"Fast Approximate Energy Minimization via Graph Cuts" *Yuri Boykov, Olga Veksler, Ramin Zabih*

> Aggeliki Tsoli Brown University, CS295P

Motivation

Image Restoration

noisy image denoised image

MRF for image restoration

 $\vert f_p\vert$: latent intensity $\overline{I_p}$: observed intensity

Image restoration in math…

Goal: labeling $f : \mathcal{P} \rightarrow \mathcal{L}$ $\mathcal P$: set of all pixels, $\mathcal L$: set of possible labels

Properties of f :

- piecewise smooth
	- varies smoothly on object surface
	- dramatic change at object boundaries
- consistent with data

Image restoration as MAP estimation

I Most probable configuration of distribution over all pixel values

 \blacksquare Max of cost function $(W&J,eq.$ (8.5)): $\max_{\mu \in L(T)} <\mu, \theta>\; = \; \max_{x \in X^m} \Biggl[\sum_{s \in V} \theta_s(x_s) \; + \sum_{(s,t) \in E} \theta_{st}(x_s,x_t)\Biggr]$ *energy function*

Energy minimization challenge

- ! Global min NP-hard for most interesting energies
- **Opt for local min**
	- Standard moves, e.g. simulated annealing
		- Change label of 1 pixel each time till no 1-pixel change reduces energy further
- **This paper: improved convergence rate of** sim. annealing style approaches
	- larger moves, e.g. swaps, expansions
		- optimal move based on graph cuts

Energy function

 $E(f) = E_{smooth}(f) +$

 $E_{data}(f)$

 $\left(f_p-I_p\right)^2$

 I_p : observed intensity

: latent intensity

 f_p

- \mathcal{N} : neighborhood
- P set of all pixels

Graph-based energy minimization

1. Swap algorithm

2. Expansion algorithm

1. Swap algorithm

α - β swap move

- labeling $f \Leftrightarrow$ partition $\mathbf{P} = \{ \mathcal{P}_l \mid l \in \mathcal{L} \}$ $\mathcal{P}_l = \{p \in \mathcal{P} \mid f_p = l\}$
- α - β -swap : $\mathbf{P} \rightarrow \mathbf{P}'$, $P_l = P'_l$ for any label $l \neq \alpha, \beta$

Swap algorithm (1/2)

- **Energy minimization based on** α **-** β **swaps**
- Challenge: exponential number of swap moves!
	- exp time even for checking for min!
- **I.** Linear time when standard moves are allowed
	- \Rightarrow extend standard move concept:
		- standard move \rightarrow optimal α - β swap move

Swap algorithm $(2/2)$

- 1. Start with an arbitrary labeling f
- 2. Set success $:= 0$
- 3. For each pair of labels $\{\alpha,\beta\} \subset \mathcal{L}$
	- 3.1. Find $f = \arg \min E(f')$ among f' within one $\alpha \beta$ swap of f
	- 3.2. If $E(\hat{f}) < E(f)$, set $f := \hat{f}$ and success := 1
- 4. If success = 1 goto 2
- 5. Return f

Finding optimal α - β swap move

Min cut on swap graph $\mathcal{G}_{\alpha\beta} = \langle \mathcal{V}_{\alpha\beta}, \mathcal{E}_{\alpha\beta} \rangle$

- a. What is a (min) graph cut?
- b. How is the swap graph formulated?
- c. Why optimal swap corresponds to a min cut on the swap graph?

a. Graph cut

- $\mathcal{G} = \langle \mathcal{V}, \mathcal{E} \rangle$: weighted graph, 2 terminals \blacksquare cut $\mathcal{C} \subset \mathcal{E}$: minimal set of edges s.t. terminals separated in $\mathcal{G}(\mathcal{C}) = \langle \mathcal{V}, \mathcal{E} - \mathcal{C} \rangle$
- *min cut problem*: find cheapest cut that separates terminals
- **I** min cut calculation based on max-flow
	- nearly linear running time

b. Swap graph $\mathcal{G}_{\alpha\beta}$ formulation

c. Why optimal swap = min cut? $(1/3)$

Any cut C includes only 1 t-link per pixel

- 0 t-links in $C \rightarrow$ path between terminals
- $-$ 2 t-links in C \rightarrow cut subset of C

Cut C defines natural labeling

$$
f_p^{\mathcal{C}} = \begin{cases} \alpha & \text{if } t_p^{\alpha} \in \mathcal{C} \text{ for } p \in \mathcal{P}_{\alpha\beta} \\ \beta & \text{if } t_p^{\beta} \in \mathcal{C} \text{ for } p \in \mathcal{P}_{\alpha\beta} \\ f_p & \text{for } p \in \mathcal{P}, p \notin \mathcal{P}_{\alpha\beta}. \end{cases}
$$

c. Why optimal swap = min cut? $(2/3)$

Lemma 4.1. A labeling f^C corresponding to a cut C on $\mathcal{G}_{\alpha\beta}$ is one α - β swap away from the initial labeling f.

Only pixels with labels a,b change (their new labels are again a or b)

There is a one to one correspondence between cuts C on $\mathcal{G}_{\alpha\beta}$ and labelings that are one $\alpha-\beta$ swap from f

severed t-links uniquely determine the labels assigned to pixels p and the n-links that must be cut

c. Why optimal swap = min cut? $(3/3)$

The cost of a cut C on $\mathcal{G}_{\alpha\beta}$ is $|\mathcal{C}| = E(f^{\mathcal{C}})$ plus a constant.

Proof: on the board

Corollary 4.5. The lowest energy labeling within a single α - β swap move from f is $\hat{f} = f^c$, where C is the minimum cut on $\mathcal{G}_{\alpha\beta}$.

2. Expansion algorithm

Expansion algorithm

- 1. Start with an arbitrary labeling f
- 2. Set success $:= 0$
- 3. For each label $\alpha \in \mathcal{L}$
	- 3.1. Find $\hat{f} = \arg \min E(f')$ among f' within one α -expansion of f
	- 3.2. If $E(f) < E(f)$, set $f := \overline{f}$ and success := 1
- 4. If success = 1 goto 2
- Return f 5.

α -expansion

- labeling $f \Leftrightarrow$ partition $\mathbf{P} = \{ \mathcal{P}_l \mid l \in \mathcal{L} \}$ $\mathcal{P}_l = \{p \in \mathcal{P} \mid f_p = l\}$
- α -expansion $\mathbf{P} \rightarrow \mathbf{P}'$, $\mathcal{P}_{\alpha} \subset \mathcal{P}'_{\alpha}$ and $\mathcal{P}'_l \subset \mathcal{P}_l$ for any label $l \neq \alpha$

Finding optimal expansion move

I Min cut on graph $\mathcal{G}_{\alpha\beta} = \langle \mathcal{V}_{\alpha\beta}, \mathcal{E}_{\alpha\beta} \rangle$

Cut properties

!

Any cut C includes only 1 t-link per pixel ■ Natural labeling from cut C

$$
f_p^{\mathcal{C}} = \begin{cases} \alpha & \text{if } t_p^{\alpha} \in \mathcal{C} \\ f_p & \text{if } t_p^{\bar{\alpha}} \in \mathcal{C} \end{cases} \forall p \in \mathcal{P}
$$

Lemma 5.1. A labeling f^C corresponding to a cut C on \mathcal{G}_{α} is one α -expansion away from the initial labeling f.

Cut properties

Property 5.2. If $\{p,q\} \in \mathcal{N}$ and $f_p \neq f_q$, then a minimum cut C on \mathcal{G}_{α} satisfies:

- (a) If $t_p^{\alpha}, t_q^{\alpha} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p,q\}} = \emptyset$.
- (b) If $t_p^{\bar{\alpha}}, t_q^{\bar{\alpha}} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p,q\}} = t_a^{\bar{\alpha}}$.
- (c) If $t_p^{\bar{\alpha}}, t_q^{\alpha} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p,q\}} = e_{\{p,a\}}$.
- (d) If $t_p^{\alpha}, t_q^{\overline{\alpha}} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p,q\}} = e_{\{a,q\}}$.

Lemma 5.3. If $\{p,q\} \in \mathcal{N}$ and $f_p \neq f_q$, then the minimum cut C on \mathcal{G}_{α} satisfies

 $|\mathcal{C} \cap \mathcal{E}_{\{p,q\}}| = V(f_n^{\mathcal{C}}, f_a^{\mathcal{C}}).$

Theorem 5.4. Let \mathcal{G}_{α} be constructed as above given f and α . Then, there is a one to one correspondence between elementary cuts on \mathcal{G}_{α} and labelings within one α -expansion of f. Moreover, for any elementary cut C, we have $|C| = E(f^C)$.

Optimality properties

■ Swap algorithm

- local min can be arbitrarily far from global min
- tighter bound for semimetric V
- **Expansion algorithm**
	- local min within known factor from global min

Expansion move optimal

Theorem 6.1. Let \hat{f} be a local minimum when the expansion moves are allowed and f^* be the globally optimal solution. Then, $E(\hat{f}) \leq 2cE(f^*)$.

Proof: on the board

Image restoration results

original image hoisy image

standard moves denoised image

expansion moves denoised image