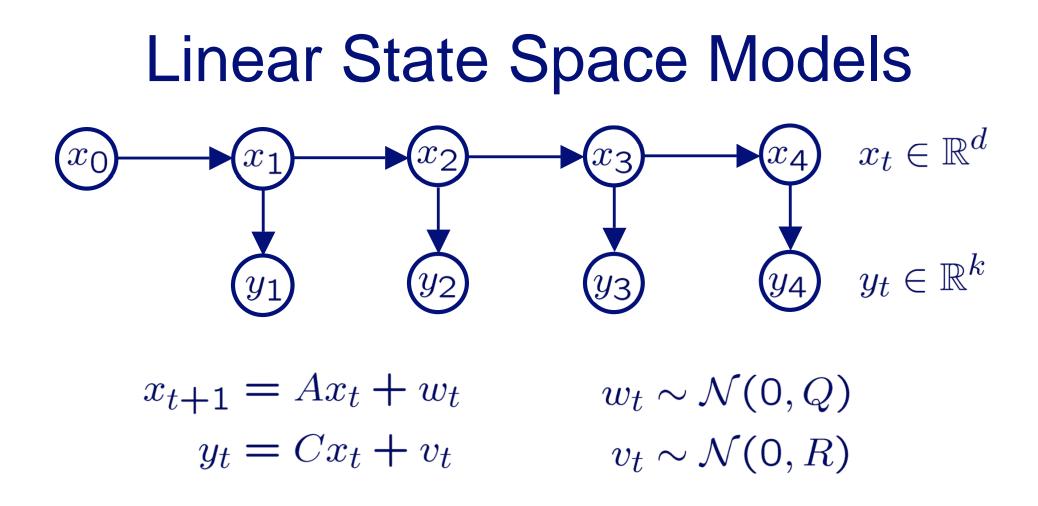
Learning and Inference in Probabilistic Graphical Models

Particle Filters and Sequential Monte Carlo April 14, 2010

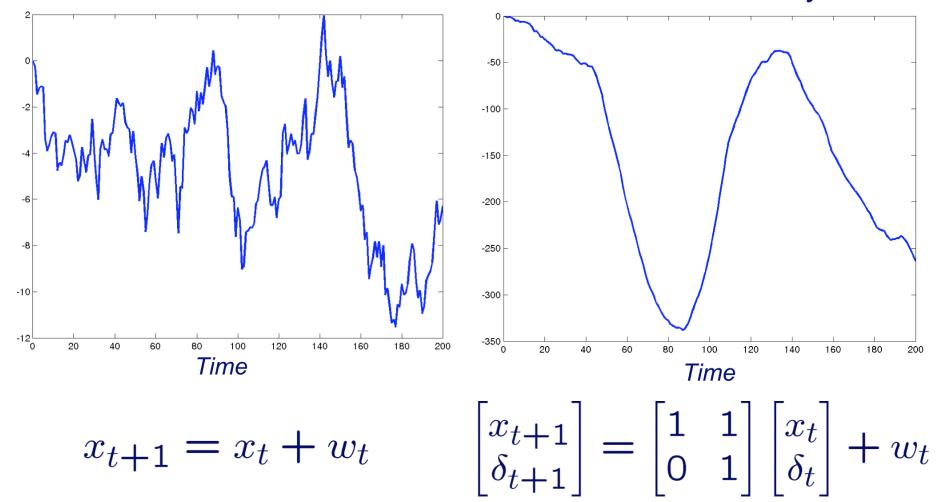


- States & observations jointly Gaussian:
 - All marginals & conditionals Gaussian
 - Linear transformations remain Gaussian

Simple Linear Dynamics

Brownian Motion

Constant Velocity



Kalman Filter

- $\begin{aligned} x_{t+1} &= Ax_t + w_t & w_t \sim \mathcal{N}(0, Q) \\ y_t &= Cx_t + v_t & v_t \sim \mathcal{N}(0, R) \end{aligned}$
- Represent Gaussians by mean & covariance:

$$p(x_t \mid y_1, \dots, y_{t-1}) = \mathcal{N}(x; \tilde{\mu}_t, \tilde{\Lambda}_t)$$
$$p(x_t \mid y_1, \dots, y_t) = \mathcal{N}(x; \mu_t, \Lambda_t)$$

Prediction:

$$\tilde{\mu}_t = A\mu_{t-1}$$

$$\tilde{\Lambda}_t = A\Lambda_{t-1}A^T + Q$$

$$K_t = \tilde{\Lambda}_t C^T (C\tilde{\Lambda}_t C^T + R)^{-1}$$

Kalman Gain:

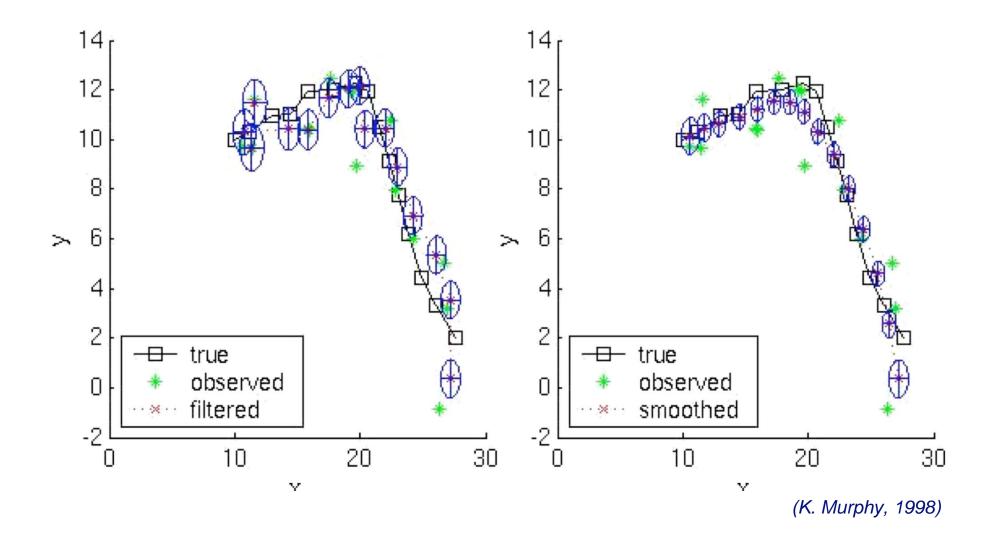
Update:

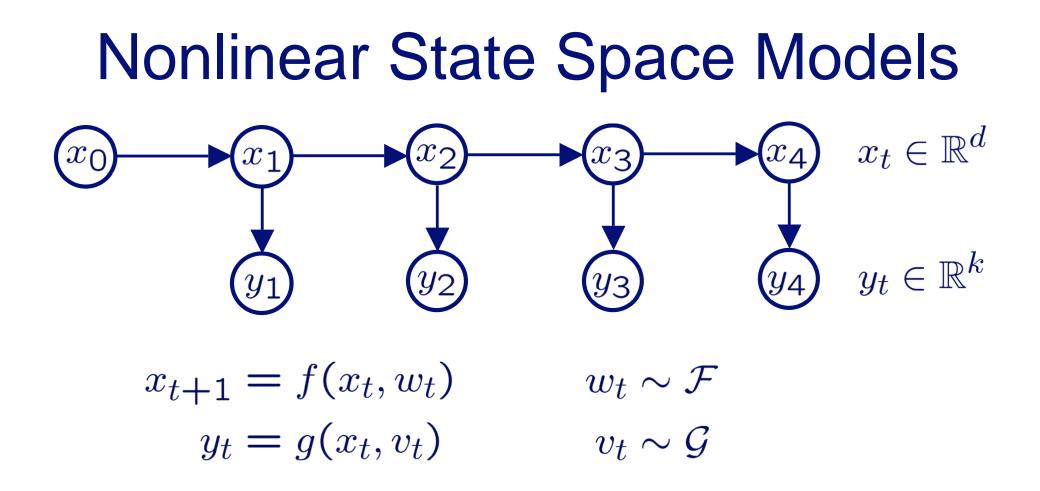
$$\mu_t = \tilde{\mu}_t + K_t(y_t - C\tilde{\mu}_t)$$
$$\Lambda_t = \tilde{\Lambda}_t - K_t C\tilde{\Lambda}_t$$

Constant Velocity Tracking

Kalman Filter

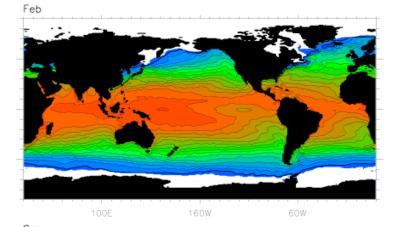
Kalman Smoother

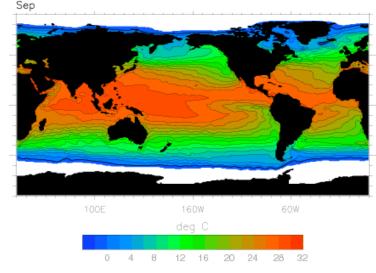




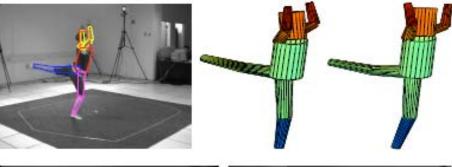
- State dynamics and measurements given by potentially complex *nonlinear functions*
- Noise sampled from non-Gaussian distributions

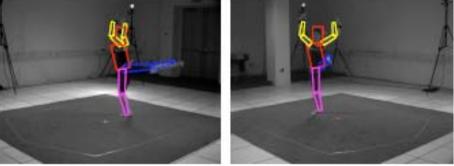
Examples of Nonlinear Models



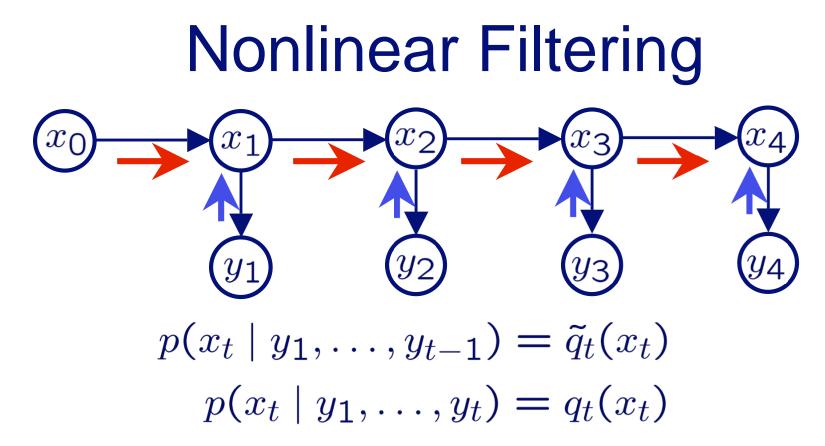


Dynamics implicitly determined by geophysical simulations





Observed image is a complex function of the 3D pose, other nearby objects & clutter, lighting conditions, camera calibration, etc.



Prediction:

$$\tilde{q}_{t}(x_{t}) = \int p(x_{t} \mid x_{t-1}) q_{t-1}(x_{t-1}) \, dx_{t-1}$$
Update:

$$q_{t}(x_{t}) = \frac{1}{Z_{t}} \tilde{q}_{t}(x_{t}) p(y_{t} \mid x_{t})$$

Approximate Nonlinear Filters $q_t(x_t) \propto p(y_t \mid x_t) \cdot \int p(x_t \mid x_{t-1}) q_{t-1}(x_{t-1}) dx_{t-1}$

- No direct *represention* of continuous functions, or closed form for the prediction *integral*
- Big literature on approximate filtering:
 - Histogram filters
 - Extended & unscented Kalman filters
 - Particle filters

Nonlinear Filtering Taxonomy

Histogram Filter:

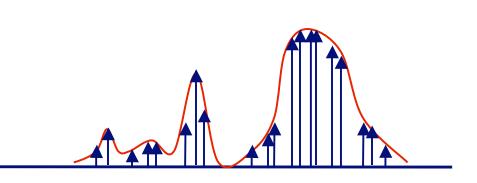
- Evaluate on fixed discretization grid
- > Only feasible in low dimensions
- Expensive or inaccurate

Extended/Unscented Kalman Filter:

- Approximate posterior as Gaussian via linearization, quadrature, ...
- Inaccurate for multimodal posterior distributions

Particle Filter:

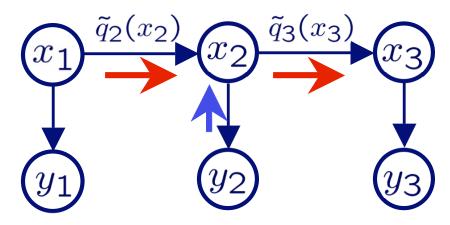
- Dynamically evaluate states with highest probability
- Monte Carlo approximation

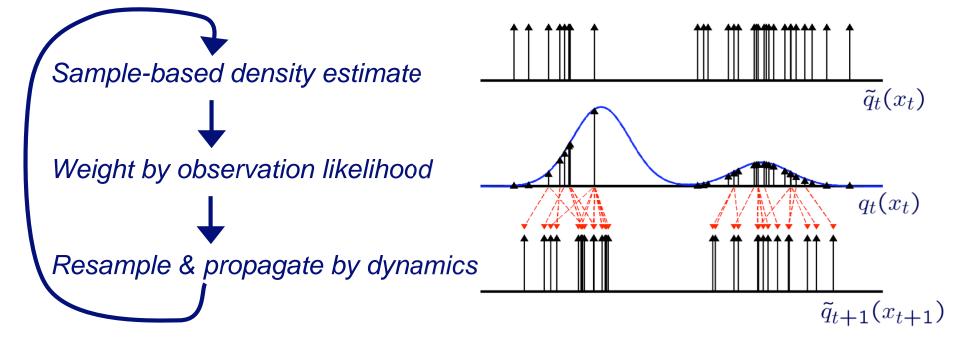


Particle Filters

Condensation, Sequential Monte Carlo, Survival of the Fittest,...

- Represent state estimates using a set of samples
- Propagate over time using importance sampling



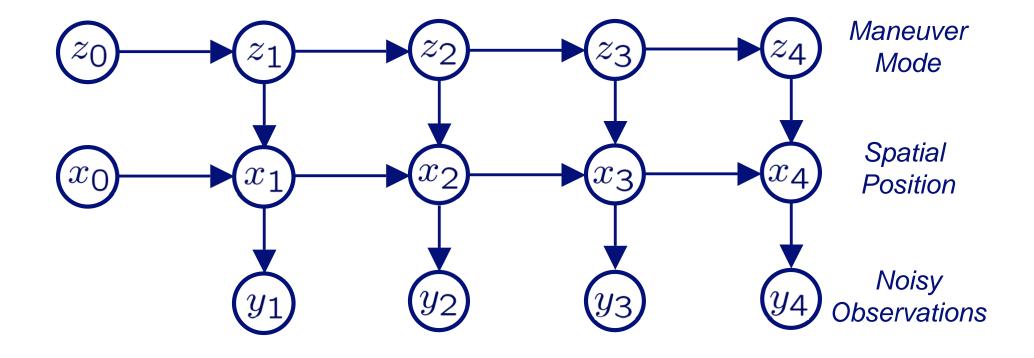


Particle Filtering Movie

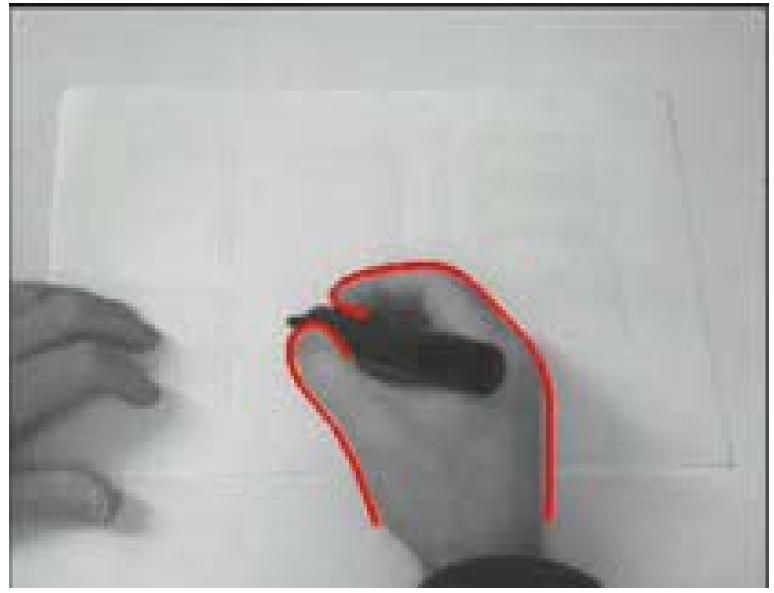
(M. Isard, 1996)

Dynamic Bayesian Networks

Specify and exploit internal structure in the hidden states underlying a time series



DBN Hand Tracking Video



Isard et. al., 1998

Particle Filtering Caveats

- Particle filters are easy to implement, and effective in many applications, BUT
 - It can be difficult to know how many samples to use, or to tell when the approximation is poor
 - Sometimes suffer catastrophic failures, where NO particles have significant posterior probability
 - This is particularly true with "peaky" observations in high-dimensional spaces:
 \u0355 likelihood

dynamics