Learning and Inference in Probabilistic Graphical Models

Nonparametric Belief Propagation April 26, 2010

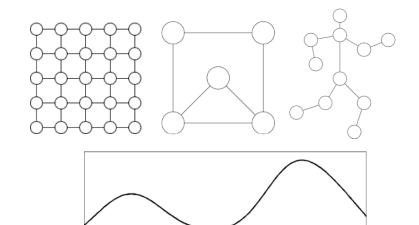
Introduction

Nonparametric Belief Propagation (NBP)

- **GOAL:** Inference for graphical models with variables which are
 - Continuous
 - High-dimensional
 - Non-Gaussian
- Efficiently extends particle filtering methods to general graphs

NBP for Visual Tracking

- Graphical formulation of hand structure, kinematics, & dynamics
- NBP tracker which accounts for finger self-occlusions



Outline

Nonparametric Belief Propagation

- Graphical models and belief propagation
- Nonparametric message propagation
- Efficient multiscale sampling from mixture products

Visual Hand Tracking

- Prior constraints & image likelihoods
- NBP for occlusion-compensated hand tracking
- Temporal constraints & tracking results

Hidden Markov Models x_{t-1} x_t x_{t+1} x_{t+2} y_{t-1} y_t y_{t+1} y_{t+2}

 $x_t \rightarrow$ state variable at time t (unobserved or hidden) $y_t \rightarrow$ local observation at time t

$$p(x,y) = p(x_0) \prod_{t=1}^{T} p(x_t \mid x_{t-1}) p(y_t \mid x_t)$$

"Conditioned on the present, the past and future are statistically independent"

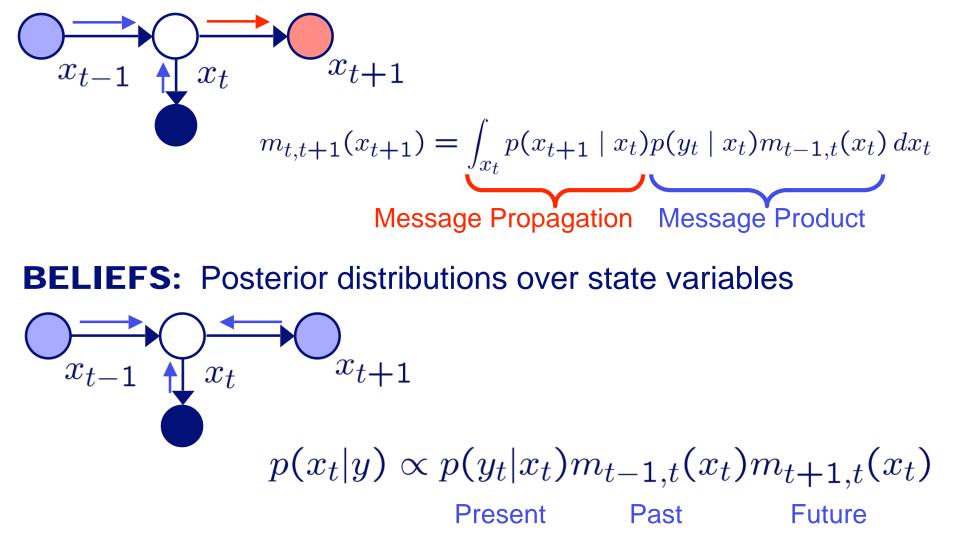
Probabilistic Inference x_{t-1} x_t x_{t+1} x_{t+2} y_{t-1} y_t y_{t+1} y_{t+2}

GOAL: Determine the conditional marginal distributions $p(x_t \mid y) = \alpha \int_{x_{\mathcal{V} \setminus t}} p(x, y) \, dx_{\mathcal{V} \setminus t}$

- Provides many different estimates:
 - Bayes' least squares
 - Maximizer of Posterior Marginals (MPM)
- Degree of confidence in those estimates

Belief Propagation for HMMs

MESSAGES: Sufficient statistics of observations



Message Representations $m_{ij}(x_j) \propto \int_{x_i} \psi_{j,i}(x_j, x_i) \psi_i(x_i, y) \prod_{k \in \Gamma(i) \setminus j} m_{ki}(x_i) dx_i$

Discrete State Variables

- Messages are finite vectors
- Updated via matrix-vector products

Gaussian State Variables

- Messages are mean & covariance
- Updated via information Kalman filter

Continuous Non-Gaussian State Variables

- Closed parametric forms unavailable
- Discretization can be *intractable* even with 2 or 3 dimensional states

Particle Filters

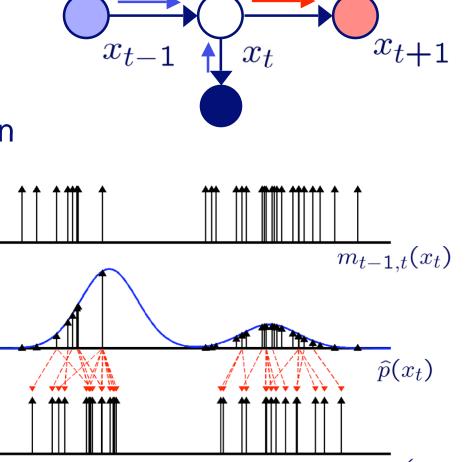
Condensation, Sequential Monte Carlo, Survival of the Fittest,...

- Nonparametric approximation to optimal BP estimates
- Represent messages and posteriors using a set of samples, found by simulation

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics



 $m_{t,t+1}(x_{t+1})$

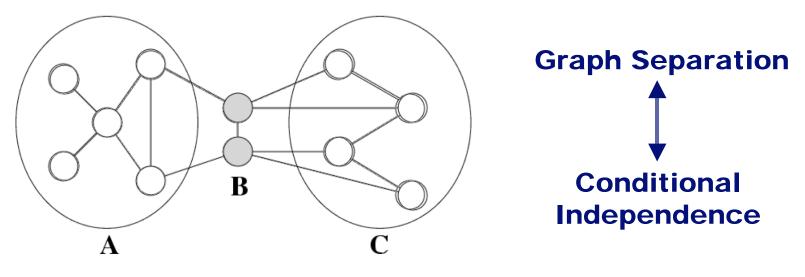
Graphical Models

An undirected graph \mathcal{G} is defined by

$$\checkmark \longrightarrow$$
 set of N nodes $\{1, 2, \dots, N\}$

 $\mathcal{E} \longrightarrow$ set of edges (i,j) connecting nodes $i,j \in \mathcal{V}$

Nodes $i \in \mathcal{V}$ are associated with random variables x_i



 $p(x_A, x_C | x_B) = p(x_A | x_B) p(x_C | x_B)$

Pairwise Markov Random Fields $p(x,y) = \frac{1}{Z} \prod_{(i,j) \in \mathcal{E}} \psi_{i,j}(x_i, x_j) \prod_{i \in \mathcal{V}} \psi_i(x_i, y)$

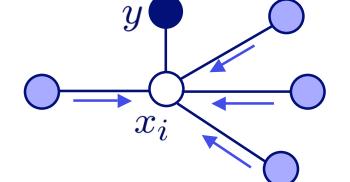
- Product of arbitrary positive *clique potential* functions
- Guaranteed Markov with respect to corresponding graph

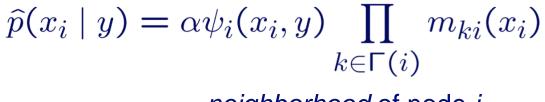
Special Case: Temporal HMM

 $p(x,y) = p(x_0) \prod_{t=1}^{T} p(x_t \mid x_{t-1}) p(y_t \mid x_t)$

Belief Propagation

BELIEFS: Approximate posterior marginal distributions





 $\Gamma(i) \longrightarrow \begin{array}{c} neighborhood \text{ of node } i \\ (adjacent nodes) \end{array}$

MESSAGES: Approximate sufficient statistics

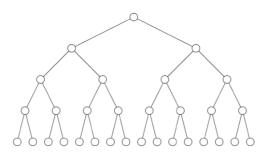
$$m_{ij}(x_j) = \alpha \int_{x_i} \psi_{j,i}(x_j, x_i) \psi_i(x_i, y) \prod_{k \in \Gamma(i) \setminus j} m_{ki}(x_i) dx_i$$

$$= \alpha \int_{x_i} \psi_{j,i}(x_j, x_i) \frac{\hat{p}(x_i|y)}{m_{ji}(x_i)} dx_i \quad \text{(Koller, UAI 1999)}$$

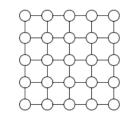
I. Belief Update (Message Product)
II. Message Propagation (Integral)

BP Justification

 Produces *exact* conditional marginals for discrete or Gaussian tree-structured graphs (variant of dynamic programming)



 For general graphs, exhibits excellent empirical performance in many applications (especially coding)



Statistical Physics & Free Energies (Yedidia, Freeman, and Weiss)

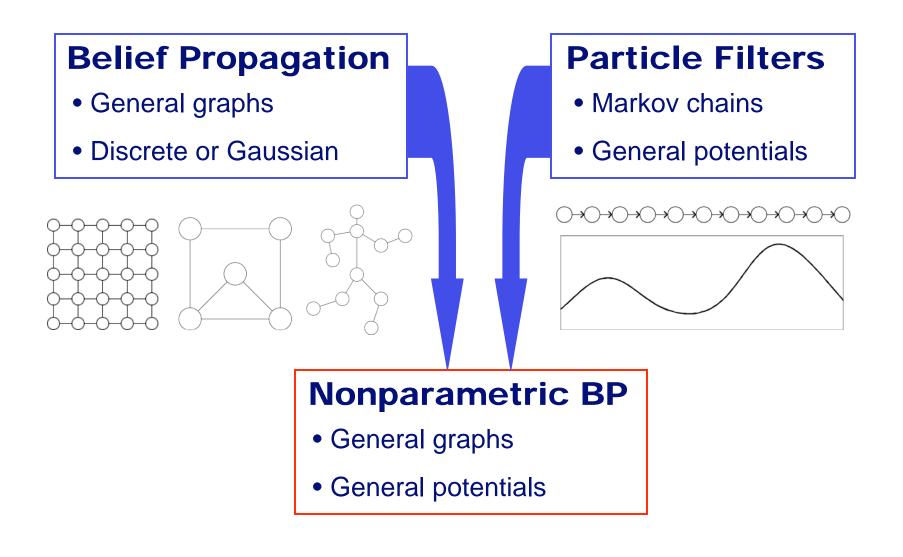
Variational interpretation, improved region-based approximations

BP as Reparameterization (Wainwright, Jaakkola, and Willsky)

Characterization of fixed points, error bounds

Many others...

Nonparametric Inference for General Graphs



Outline

Nonparametric Belief Propagation

- Graphical models and belief propagation
- Nonparametric message propagation
- Efficient multiscale sampling from mixture products

Visual Hand Tracking

- Prior constraints & image likelihoods
- NBP for occlusion-compensated hand tracking
- Temporal constraints & tracking results

Nonparametric Density Estimates

Kernel (Parzen Window) Approximate PDF by a set of Density Estimator

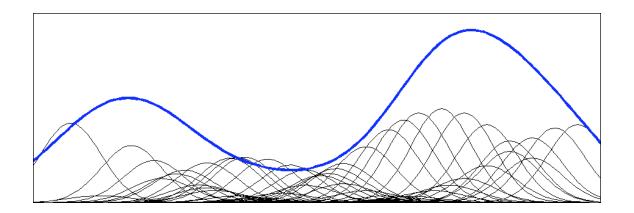
smoothed data samples

$$\widehat{p}(x) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{\sigma} K\left(\frac{x - X_i}{\sigma}\right)$$

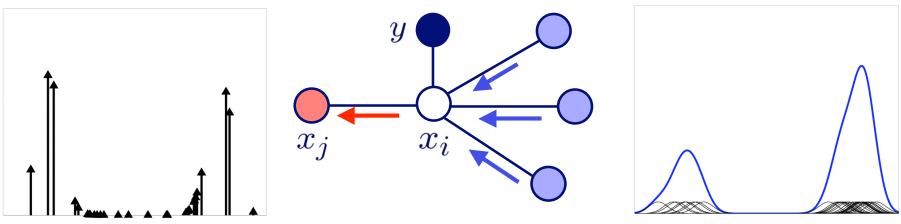
 $\{X_i\} \longrightarrow M$ independent samples from p(x)

 $K(\cdot) \rightarrow Gaussian$ kernel function (self-reproducing)

→ Bandwidth (chosen automatically) σ



Nonparametric BP



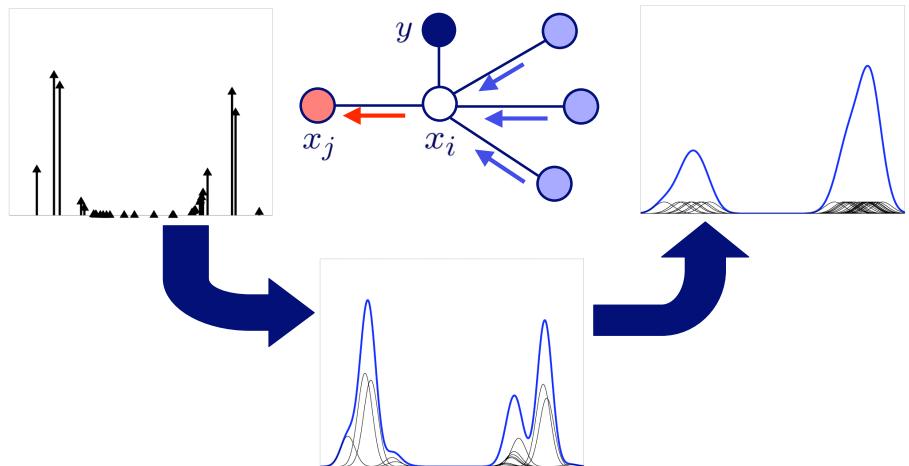
Input messages are kernel density estimates (Gaussian)

 $\blacktriangleright \text{Message product:} \qquad x_i^{(\ell)}$ Draw L samples

 $x_i^{(\ell)} \sim \psi_i(x_i, y) \prod_{k \in \Gamma(i) \setminus j} m_{ki}(x_i)$

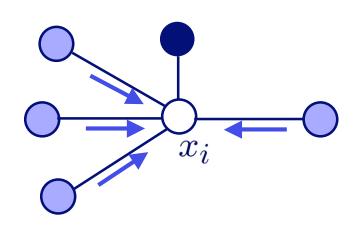
> Message propagation: $x_j^{(\ell)} \sim \psi_{ji}(x_j, x_i^{(\ell)})$ Monte Carlo integration

Nonparametric BP



Output message estimated from weighted samples via a bandwidth selection rule Extensive literature: asymptotic analysis, cross-validation, etc.

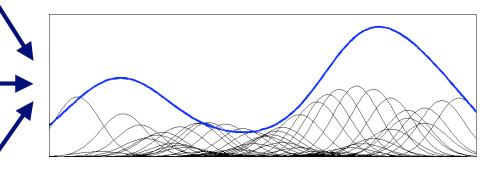
NBP Marginal Update



 $x_i^{(\ell)} \sim \psi_i(x_i, y) \prod m_{ki}(x_i)$ $k \in \Gamma(i)$

Importance Sampling:

- Sample from product of all Gaussian mixture messages
- Reweight samples by likelihoods (like particle filter)



Product contains *M^d* kernels

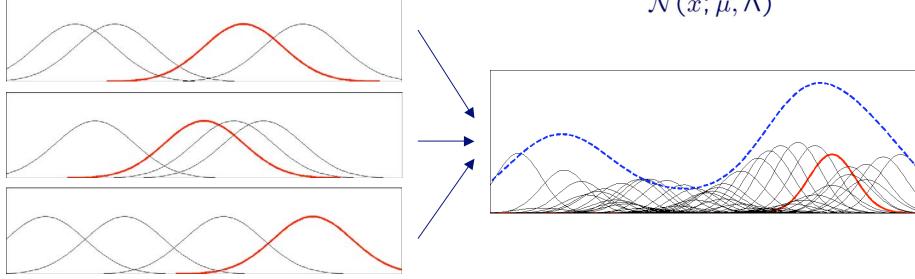
d messages, M kernels each

Sampling from Mixture Products

- Product density kernels generated by *combinations* of input density kernels
- Structure exploited by Gibbs sampling algorithms

 Products of Gaussians are also weighted Gaussians:

 $\prod_{i=1}^{d} \mathcal{N}(x; \mu_i, \Lambda_i) \propto \mathcal{N}(x; \bar{\mu}, \bar{\Lambda})$ $\bar{\Lambda}^{-1} = \sum_{i=1}^{d} \Lambda_i^{-1} \qquad \bar{\Lambda}^{-1} \bar{\mu} = \sum_{i=1}^{d} \Lambda_i^{-1} \mu_i$ $\bar{w} \propto \frac{\prod_{i=1}^{d} w_i \mathcal{N}(x; \mu_i, \Lambda_i)}{\mathcal{N}(x; \bar{\mu}, \bar{\Lambda})}$



Product Density Sampling

d mixtures of M Gaussians

mixture of M^d Gaussians

A

$$p_i(x) = \sum_{l_i} w_{l_i} \mathcal{N}(x; \mu_{l_i}, \Lambda_i) \longrightarrow p(x) \propto \prod_{i=1}^n p_i(x)$$

- Exact sampling
- Importance sampling: mixture vs. Gaussian
- Gibbs sampling: parallel vs. sequential
- > Multiscale sampling: Gibbs vs. ε -exact

Exact Sampling

 $l_i \rightarrow$ mixture component label for *ith input* density $L = [l_1, \dots, l_d] \rightarrow$ label of component in *product* density

$$w_{L} = \frac{\prod_{i=1}^{d} w_{l_{i}} \mathcal{N}(x; \mu_{L}, \Lambda_{i})}{\mathcal{N}(x; \mu_{L}, \Lambda_{L})} \qquad \Lambda_{L}^{-1} = \sum_{i=1}^{d} \Lambda_{i}^{-1} \qquad \Lambda_{L}^{-1} \mu_{L} = \sum_{i=1}^{d} \Lambda_{i}^{-1} \mu_{l_{i}}$$

- Calculate the weight partition function in $O(M^d)$ operations: $Z = \sum_L w_L$
- Draw and sort M uniform [0,1] variables
- Compute the cumulative distribution of

$$p(L) = \frac{w_L}{Z}$$

Importance Sampling

 $p(x) \longrightarrow$ true distribution (difficult to sample from) assume may be evaluated up to normalization Z

 $q(x) \longrightarrow$ proposal distribution (easy to sample from)

• Draw N >> M samples from proposal distribution:

$$x_i \sim q(x)$$
 $w_i \propto p(x_i)/q(x_i)$

• Sample M times (with replacement) from

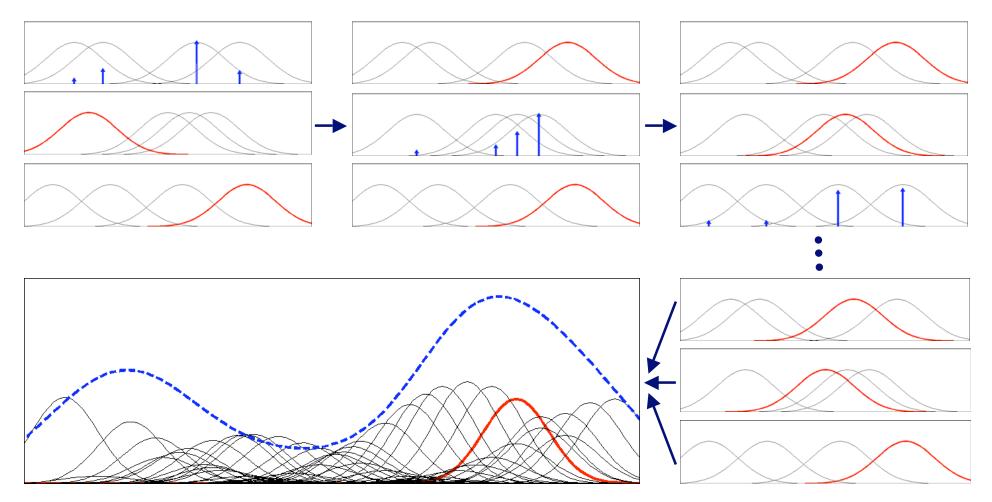
$$\bar{p}(x_i) = w_i/Z$$

Mixture IS: Randomly select a different mixture p_i(x) for each sample (other mixtures provide weight)

Gaussian IS: Approximate each mixture by single Gaussian

Sequential Gibbs Sampler

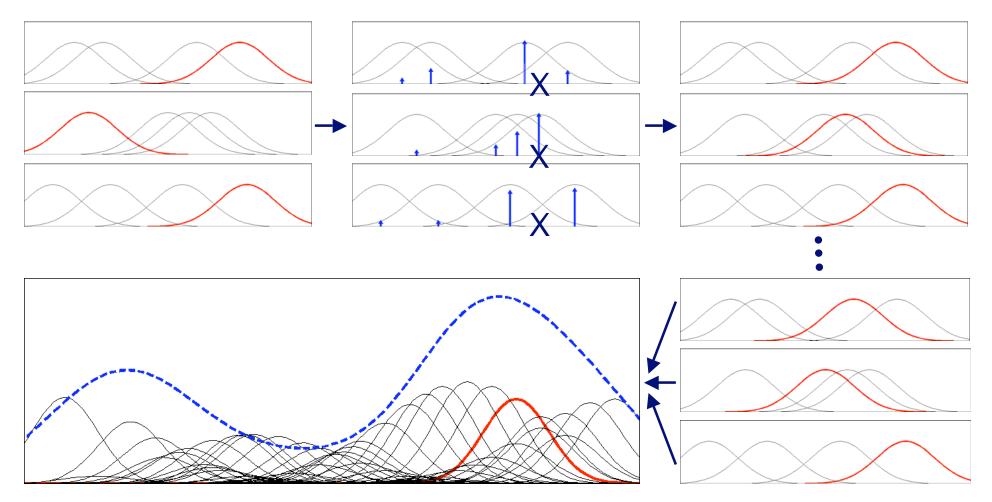
Product of 3 messages, each containing 4 Gaussian kernels



Labeled Kernels Highlighted Red Sampling Weights Blue Arrows

Parallel Gibbs Sampler

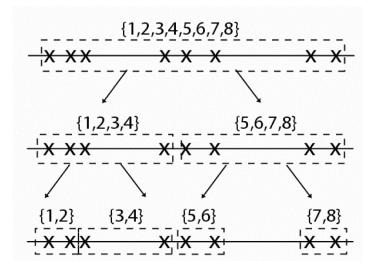
Product of 3 messages, each containing 4 Gaussian kernels

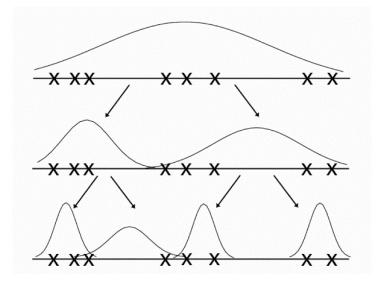


Labeled Kernels Highlighted Red Sampling Weights Blue Arrows

Multiscale: KD-Trees

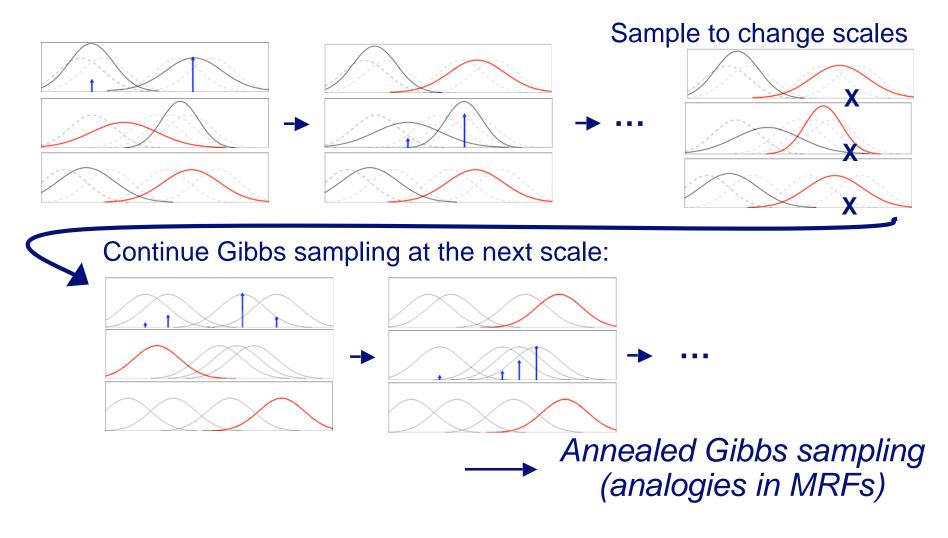
- "K-dimensional Trees"
- Multiscale representation of data set
- Cache statistics of points at each level:
 - Bounding boxes
 - Mean & covariance
- Original use: efficient search algorithms

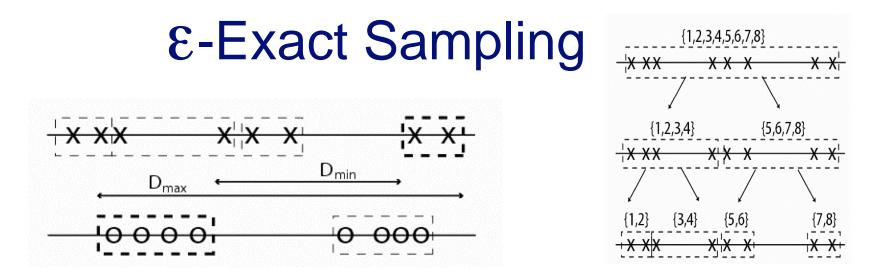




Multiscale Gibbs Sampling

- Build KD-tree for each input density
- Perform Gibbs over progressively finer scales:



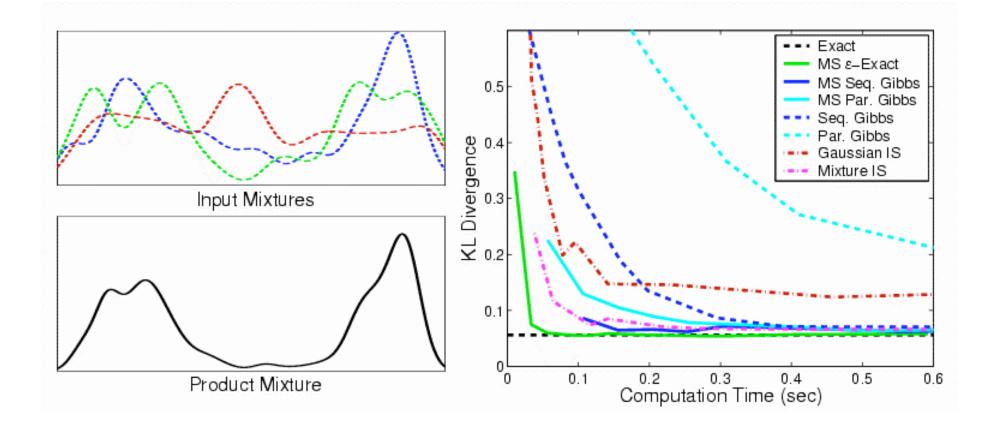


- Bounding boxes used for fast, approximate kernel density evaluation (Gray & Moore, 2003):
 - Find sets with nearly constant weight
 - \blacktriangleright Provides evaluations within fractional error ϵ
- Similar method approximates partition function:
 Express product mixture weights via density pairs
 KD-tree recursions approximate sum, and then sample
- Tunable accuracy level: $|\hat{p}_L p|$

$$|\widehat{p}_L - p_L| = \left|\frac{\widehat{w}_L}{\widehat{Z}} - \frac{w_L}{Z}\right| \le \epsilon$$

Taking Products: 3 Mixtures

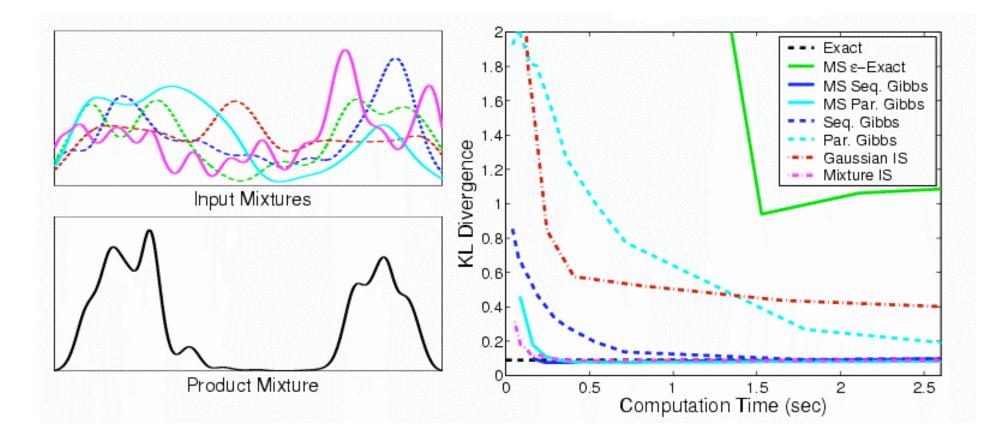
TASK: Draw 100 samples & construct density estimate
 All multiscale samplers perform well



Taking Products: 5 Mixtures

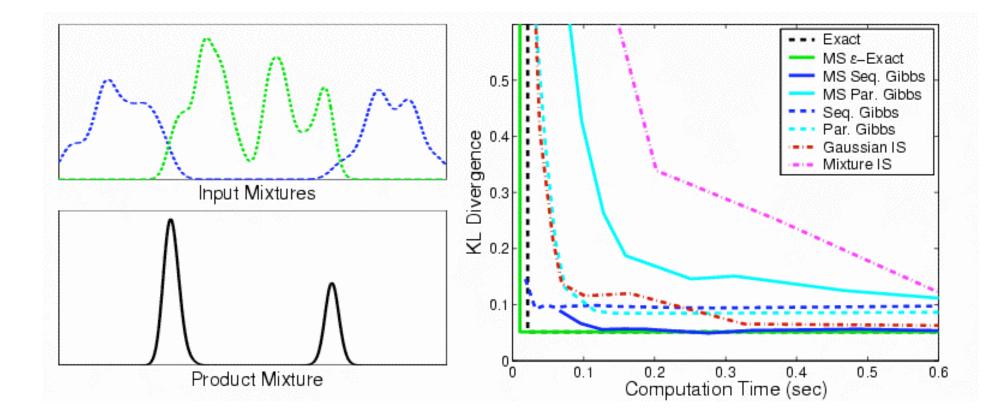
Exact sampling takes 7.6 hours

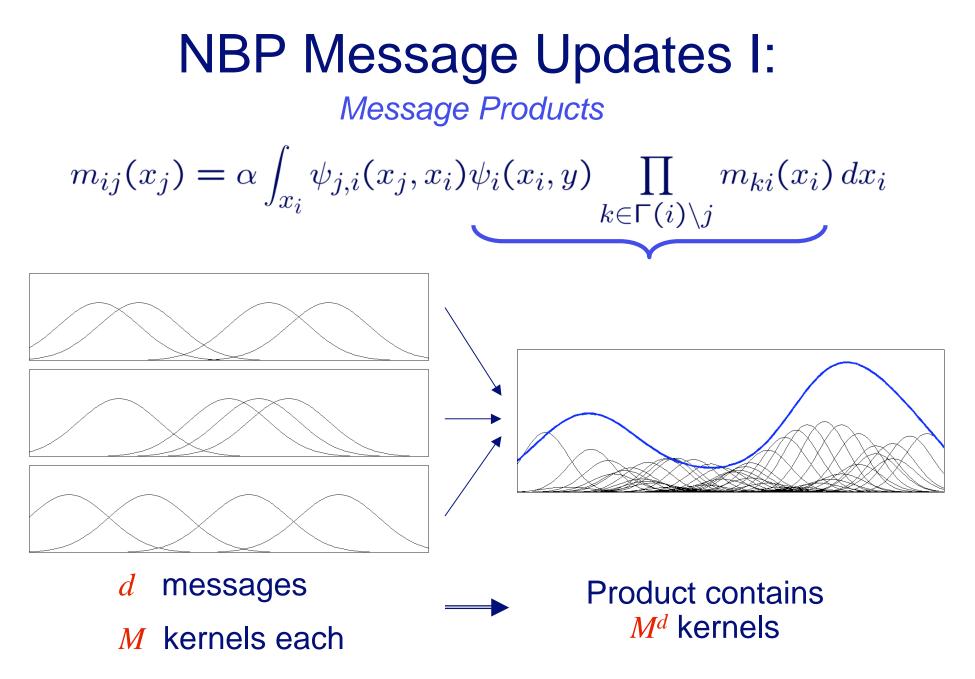
Multiscale Gibbs performs comparably in 0.2 seconds



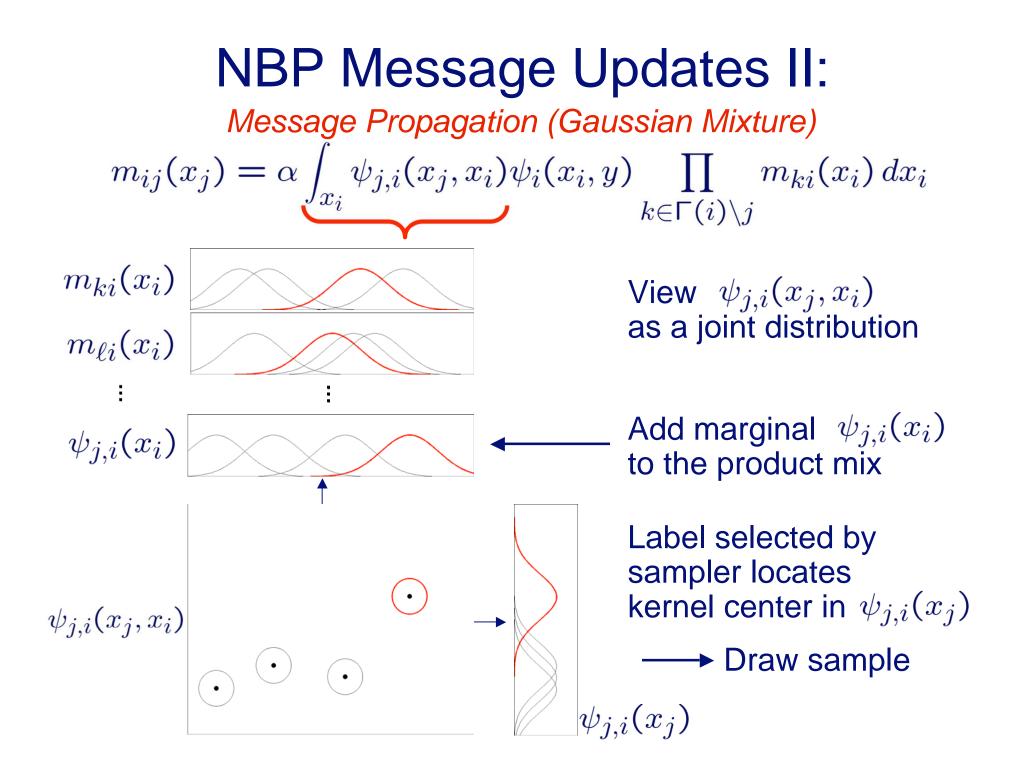
Taking Products: 2 Mixtures

- Importance sampling sensitive to message alignment
- Multiscale methods show greater robustness





We can now sample from this message product very efficiently



Outline

Nonparametric Belief Propagation

- Graphical models and belief propagation
- Nonparametric message propagation
- Efficient multiscale sampling from mixture products

Visual Hand Tracking

- Prior constraints & image likelihoods
- NBP for occlusion-compensated hand tracking
- Temporal constraints & tracking results

Motivation

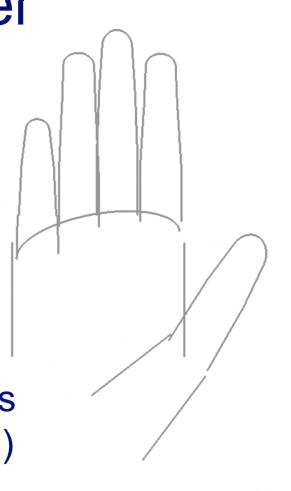
- Accurately locating a few fingers highly constrains the set of possible global poses
- **GOAL:** Robustly propagate local image evidence to track arbitrary hand motions

Structural Model

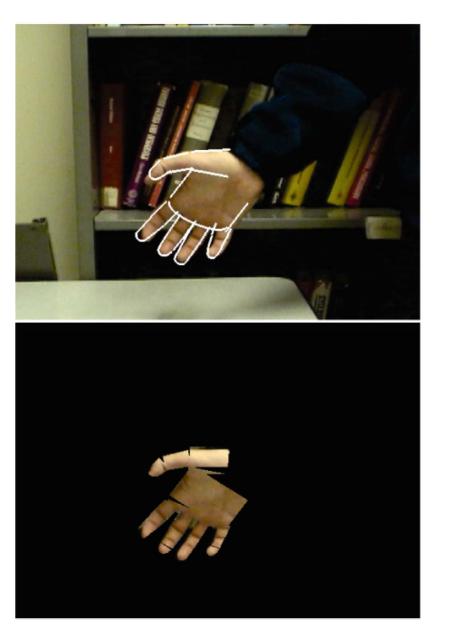
- Hand described by 16 rigid bodies
- 3D geometry of each rigid body modeled by truncated quadric surfaces (Stenger et. al., CVPR 2001)
 - Ellipsoids, cones, & cylinders
- Perspective projection maps quadrics to conics (ellipses, pairs of lines, etc.)

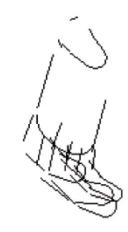
efficient edge & silhouette calculation

• Fixed geometry measured offline



Hand Model Projections





35°

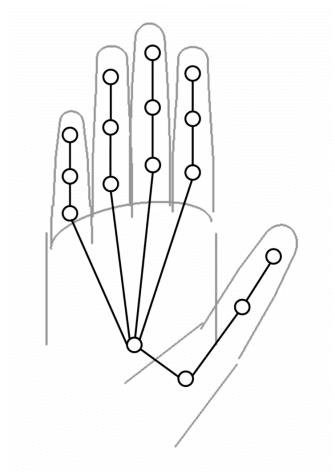
70°

Kinematic Model

- Rigid bodies kinematically related by *revolute joints*
- Model has total of 26 DOF
 >20 joint angles (4 per finger)
 >Palm's global position & orientation
- Likelihood calculation requires global coordinates of all bodies

>No *direct* evidence for joint angle

• Forward kinematics maps joint angles to 3D poses



nodes ←→ rigid bodies edges ←→ joints

Existing Hand Trackers

26-Dimensional State:

- ➤ 20 joint angles
- Global pose of palm

Unstructured Geometric Model Tracking
➢ Extended Kalman filter (Rehg 1994)
➢ Unscented Kalman filter (Stenger 2001)
➢ Particle filter (MacCormick 2000, Wu 2001)
➢ Tree-Based multiscale filter (Stenger 2003)

all require simplified models (fewer DOF); many also employ complex prior models

Local State Representation

• Describe each hand component by 3D pose:

 $q_i \longrightarrow$ position of rigid body *i*

 $r_i \rightarrow$ orientation of rigid body *i* (unit quaternion)

$$x_i = \begin{bmatrix} q_i \\ r_i \end{bmatrix} \qquad x = \{x_1, \dots, x_{16}\}$$

• Tradeoffs in this representation:

Redundant: Additional DOF (16 £ 6 = 96), *but*

Image appearance *directly* relates to local state

Related approach to 3D person tracking: Sigal, Black, Isard, et. al.

Kinematic Constraints

• Define an indicator function for each joint edge $(i, j) \in \mathcal{E}_K$

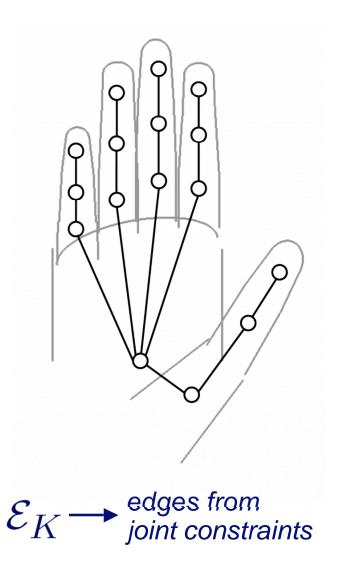
$$\psi_{i,j}^{K}\left(x_{i}, x_{j}\right) = \begin{cases} 1 \text{ if } (x_{i}, x_{j}) \text{ valid} \\ \text{for some choice of} \\ \text{joint angles, else 0} \end{cases}$$

• Kinematic prior model:

 $p_K(x) \propto \prod_{(i,j) \in \mathcal{E}_K} \psi_{i,j}^K \left(x_i, x_j \right)$

• Graphical model *exactly* enforcing original joint angle constraints:

"Conditioned on the palm, the fingers are statistically independent"



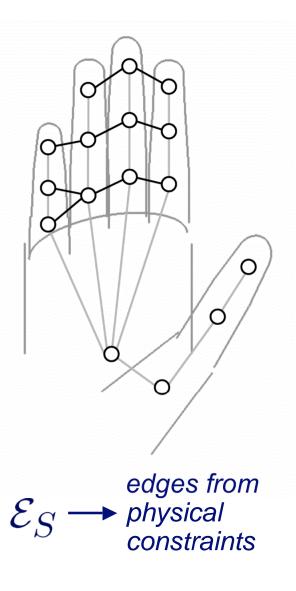
Structural Constraints

- Kinematics do not prevent finger intersection (joints *not* independent)
- "Ideal" structural constraint prevents 3D quadric surface intersection
- Approximate structural constraint:

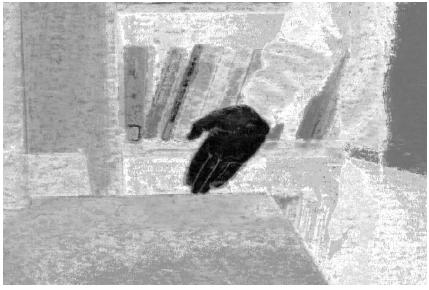
$$\psi_{i,j}^{S}\left(x_{i}, x_{j}\right) = \begin{cases} 1 & ||q_{i} - q_{j}|| > \delta_{i,j} \\ 0 & \text{otherwise} \end{cases}$$

• Structural prior model:

$$p_{S}(x) \propto \prod_{(i,j) \in \mathcal{E}_{S}} \psi_{i,j}^{S}\left(x_{i}, x_{j}
ight)$$



Observation Model



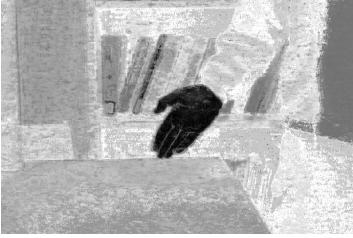
Skin Color

Edge Intensity

Silhouette Matching: Skin Color

- Assume RGB values at each pixel independent:
 - $p_{\rm Skin}$ histogram estimated from labeled skin pixels
 - $p_{\rm bkgd}$ = histogram estimated from hand-free background images
 - $\Omega(x) \rightarrow$ pixels in silhouette of projection of model x

$$p_{C}(y \mid x) = \prod_{u \in \Omega(x)} p_{\mathsf{skin}}(u) \prod_{v \in \Upsilon \setminus \Omega(x)} p_{\mathsf{bkgd}}(v)$$
$$\propto \prod_{u \in \Omega(x)} \frac{p_{\mathsf{skin}}(u)}{p_{\mathsf{bkgd}}(u)}$$

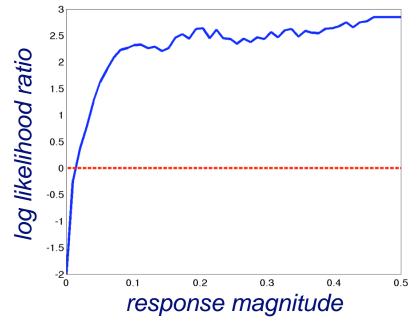


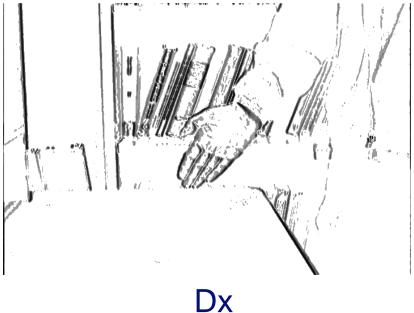
Must only evaluate likelihood ratio over projected silhouette

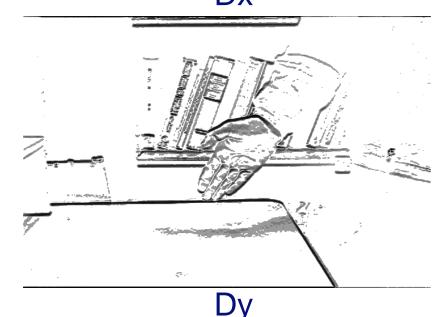
Edge Matching: Steered Gradient

 Steer derivative of Gaussian response to orientation of projected hand boundary

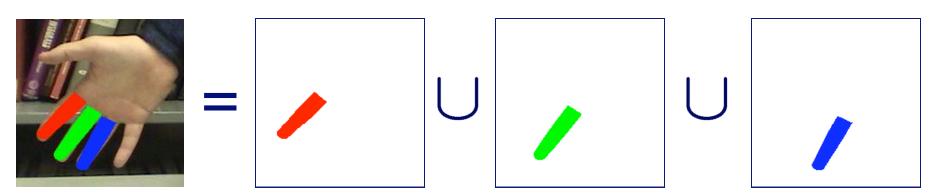
 $p_{edge} = {}^{histogram estimated}_{from labeled edge pixels}$ $p_{bkgd} = {}^{histogram estimated from}_{background images}$







Local Likelihood Decomposition



If two hand components do not occlude each other, they will project to disjoint subsets of the image.

$$p_C(y \mid x) \propto \prod_{u \in \Omega(x)} \frac{p_{\mathsf{skin}}(u)}{p_{\mathsf{bkgd}}(u)}$$
$$\propto \prod_{i=1}^{16} \prod_{u \in \Omega(x_i)} \frac{p_{\mathsf{skin}}(u)}{p_{\mathsf{bkgd}}(u)} = \prod_{i=1}^{16} p_C(y \mid x_i)$$

- Edge likelihood ratio decomposes similarly
- Reasoning about self-occlusions discussed later...

Outline

Nonparametric Belief Propagation

- Graphical models and belief propagation
- Nonparametric message propagation
- Efficient multiscale sampling from mixture products

Visual Hand Tracking

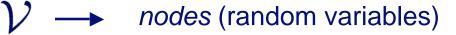
- Prior constraints & image likelihoods
- NBP for occlusion-compensated hand tracking
- Temporal constraints & tracking results

Inferring Hand Position

$$p(x \mid y) \propto p_K(x) p_S(x) \begin{bmatrix} 16 \\ \prod_{i=1}^{16} p_C(y \mid x_i) p_E(y \mid x_i) \end{bmatrix}$$

Color & Edge Likelihoods

y



$$\mathcal{E} \rightarrow edges$$
 (dependencies)

 x_i hidden variable at node *i*

observations

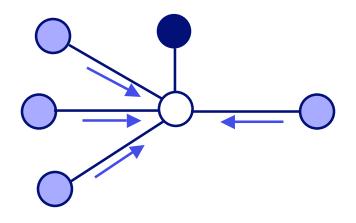
$$p(x \mid y) = \frac{1}{Z} \prod_{(i,j) \in \mathcal{E}} \psi_{i,j}(x_i, x_j) \prod_{i \in \mathcal{V}} \psi_i(x_i, y)$$

Kinematic Structural Prior

Prior

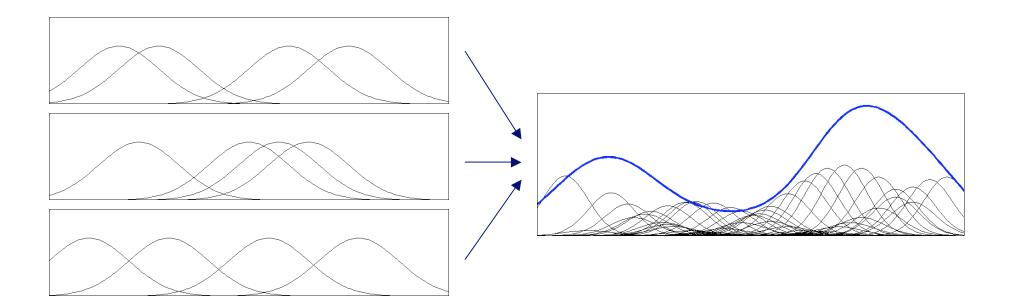
0

NBP Hand Tracker Marginal Update

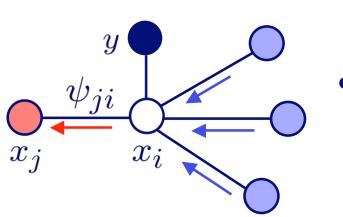


Importance Sampling:

- Sample from product of all Gaussian mixtures
- Reweight samples by analytic functions (like particle filter)



Kinematic Message Propagation

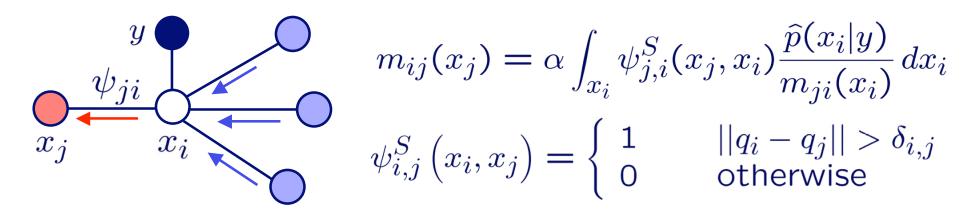


H

 x_j

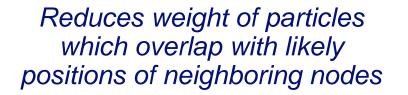
- Start with weighted samples $x_i^{(\ell)}$ from last marginal update
- Kinematic potential gives all valid poses equal weight:
 - Sample uniformly among allowable joint angles θ
 - Compute corresponding pose of x_j by forward kinematics

Structural Message Propagation

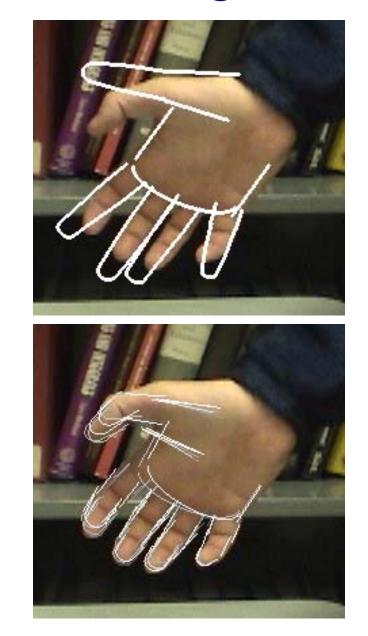


- Exact: Integrate belief over all poses outside some ball centered at the candidate pose x_i
- Approximate: Sum weights of all Gaussians with centers outside that ball

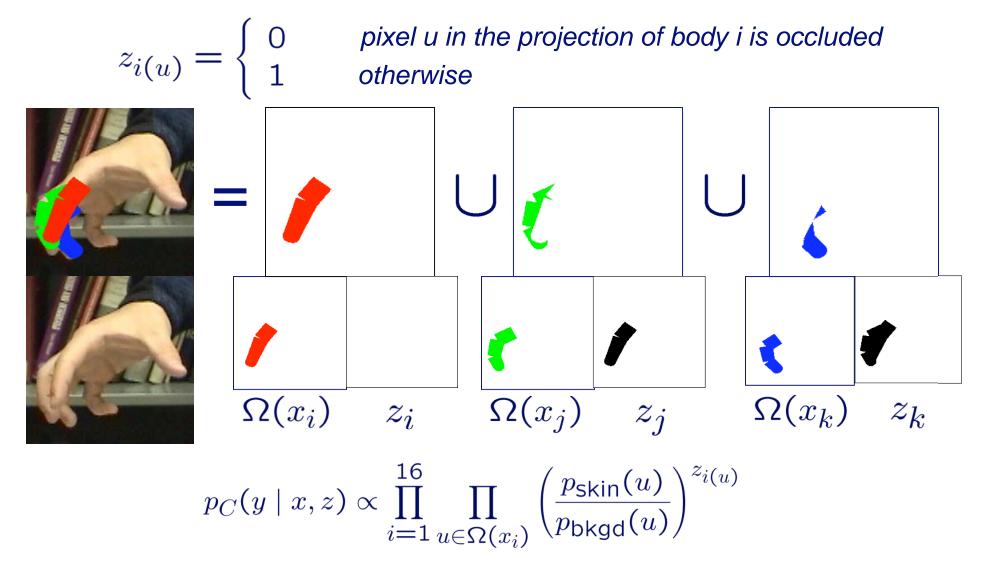
 \bigcirc



Single Frame Inference



Self-Occlusion Masks

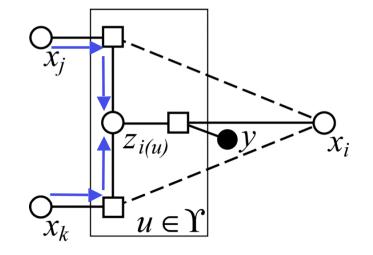


Conditioning on occlusion masks *z* allows exact likelihood decomposition.

Distributed Occlusion Reasoning

- Factor graph imposes constraints ensuring occlusion consistency
- Use BP to analytically estimate probability of pixel's occlusion:

$$\nu_{i(u)} \triangleq \Pr[z_{i(u)} = 0]$$



• Neglecting correlations among the occlusion variables, the likelihood function (integrating over occlusions) becomes

$$p_{C}(y \mid x_{i}) \propto \prod_{u \in \Omega(x_{i})} \left[\nu_{i(u)}(1) + (1 - \nu_{i(u)}) \left(\frac{p_{\mathsf{skin}}(u)}{p_{\mathsf{bkgd}}(u)} \right) \right]$$

$$Uninformative$$

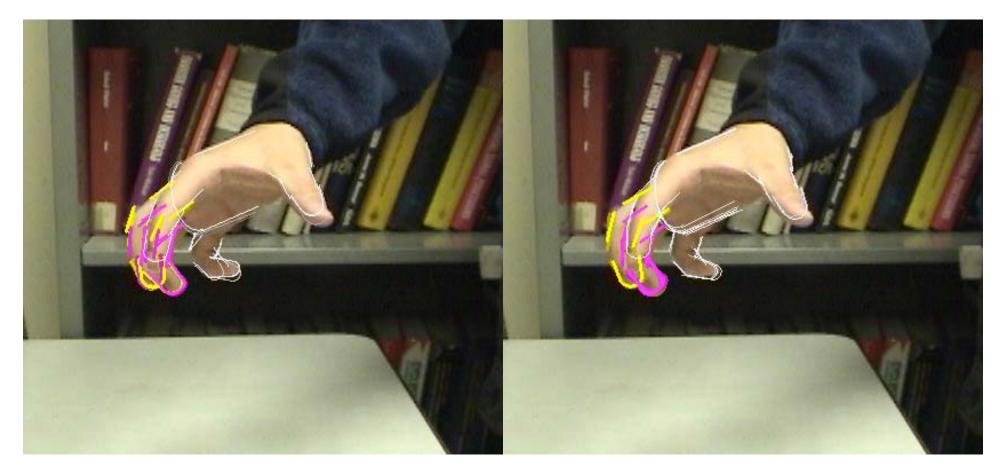
$$Likelihood Ratio$$

$$Uninformative$$

Occlusion Reasoning Example

Middle (Third) Finger

Ring (Fourth) Finger



No Occlusion Reasoning

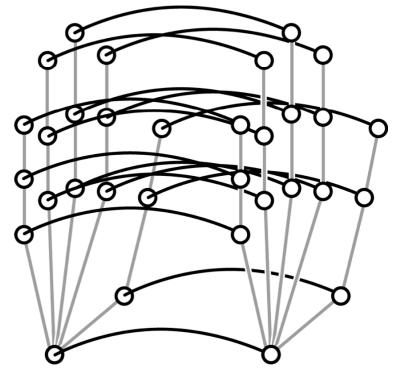
Occlusion Reasoning

Temporal Constraints & Tracking

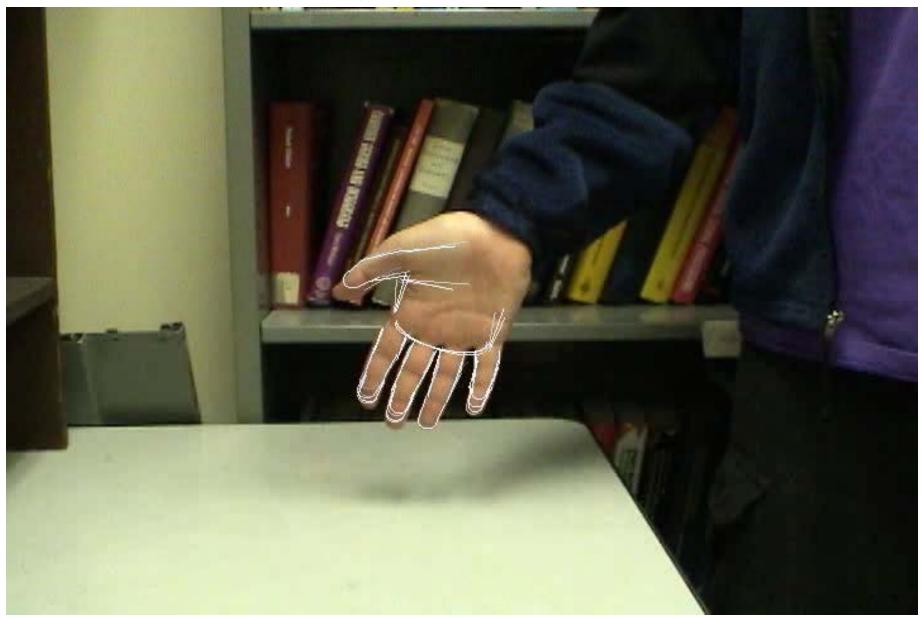
• Add Gaussian potentials between adjacent time steps:

$$\psi\left(x_{t-1,i}, x_{t,i}\right) = \mathcal{N}(x_{t-1,i} - x_{t,i}; 0, \Lambda_{t,i})$$

- Interpretations:
 - Maximum entropy model given marginal variances in 3D pose
 - Random walks implicitly coupled by kinematic & structural constraints



Tracking Hand Rotation



Tracking Finger Motion

Conclusions

Publications & Code: http://ssg.mit.edu/nbp/

Nonparametric Belief Propagation

- > Inference in continous, non-Gaussian graphical models
- Very flexible, easy to adapt to diverse applications
- Multiscale samplers lead to computational efficiency

Framework for Tracking Problems

- Modular state representation
- Graphical model of kinematics, structure, & dynamics
- > NBP may accommodate complexities such as occlusions
- Many other potential applications...