Steven L. Scott Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century

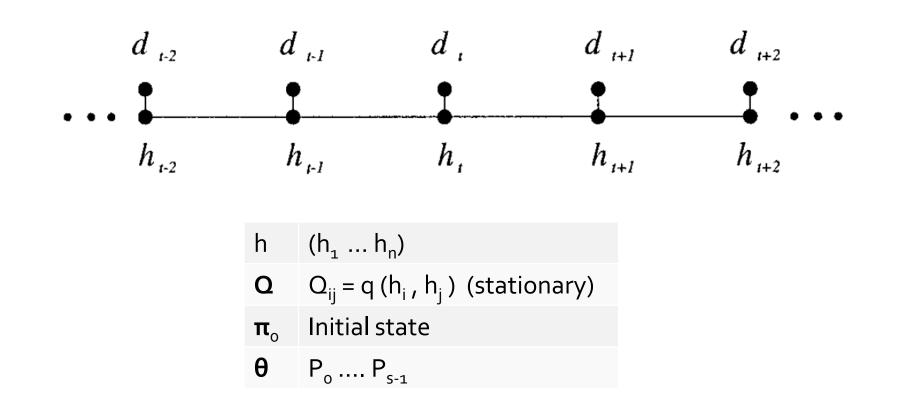
Presented by Ahmet Engin Ural

Outline

Overview of HMM

- Evaluating likelihoods
 - The Likelihood Recursion
 - The Forward-Backward Recursion
- Sampling HMM
 - DG and FB samplers
 - Autocovariance of samplers
 - Some issues with samplers (in general)
- Estimation
 - Marginal
 - MAP
 - Size of the state space

Hidden Markov Models



 $p(d_t \mid d_{-t}, \mathbf{h}, \theta, \mathbf{Q}, \pi_0) = P_{h_t}(d_t \mid \theta),$

Calculating the likelihood

$$p(d_1^n \mid \theta) = \sum_{\mathbf{h} \in \mathcal{S}^n} \pi_0(h_1) P_{h_1}(d_1 \mid \theta) \prod_{t=2}^n q(h_{t-1}, h_t) P_{h_t}(d_t \mid \theta).$$
(3)

Sum over all possible hidden state sequences, the probability of the observed generated by that hidden state sequence

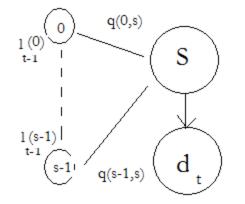
Calculating the likelihood

$$p(d_1^n \mid \theta) = \sum_{\mathbf{h} \in \mathcal{S}^n} \pi_0(h_1) P_{h_1}(d_1 \mid \theta) \prod_{t=2}^n q(h_{t-1}, h_t) P_{h_t}(d_t \mid \theta).$$
(3)

Instead, likelihood recursion O(S² n) steps

Forward variable:

e:
$$\ell_t(s) = P_s(d_t \mid \theta) \sum_{r=0}^{s-1} q(r, s) \ell_{t-1}(r).$$



Forward Backward Recursions

- Forward recursion is as likelihood recursion
- Backward variable: $\pi_t(s \mid \theta) = \ell_t(s)/\ell_t^*$

where
$$\ell_t^* = \sum_{s=0}^{S-1} \ell_t(s)$$

Transition probabilities, p(r - > s at time t | we observed until t)

$$p_{trs} \propto p(h_{t-1} = r, h_t = s, d_t \mid d_1^{t-1}, \theta)$$

$$= \pi_{t-1}(r \mid \theta)q(r,s)P_s(d_t \mid \theta),$$

Backward recursion

$$p'_{trs} = p(h_{t-1} = r \mid h_t = s, d_1^n, \theta) p(h_t = s \mid d_1^n, \theta)$$

Forward Backward Recursions

- Forward recursion is as likelihood recursion
- Backward variable: $\pi_t(s \mid \theta) = \ell_t(s)/\ell_t^*$

where
$$\ell_t^* = \sum_{s=0}^{S-1} \ell_t(s)$$

Transition probabilities, p(r - > s at time t | we observed until t)

$$p_{trs} \propto p(h_{t-1} = r, h_t = s, d_t \mid d_1^{t-1}, \theta)$$

$$= \pi_{t-1}(r \mid \theta)q(r,s)P_s(d_t \mid \theta),$$

Backward recursion

$$p'_{trs} = p(h_{t-1} = r \mid h_t = s, d_1^n, \theta) p(h_t = s \mid d_1^n, \theta)$$

= $p(h_{t-1} = r \mid h_t = s, d_1^t, \theta) \pi'_t(s \mid \theta)$

$$\pi'_t(s \mid \theta) \equiv \Pr(h_t = s \mid d_1^n, \theta)$$

Forward Backward Recursions

- Forward recursion is as likelihood recursion
- Backward variable: $\pi_t(s \mid \theta) = \ell_t(s)/\ell_t^*$

where
$$\ell_t^* = \sum_{s=0}^{S-1} \ell_t(s)$$

Transition probabilities, p(r - > s at time t | we observed until t)

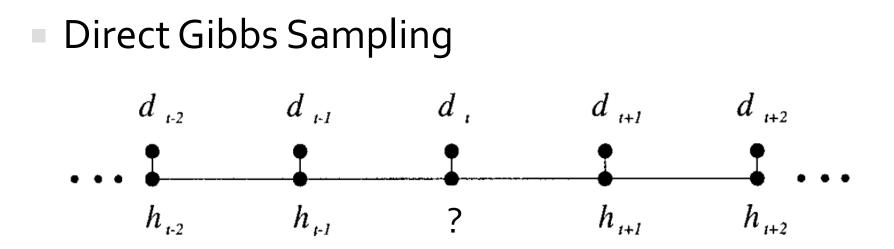
$$p_{trs} \propto p(h_{t-1} = r, h_t = s, d_t \mid d_1^{t-1}, \theta)$$

$$= \pi_{t-1}(r \mid \theta)q(r,s)P_s(d_t \mid \theta),$$

Backward recursion

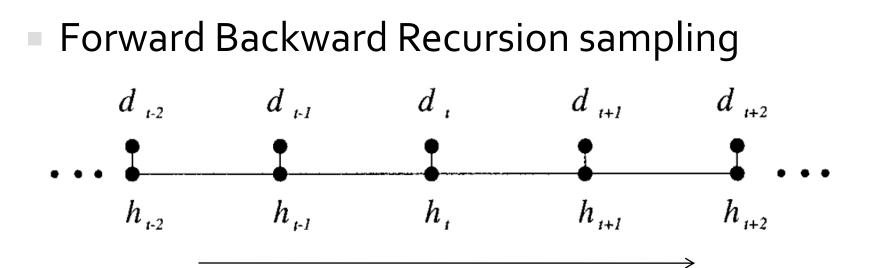
$$p'_{trs} = p(h_{t-1} = r \mid h_t = s, d_1^n, \theta) p(h_t = s \mid d_1^n, \theta)$$
$$= p(h_{t-1} = r \mid h_t = s, d_1^t, \theta) \pi'_t(s \mid \theta)$$
$$= p_{trs} \frac{\pi'_t(s \mid \theta)}{\pi_t(s \mid \theta)},$$

Sampling



 $p(h_t = s \mid h_{-t}, d_1^n, \theta) \propto q(h_{t-1}, s)q(s, h_{t+1})P_s(d_t \mid \theta),$

Sampling



At the forward step, the transition matrices, (P) are produced;

$$p_{trs} \propto p(h_{t-1} = r, h_t = s, d_t \mid d_1^{t-1}, \theta)$$
$$= \pi_{t-1}(r \mid \theta)q(r, s)P_s(d_t \mid \theta),$$

Sampling

• Forward Backward Recursion sampling d_{t-2} d_{t-1} d_{t} d_{t+1} d_{t+2} \dots h_{t-2} h_{t-1} h_{t-1} h_{t+1} h_{t+2} \dots h_{t+1} h_{t+2}

At the backward step, the state is sampled by

$$p(h_{n-t} = r | h_{n-t+1}^n, d_1^n, \theta) \propto p_{n-t+1, r, h_{t+1}}.$$

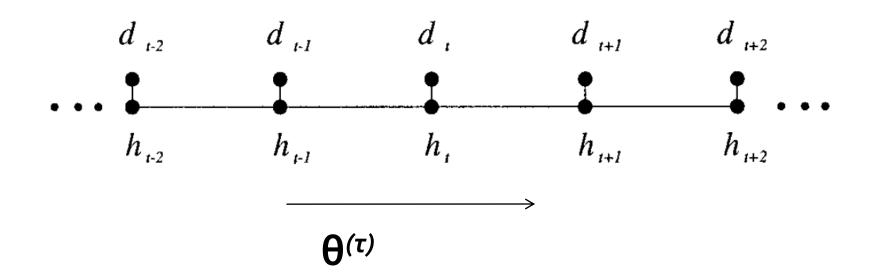
.

• **T** is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (**T**₁ is for time 1)

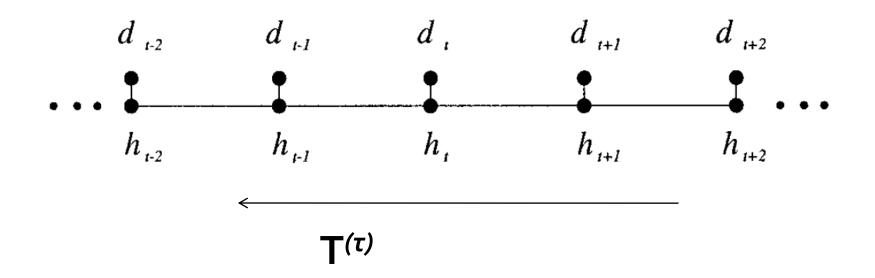
$$\mathbf{T}_{1} = \prod_{\substack{i \in h_{1}, h_{2} \\ i \in h_{1}, h_{2} \\ i \in h_{2}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{1}, h_{2} \\ i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{1}, h_{2} \\ i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{1}, h_{2} \\ i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{1}, h_{2} \\ i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{1}, h_{2} \\ i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{1}, h_{2} \\ i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ } T_{1} = \prod_{\substack{i \in h_{3}, h_{3} \\ } T_{1} = T_{1} \\ T_{1} = T_{1}$$

- **T** is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (**T**₁ is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emissions.

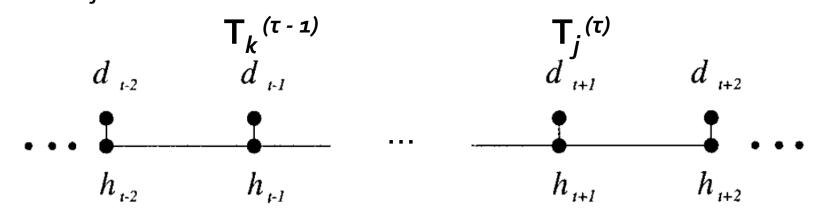
- T is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (T_1 is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- = FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.



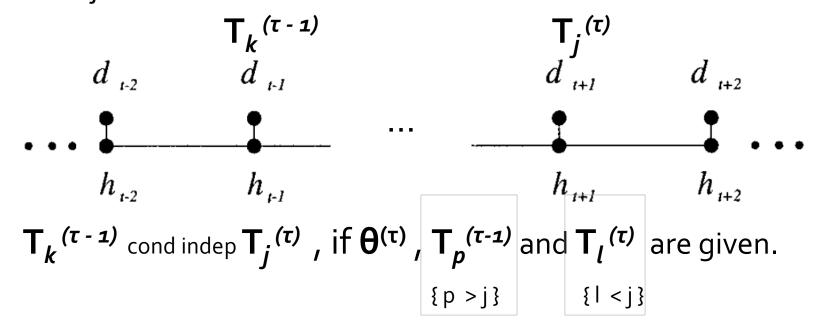
- T is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (T_1 is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- = FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.



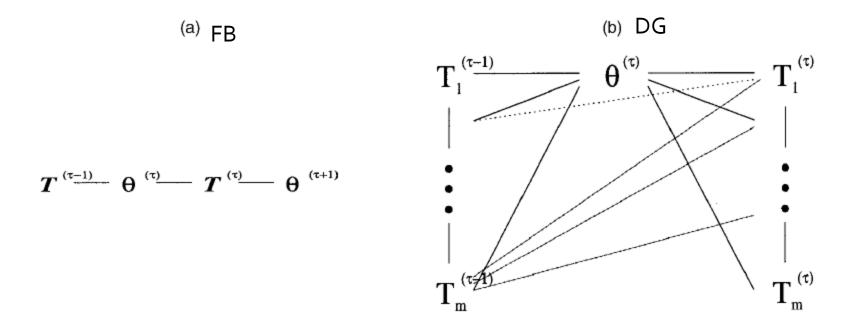
- T is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (T_1 is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- = FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.
- DG: $\mathbf{T}_{i}^{(\tau-1)}$ is conditionally independent of $\mathbf{T}_{k}^{(\tau)}$ given $\boldsymbol{\theta}^{(\tau)}$.



- **T** is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (**T**₁ is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- = FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.
- DG: $\mathbf{T}_{i}^{(\tau-1)}$ is conditionally independent of $\mathbf{T}_{k}^{(\tau)}$ given $\boldsymbol{\theta}^{(\tau)}$.



- **T** is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (**T**₁ is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- = FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.
- = DG : $\mathbf{T}_{j}^{(\tau-1)}$ is conditionally independent of $\mathbf{T}_{k}^{(\tau)}$ given $\boldsymbol{\theta}^{(\tau)}$.



- T is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (T_1 is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.
- = DG : $\mathbf{T}_{i}^{(\tau-1)}$ is conditionally independent of $\mathbf{T}_{k}^{(\tau)}$ given $\boldsymbol{\theta}^{(\tau)}$.

$$cov(T^{(\tau-1)}, T^{(\tau)}) = E\{cov(T^{(\tau-1)}, T^{(\tau)} \mid \theta^{(\tau)})\} + cov\{E(T^{(\tau-1)} \mid \theta^{(\tau)}), E(T^{(\tau)} \mid \theta^{(\tau)})\} = E\{cov(T^{(\tau-1)}, T^{(\tau)} \mid \theta^{(\tau)})\} + var\{E(T^{(\tau)} \mid \theta^{(\tau)})\},$$
(11)

- T is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (T_1 is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.
- = DG : $\mathbf{T}_{i}^{(\tau-1)}$ is conditionally independent of $\mathbf{T}_{k}^{(\tau)}$ given $\boldsymbol{\theta}^{(\tau)}$.

$$cov(T^{(\tau-1)}, T^{(\tau)}) = E\{cov(T^{(\tau-1)}, T^{(\tau)} | \theta^{(\tau)})\} + cov\{E(T^{(\tau-1)} | \theta^{(\tau)}), E(T^{(\tau)} | \theta^{(\tau)})\} = E\{cov(T^{(\tau-1)}, T^{(\tau)} | \theta^{(\tau)})\} = o \text{ for FB} + var\{E(T^{(\tau)} | \theta^{(\tau)})\},$$
(11)

sam

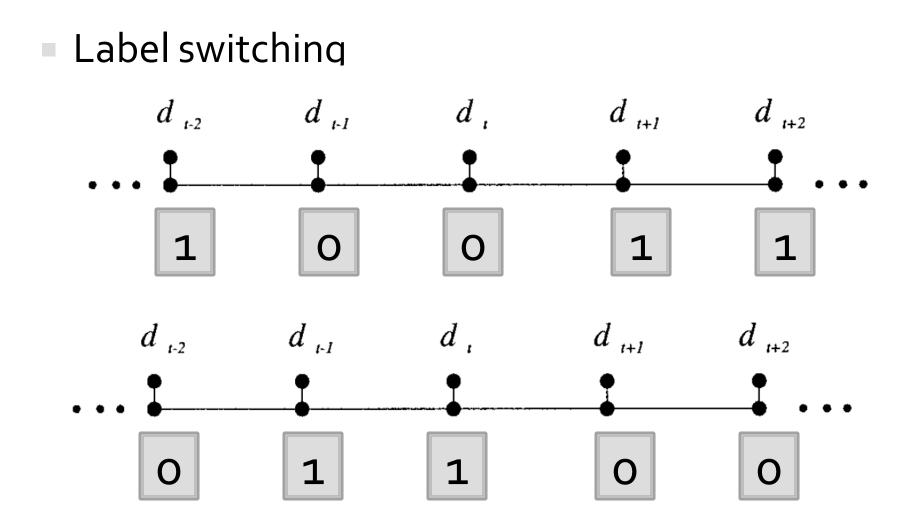
- T is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (T_1 is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.
- = DG : $\mathbf{T}_{i}^{(\tau-1)}$ is conditionally independent of $\mathbf{T}_{k}^{(\tau)}$ given $\boldsymbol{\theta}^{(\tau)}$.

$$cov(T^{(\tau-1)}, T^{(\tau)}) = E\{cov(T^{(\tau-1)}, T^{(\tau)} \mid \theta^{(\tau)})\} + cov\{E(T^{(\tau-1)} \mid \theta^{(\tau)}), E(T^{(\tau)} \mid \theta^{(\tau)})\} = E\{cov(T^{(\tau-1)}, T^{(\tau)} \mid \theta^{(\tau)})\} e for FB and DG <= +var\{E(T^{(\tau)} \mid \theta^{(\tau)})\},$$
(11)

- T is a vector that has sufficient statistics for state transitions. $T^{(\tau)}$ is the set of all such vectors iteration τ . (T_1 is for time 1)
- Let $\theta^{(\tau)}$ be the sufficient statistics for emission probabilities.
- FB: $T^{(\tau)}$ is conditionally independent of $T^{(\tau+1)}$ given $\theta^{(\tau)}$.
- = DG : $\mathbf{T}_{i}^{(\tau-1)}$ is conditionally independent of $\mathbf{T}_{k}^{(\tau)}$ given $\boldsymbol{\theta}^{(\tau)}$.

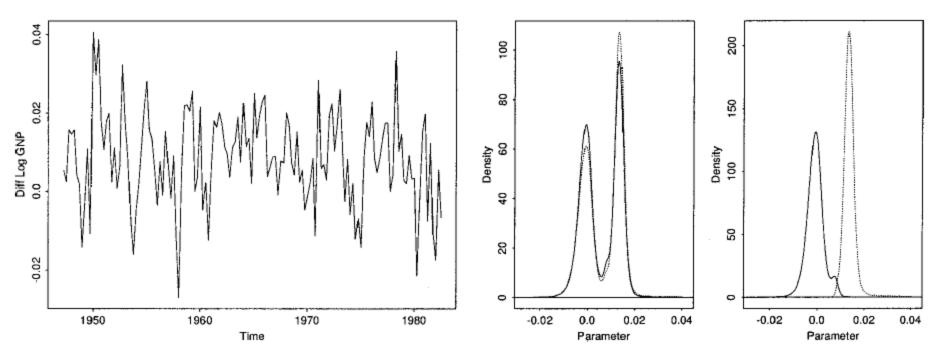
$$\begin{aligned} \operatorname{cov}_{\mathrm{DG}}(T^{(\tau-1)}, T^{(\tau)}) = & \operatorname{cov}_{\mathrm{FB}}(T^{(\tau-1)}, T^{(\tau)}) \\ &+ E_{\mathrm{DG}}\left\{ \operatorname{cov}_{\mathrm{DG}}(T^{(\tau-1)}, T^{(\tau)} \,|\, \theta^{(\tau)}) \right\}. \end{aligned}$$

Some issues



Some issues

- Label switching
 - Implications
 - Solution: constraints



Some issues

- Label switching
- Collapsed states
 - May be evidence for over parameterizations
 - Priors

Stating π_t(s) is usually sufficient.

- Stating π_t(s) is usually sufficient.
- Overall configuration may be needed;
 - Marginal Distributions
 - MAP estimates

- Stating π_t(s) is usually sufficient.
- Overall configuration may be needed;
 - Marginal Distributions
 - Averaging over all runs (1 m) with indicator function:

$$\tilde{\pi}'_t(s) = 1/m \sum_{j=1}^m I(h_t^{(j)} = s).$$

- Stating π_t(s) is usually sufficient.
- Overall configuration may be needed;
 - Marginal Distributions
 - Averaging over all runs (1 m) with indicator function
 - Averaging over all runs (1 m) probabilities (Rao-Blackwellized estimate)

$$\hat{\pi}'_t(s) = 1/m \sum_{j=1}^m \pi'_t(s \mid \theta^{(j)})$$

- Stating π_t(s) is usually sufficient.
- Overall configuration may be needed;
 - Marginal Distributions
 - Averaging over all runs (1 m) with indicator function
 - Averaging over all runs (1 m) probabilities
 - MAP estimate ($L = \max p(h, d | \theta)$)

$$L_1(s) = \pi_0(s)P_s(d_1 \mid \theta)$$

$$L_t(s) = \max_r [L_{t-1}(r)q(r,s)]P_s(d_t \mid \theta).$$

- Stating π_t(s) is usually sufficient.
- Overall configuration may be needed;
 - Marginal Distributions
 - Averaging over all runs (1 m) with indicator function
 - Averaging over all runs (1 m) probabilities
 - MAP estimate: to find h

$$\hat{h}_t = \arg\max_{r \in \mathcal{S}} L_t(r)q(r, \hat{h}_{t+1})$$

converges when it is same for all s in h_{t+1} .

Calculating p(S | D)

Calculating p(S | D)

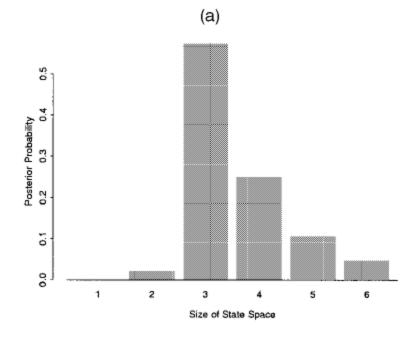
$$p(S \mid d_1^n) = \int p(S \mid d_1^n, \theta) p(\theta \mid d_1^n) d\theta$$
$$\approx 1/m \sum_{j=1}^m p(S \mid d_1^n, \theta^{(j)}),$$
$$p(S \mid d_1^n, \theta^{(j)}) \propto p(d_1^n \mid \theta_S^{(j)}, S) p(S)$$

- Calculating p(S | D)
- Schwartz criterion C(S):

$$C(S) = \log \ell - k_S \log(n)/2,$$

- Calculating p(S | D)
- Schwartz criterion C(S):
- Bayesian Information Criterion BIC:
 - p(S | D) 2 C(S)

- Calculating p(S | D)
- Schwartz criterion C(S):
- Bayesian Information Criterion BIC



	maximized			
\mathbf{S}	log-posterior	k_S	C(S)	BIC
1	-174.3	1	-177.0	354.0
2	-150.7	4	-161.6	323.2
3	-140.7	9	-165.3	330.6
4	-139.2	16	-183.1	366.2
5	-139.5	25	-208.0	416.0
6	-139.8	36	-238.4	476.8

(b)

Thank you