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Hidden Markov Models
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Calculating the likelihood

p(di10)= > m(h)P, (d |0)]|q(h_,.h)P,(d |0).
hes” =2
(3)

Sum over all possible hidden state sequences,
the probability of the observed generated by that
hidden state sequence



Calculating the likelihood

p(di10)= > m(h)P, (d |0)]|q(h_,.h)P,(d |0).
hes” =2
(3)

Instead, likelihood recursion O(S2 n) steps
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Forward variable: ¢ =r. @, 16) > g(r.5)¢,_,(r).

F=0



Forward Backward Recursions

Forward recursion is as likelihood recursion
Backward variable: 7, (s | 0) = ¢,(s)/€;

where (7 = Zf’ {;ff( )
Transition probabilities, p(r- > s at time t | we observed until t)
P Xp(h_,=r,h,=s,d,|d ", 6)

7, (r | 0)q(r,s)P(d,|8),
Backward recur5|on

p..=plh_,=rlh =s, di,0)p(h,=s | di, 0)
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Sampling

Direct Gibbs Sampling
d t-2 d t-1 d t d t+1 d +2
h -2 h t-1 ? h t+1 h 1+2
p(h,=s|h_,,d/.0)xXq(h,_s)q(s, h,)P.(d,|8),



Sampling

Forward Backward Recursion sampling
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At the forward step, the transition matrices, (P) are produced;
P, Xp(h_,=r,h,=s,d [d". 6)

=m,_,(r | 0)q(r.5)P,(d, | ).



Sampling

Forward Backward Recursion sampling
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h t-2 h t-1 7 h 1+1 h +2

At the backward step, the state is sampled by
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Autocovariance

T is a vector that has sufficient statistics for state transitions.
T® is the set of all such vectors iteration 1. (T, is for time 1)
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Autocovariance
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Let 0@ be the sufficient statistics for emissions.
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Autocovariance

T is a vector that has sufficient statistics for state transitions.
T® is the set of all such vectors iteration 1. (T, is for time 1)
Let O be the sufficient statistics for emission probabilities.
FB: T is conditionally independent of T given 6.

DG: T;-#is conditionally independent of T, ¥ given 8.
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Autocovariance

T is a vector that has sufficient statistics for state transitions.
T® is the set of all such vectors iteration 1. (T, is for time 1)
Let O be the sufficient statistics for emission probabilities.
FB: T is conditionally independent of T given 6.

DG: T;-#is conditionally independent of T, ¥ given 8.
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Autocovariance

T is a vector that has sufficient statistics for state transitions.
T® is the set of all such vectors iteration 1. (T is for time 1)
Let O be the sufficient statistics for emission probabilities.
FB: T is conditionally independent of T given 6.

DG : T;*-¥is conditionally independent of T, ® given 8.
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Autocovariance

T is a vector that has sufficient statistics for state transitions.
T® is the set of all such vectors iteration 1. (T, is for time 1)
Let O be the sufficient statistics for emission probabilities.
FB: T is conditionally independent of T given 6.

DG : T;-#is conditionally independent of T, ¥ given 6.
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Autocovariance

T is a vector that has sufficient statistics for state transitions.
T® is the set of all such vectors iteration 1. (T, is for time 1)
Let O be the sufficient statistics for emission probabilities.
FB: T is conditionally independent of T given 6.
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Autocovariance

T is a vector that has sufficient statistics for state transitions.
T® is the set of all such vectors iteration 1. (T, is for time 1)
Let O be the sufficient statistics for emission probabilities.
FB: T is conditionally independent of T given 6.
DG : T;-#is conditionally independent of T, ¥ given 6.
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Autocovariance

T is a vector that has sufficient statistics for state transitions.
T® is the set of all such vectors iteration 1. (T, is for time 1)
Let O be the sufficient statistics for emission probabilities.
FB: T is conditionally independent of T given 6.

DG : T;-#is conditionally independent of T, ¥ given 6.
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Some Issues

Label switching
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Some Issues

Label switching
Implications
Solution: constraints
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Some Issues

Label switching
Collapsed states

May be evidence for over parameterizations
Priors



Estimating the hidden states

Stating m,(s) is usually sufficient.
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Estimating the hidden states

Stating m,(s) is usually sufficient.
Overall configuration may be needed;

Marginal Distributions

Averaging over all runs (2 — m) with indicator function:

7 (s5) = |;IHFZI‘{JFIEJ] = 5).

j=1



Estimating the hidden states

Stating m,(s) is usually sufficient.
Overall configuration may be needed;
Marginal Distributions
Averaging over all runs (2 — m) with indicator function

Averaging over all runs (1 —m) probabilities
(Rao-Blackwellized estimate)

it

m(s)=1/m Zﬂ':{i | Y
j=1



Estimating the hidden states

Stating m,(s) is usually sufficient.
Overall configuration may be needed;
Marginal Distributions

Averaging over all runs (2 — m) with indicator function
Averaging over all runs (1 —m) probabilities

MAP estimate (L =maxp(h,d|0)
Li(s)=my(s)P(d, | 6)

L(s)= |n;_1:~;[L!_J{r]qr{h s)|P,(d, | 6).



Estimating the hidden states

Stating m,(s) is usually sufficient.
Overall configuration may be needed;
Marginal Distributions

Averaging over all runs (2 — m) with indicator function
Averaging over all runs (1 —m) probabilities

MAP estimate: to find h

h.=aremax L.(r)g(r. h,.,)
! i / r+1
.

converges when it is same forall sin h

t+1-



Size of the state space

Calculating p(S | D)



Size of the state space

Calculating p(S | D)

p(S | d}) = /1;:-{5' | di.f)p(t | dy)do
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Size of the state space

Calculating p(S | D)
Schwartz criterion C(S):

C(S)=logt—kglog(n)/2,



Size of the state space

Calculating p(S | D)
Schwartz criterion C(S):
Bayesian Information Criterion BIC:

p(S|D)-2C(S)



Size of the state space

Calculating p(S | D)
Schwartz criterion C(S):
Bayesian Information Criterion BIC

(a) (b)
. maximized

) S | log-posterior | ks | C(S) | BIC

. 1| -174.3 1| -177.0 | 354.0
1. 2 -150.7 4 | -161.6 | 323.2
; 3| -140.7 9 |-165.3 | 330.6
£ 3] 4 -139.2 16 | -183.1 | 366.2
51 3 -139.5 25 | -208.0 | 416.0

6 -139.8 36 | -238.4 | 476.8

0.0







