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Introduction
Nonparametric Belief Propagation (NBP)

• GOAL:  Inference for graphical

models with variables which are

 Continuous

 High-dimensional

 Non-Gaussian

• Efficiently extends particle filtering

methods to general graphs

NBP for Visual Tracking

• Graphical formulation of hand

structure, kinematics, & dynamics

• NBP tracker which accounts for

finger self-occlusions



Outline

Nonparametric Belief Propagation

Graphical models and belief propagation

Nonparametric message propagation

Efficient multiscale sampling from mixture products

Visual Hand Tracking

Prior constraints & image likelihoods

NBP for occlusion-compensated hand tracking

Temporal constraints & tracking results



Hidden Markov Models

state variable at time  t  (unobserved or hidden)

local observation at time  t

“Conditioned on the present, the past and
future are statistically independent”



Probabilistic Inference

• Provides many different estimates:

Bayes’ least squares

Maximizer of Posterior Marginals (MPM)

• Degree of confidence in those estimates

GOAL: Determine the conditional marginal distributions



Belief Propagation for HMMs

BELIEFS:  Posterior distributions over state variables

MESSAGES:  Sufficient statistics of observations

Message ProductMessage Propagation

Present Past Future



Message Representations

Discrete State Variables

Messages are finite vectors

Updated via matrix-vector products

Gaussian State Variables

Messages are mean & covariance

Updated via information Kalman filter

Continuous Non-Gaussian State Variables

Closed parametric forms unavailable

Discretization can be intractable even

with 2 or 3 dimensional states



Particle Filters
Condensation, Sequential Monte Carlo, Survival of the Fittest,…

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Nonparametric approximation

to optimal BP estimates

• Represent messages and

posteriors using a set of

samples, found by simulation



set of      nodes

set of edges             connecting nodes

Nodes             are associated with random variables

An undirected graph     is defined by

Graphical Models

Graph Separation

Conditional

Independence



Pairwise Markov Random Fields

Special Case:   Temporal HMM

• Product of arbitrary positive clique potential functions

• Guaranteed Markov with respect to corresponding graph



Belief Propagation
BELIEFS:  Approximate posterior marginal distributions

(Koller, UAI 1999)

MESSAGES:  Approximate sufficient statistics

 I. Belief Update (Message Product)

II. Message Propagation (Integral)

neighborhood of node i

(adjacent nodes)



• Produces exact conditional marginals for

discrete or Gaussian tree-structured

graphs (variant of dynamic programming)

Statistical Physics & Free Energies   (Yedidia, Freeman, and Weiss)

        Variational interpretation, improved region-based approximations

Many others…

BP as Reparameterization   (Wainwright, Jaakkola, and Willsky)

        Characterization of fixed points, error bounds

• For general graphs, exhibits excellent

empirical performance in many

applications (especially coding)

BP Justification



Nonparametric Inference for General Graphs

Belief Propagation

• General graphs

• Discrete or Gaussian

Particle Filters

• Markov chains

• General potentials

Nonparametric BP

• General graphs

• General potentials
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Nonparametric Density Estimates
Kernel (Parzen Window)

Density Estimator
Approximate PDF by a set of
smoothed data samples

M independent samples from p(x)

Gaussian kernel function (self-reproducing)

Bandwidth (chosen automatically)



Nonparametric BP

Input messages are kernel density estimates (Gaussian)

Message product:
Draw L samples

Message propagation:
Monte Carlo integration



Nonparametric BP

Output message estimated from weighted

samples via a bandwidth selection rule

Extensive literature:  asymptotic analysis, cross-validation, etc.



NBP Marginal Update

Sample from product of all

Gaussian mixture messages

Reweight samples by

likelihoods (like particle filter)

Importance Sampling:

Product contains Md kernels

d  messages, M kernels each



Sampling from Mixture Products

• Product density kernels

generated by combinations

of input density kernels

• Structure exploited by

Gibbs sampling algorithms

• Products of Gaussians are
also weighted Gaussians:



Product Density Sampling

Exact sampling

Importance sampling: mixture vs. Gaussian

Gibbs sampling: parallel vs. sequential

Multiscale sampling: Gibbs vs. -exact

d mixtures of M Gaussians mixture of Md Gaussians



Exact Sampling
mixture component label for ith input density

label of component in product density 

• Calculate the weight partition function in

O(Md) operations:

• Draw and sort M uniform  [0,1]  variables

• Compute the cumulative distribution of



Importance Sampling
true distribution (difficult to sample from)
assume may be evaluated up to normalization Z

proposal distribution (easy to sample from)

• Draw N >> M samples from proposal distribution:

• Sample M times (with replacement) from

Mixture IS:   Randomly select a different mixture pi(x) for
                      each sample (other mixtures provide weight)

Gaussian IS: Approximate each mixture by single Gaussian



Sequential Gibbs Sampler
Product of 3 messages, each containing 4 Gaussian kernels

Labeled Kernels
Highlighted Red

Sampling Weights
Blue Arrows

• Fix labels for all but one density; compute

weights induced by fixed labels

• Sample from weights, fix the newly sampled

label, and repeat for another density

• Iterate until convergence



Parallel Gibbs Sampler
Product of 3 messages, each containing 4 Gaussian kernels

Labeled Kernels
Highlighted Red

Sampling Weights
Blue Arrows

X

X

X



Multiscale: KD-Trees
• “K-dimensional Trees”

• Multiscale representation of data set

• Cache statistics of points at each level:

Bounding boxes

Mean & covariance

• Original use: efficient search algorithms



Multiscale Gibbs Sampling

• Build KD-tree for each input density

• Perform Gibbs over progressively finer scales:

Annealed Gibbs sampling
(analogies in MRFs)

X

X

X
…

Sample to change scales

Continue Gibbs sampling at the next scale:

…



-Exact Sampling

• Bounding boxes used for fast, approximate kernel

density evaluation (Gray & Moore, 2003):
Find sets with nearly constant weight

Provides evaluations within fractional error 

• Similar method approximates partition function:

Express product mixture weights via density pairs

KD-tree recursions approximate sum, and then sample

• Tunable accuracy level:



Taking Products: 3 Mixtures

 TASK:  Draw 100 samples & construct density estimate

 All multiscale samplers perform well



Taking Products: 5 Mixtures

Exact sampling takes 7.6 hours

Multiscale Gibbs performs comparably in 0.2 seconds



Taking Products: 2 Mixtures

 Importance sampling sensitive to message alignment

 Multiscale methods show greater robustness



We can now sample from this message product very efficiently

NBP Message Updates I:

d   messages

M  kernels each

Product contains
Md kernels

Message Products



NBP Message Updates II:

View
as a joint distribution

Add marginal
to the product mix

Label selected by
sampler locates
kernel center in

Draw sample

Message Propagation (Gaussian Mixture)
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Motivation
• Accurately locating a few

fingers highly constrains the

set of possible global poses

• GOAL:  Robustly propagate

local image evidence to

track arbitrary hand motions



Structural Model

• Hand described by 16 rigid bodies

• 3D geometry of each rigid body

modeled by truncated quadric

surfaces   (Stenger et. al., CVPR 2001)

• Ellipsoids, cones, & cylinders

• Perspective projection maps quadrics

to conics (ellipses, pairs of lines, etc.)

• Fixed geometry measured offline

efficient edge & silhouette calculation



Hand Model Projections

35o 70o



Kinematic Model

• Rigid bodies kinematically

related by revolute joints

• Model has total of 26 DOF

20 joint angles (4 per finger)

Palm’s global position & orientation

• Likelihood calculation requires

global coordinates of all bodies

No direct evidence for joint angle

• Forward kinematics maps joint

angles to 3D poses

nodes           rigid bodies

edges           joints



Existing Hand Trackers

Extended Kalman filter  (Rehg 1994)

Unscented Kalman filter  (Stenger 2001)

Particle filter  (MacCormick 2000, Wu 2001)

Tree-Based multiscale filter (Stenger 2003)

Unstructured Geometric Model Tracking

all require simplified models (fewer DOF);
many also employ complex prior models

20 joint angles

Global pose of palm

26-Dimensional State:



Local State Representation

• Describe each hand component by 3D pose:

position of rigid body i

orientation of rigid body i  (unit quaternion)

• Tradeoffs in this representation:

Redundant:  Additional DOF (16 £ 6 = 96), but

Image appearance directly relates to local state

Related approach to 3D person tracking:  Sigal, Black, Isard, et. al.



Kinematic Constraints
• Define an indicator function for

each joint edge

edges from
joint constraints

1 if               valid
for some choice of
joint angles, else 0

• Kinematic prior model:

• Graphical model exactly enforcing

original joint angle constraints:

“Conditioned on the palm, the fingers
are statistically independent”



Structural Constraints

• Kinematics do not prevent finger

intersection (joints not independent)

• “Ideal” structural constraint prevents

3D quadric surface intersection

• Approximate structural constraint:

edges from
physical
constraints

• Structural prior model:



Observation Model

Edge IntensitySkin Color



Silhouette Matching: Skin Color

• Assume RGB values at each pixel independent:

histogram estimated from labeled skin pixels

histogram estimated from hand-free background images

   pixels in silhouette of projection of model x

   set of all image pixels

Must only evaluate likelihood ratio over projected silhouette



Edge Matching: Steered Gradient
• Steer derivative of Gaussian

response to orientation of

projected hand boundary

Dx

Dy

histogram estimated
from labeled edge pixels

histogram estimated from
background images

response magnitude
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Local Likelihood Decomposition

If two hand components do not occlude each other,
they will project to disjoint subsets of the image.

• Edge likelihood ratio decomposes similarly

• Reasoning about self-occlusions discussed later…

=
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Inferring Hand Position

Kinematic
Prior

Structural
Prior

Color & Edge Likelihoods

Pairwise Markov Random Field

nodes (random variables)

observations

edges (dependencies)

hidden variable at node i



NBP Hand Tracker Marginal Update

• Sample from product of all

Gaussian mixtures

• Reweight samples by analytic

functions (like particle filter)

Importance Sampling:



• Start with weighted samples

from last marginal update

• Kinematic potential gives all

valid poses equal weight:

Sample uniformly among

allowable joint angles

Compute corresponding pose of

       by forward kinematics

Kinematic Message Propagation



Structural Message Propagation

•Exact:  Integrate belief over all poses outside

some ball centered at the candidate pose

•Approximate:  Sum weights of all Gaussians

with centers outside that ball

Reduces weight of particles
which overlap with likely

positions of neighboring nodes



Single Frame Inference

0 1

2 4



Self-Occlusion Masks
pixel u in the projection of body i is occluded

otherwise

=

Conditioning on occlusion masks z allows exact likelihood decomposition.



Distributed Occlusion Reasoning

• Factor graph imposes constraints

ensuring occlusion consistency

• Use BP to analytically estimate

probability of pixel’s occlusion:

• Neglecting correlations among the occlusion variables, the

likelihood function (integrating over occlusions) becomes

Skin Color
Likelihood Ratio

Uninformative
Likelihood Ratio



Occlusion Reasoning Example

No Occlusion Reasoning Occlusion Reasoning

Middle (Third) Finger Ring (Fourth) Finger



Temporal Constraints & Tracking

• Add Gaussian potentials

between adjacent time steps:

• Interpretations:

Maximum entropy model given

marginal variances in 3D pose

Random walks implicitly

coupled by kinematic &

structural constraints
edges from
temporal
constraints



Tracking Hand Rotation



Tracking Finger Motion



Conclusions
Publications & Code: http://ssg.mit.edu/nbp/

Nonparametric Belief Propagation

Inference in continous, non-Gaussian graphical models

Very flexible, easy to adapt to diverse applications

Multiscale samplers lead to computational efficiency

Framework for Tracking Problems

Modular state representation

Graphical model of kinematics, structure, & dynamics

NBP may accommodate complexities such as occlusions

Many other potential applications…


