for } p \in \mathcal{P}, \ p \notin \mathcal{P}_{\alpha\beta}. \end{cases}$$

c. Why optimal swap = min cut? (2/3)

Lemma 4.1. A labeling $f^{\mathcal{C}}$ corresponding to a cut \mathcal{C} on $\mathcal{G}_{\alpha\beta}$ is one α - β swap away from the initial labeling f.

Only pixels with labels a,b change (their new labels are again a or b)

There is a one to one correspondence between cuts C on $\mathcal{G}_{\alpha\beta}$ and labelings that are one α - β swap from f

severed t-links uniquely determine the labels assigned to pixels p and the n-links that must be cut

c. Why optimal swap = min cut? (3/3)

The cost of a cut C on $\mathcal{G}_{\alpha\beta}$ is $|\mathcal{C}| = E(f^{\mathcal{C}})$ plus a constant.

Proof: on the board

Corollary 4.5. The lowest energy labeling within a single α - β swap move from f is $\hat{f} = f^{C}$, where C is the minimum cut on $\mathcal{G}_{\alpha\beta}$.

2. Expansion algorithm

Expansion algorithm

- 1. Start with an arbitrary labeling f
- 2. Set success := 0
- 3. For each label $\alpha \in \mathcal{L}$
 - **3.1.** Find $\hat{f} = \arg \min E(f')$ among f' within one α -expansion of f
 - 3.2. If $E(\hat{f}) < E(f)$, set $f := \hat{f}$ and success := 1
- 4. If success = 1 goto 2
- 5. Return f

α -expansion

- labeling $f \Leftrightarrow$ partition $\mathbf{P} = \{\mathcal{P}_l \mid l \in \mathcal{L}\}\$ $\mathcal{P}_l = \{p \in \mathcal{P} \mid f_p = l\}$
- α -expansion : $\mathbf{P} \rightarrow \mathbf{P}'$, $\mathcal{P}_{\alpha} \subset \mathcal{P}'_{\alpha}$ and $\mathcal{P}'_{l} \subset \mathcal{P}_{l}$ for any label $l \neq \alpha$

Finding optimal expansion move

Min cut on graph $\mathcal{G}_{lphaeta} = \langle \mathcal{V}_{lphaeta}, \mathcal{E}_{lphaeta}
angle$

Cut properties

Any cut C includes only 1 t-link per pixel
 Natural labeling from cut C

$$f_{p}^{\mathcal{C}} = \begin{cases} \alpha & \text{if } t_{p}^{\alpha} \in \mathcal{C} \\ & & \\ f_{p} & \text{if } t_{p}^{\bar{\alpha}} \in \mathcal{C} \end{cases} \quad \forall p \in \mathcal{P}$$

Lemma 5.1. A labeling $f^{\mathcal{C}}$ corresponding to a cut \mathcal{C} on \mathcal{G}_{α} is one α -expansion away from the initial labeling f.

Cut properties

Property 5.2. If $\{p,q\} \in \mathcal{N}$ and $f_p \neq f_q$, then a minimum cut \mathcal{C} on \mathcal{G}_{α} satisfies:

- (a) If $t_p^{\alpha}, t_q^{\alpha} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p,q\}} = \emptyset$.
- $(b) \quad If \quad t_p^{\bar{\alpha}}, t_q^{\bar{\alpha}} \in \mathcal{C} \quad then \quad \mathcal{C} \cap \mathcal{E}_{\{p,q\}} = t_a^{\bar{\alpha}}.$
- $(c) \quad If \quad t_p^{\bar{\alpha}}, t_q^{\alpha} \in \mathcal{C} \quad then \quad \mathcal{C} \cap \mathcal{E}_{\{p,q\}} = e_{\{p,a\}}.$
- $(d) \quad If \quad t^{\alpha}_p, t^{\bar{\alpha}}_q \in \mathcal{C} \quad then \quad \mathcal{C} \cap \mathcal{E}_{\{p,q\}} = e_{\{a,q\}}.$

Lemma 5.3. If $\{p,q\} \in \mathcal{N}$ and $f_p \neq f_q$, then the minimum cut \mathcal{C} on \mathcal{G}_{α} satisfies

 $|\mathcal{C} \cap \mathcal{E}_{\{p,q\}}| = V(f_p^{\mathcal{C}}, f_q^{\mathcal{C}}).$

Theorem 5.4. Let \mathcal{G}_{α} be constructed as above given f and α . Then, there is a one to one correspondence between elementary cuts on \mathcal{G}_{α} and labelings within one α -expansion of f. Moreover, for any elementary cut C, we have $|\mathcal{C}| = E(f^{\mathcal{C}})$.

Optimality properties

Swap algorithm

- local min can be arbitrarily far from global min
- tighter bound for semimetric V
- Expansion algorithm
 - local min within known factor from global min

Expansion move optimal

Theorem 6.1. Let \hat{f} be a local minimum when the expansion moves are allowed and f^* be the globally optimal solution. Then, $E(\hat{f}) \leq 2cE(f^*)$.

Proof: on the board

Image restoration results

original image

standard moves denoised image

noisy image

expansion moves denoised image