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Gibbs Sampler

Gibbs sampler (Geman and Geman 1984) is a special case of
Metropolis-Hastings. It is based on the idea that it is easier to
consider a sequence of conditional distributions than to obtain the
marginal by integration of the joint density.

Example: at step t:
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Approximating the Marginal Distributions

The expectation of any function f of the random variable x is
approximated by

m
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Since

p(x) = / p(x|y)p(y)dy = E[p(x]y)

one can approximate the marginal density using
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Variants of Gibbs Sampler

» Gibbs Sampler
1. Draw a conditioned on b,c
2. Draw b conditioned on a,c
3. Draw c conditioned on a,b

» Blocked Gibbs Sampler

1. Draw a,b conditioned on ¢
2. Draw c conditioned on a,b
» Collapsed Gibbs Sampler

1. Draw a conditioned on ¢
2. Draw c conditioned on a



Finding Scientific Topics

Thomas Griffiths and Mark Steyvers (2004)

» Uses LDA to model which topics documents address.

» Gibbs sampling for inference

» Example: Applying topic models to images

» Application: identify “hot topics” that are more popular over
time

» Application: tagging abstracts



Modeling Documents and Topics

T topics, probability of ith word in given document is

T

P(wi) = P(wilzi = j)P(z =)

Jj=1

Want to find the posterior distribution over assignments of words
to topics
P(w,z
2. P(w,2)
This distribution cannot be computed directly because the sum in
the denominator does not factorize and involves T terms, where n

is the total number of word items in the corpus.



Using Gibbs Sampling for Inference

To apply Gibbs sampling we need the full conditional distribution.
(wi) (di)
nfv',{’j—i-ﬂ n_;;+ o

”E)i,j + Wp ni’,-f + Ta

P(zi = jlz—i,w)

where n(_), is a count that does not include the current assignment
of Zj

Estimates of ¢ and 0:



Applying Topic Models to Images
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Applying Topic Models to Images

Iteration
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Convergence
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Hot and Cold Topics

Conducted linear trend analysis on 6; to find topics that rose or fell
in popularity
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Find words that are important to a topic
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Integrating Topics and Syntax

Griffiths, Steyvers, Blei, Tenenbaum (2005)

» Presents a generative model that uses short-range syntactic
dependencies and long-range semantic dependencies

» Gibbs sampling for inference
» Application: part-of-speech tagging

» Application: document classification



Graphical Model

TN
STUN
// / : \ \\\
e / \ .
/// / / \ “\
1/ / "\._‘ .

P y A S
4= = = =N
o N \=y \=

AN PP AP o
(W) W) w,) %
. \‘ = \[9' \} y

K L 55, 3

Semantic states: Generate words
from LDA topic model

Syntactic states: generate words
from HMM



Generating a Document

Sample A(9) from a Dirichlet(a) prior
For each word w; in document d

1. Draw z from 6(9)
2. Draw ¢; from m(ci-1))
3. If ¢; =1, then draw w; from gb(z"), else draw w; from (<))
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Example of generating a phrase



Inference

Use Gibbs sampling to iteratively draw a topic assignment z; and
class assignment ¢; for each word w; in the corpus

Each z is drawn from:
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LDA Topics vs HMM-LDA Topics
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Part-of-Speech Tagging

Black is all tags, and white is 10 top-level tags. Left: HMM. Right:
HMM-LDA.
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HMM-LDA does slightly worse for all tags, because words that are
in the same semantic class will be assigned together, so composite
model does not capture all the distinctions.
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