Expectation Propagation

 for Approximate Inference in Dynamic Bayesian NetworksTom Heskes and Onno Zoeter
Presented by Mark Buller

Dynamic Bayesian Networks

- Directed graphical models of stochastic processes
- Represent hidden and observed variables with different dependencies
- Generalize Hidden Markov Models (HMM)

Goal is Inference

- Fart Left coupled HMM with 5 chains
- Left DBN to monitor waste water treatment plant.
- Murphy and Weiss 2001
- Will generally like to perform inference: $P\left(\mathbf{x}_{\mathrm{t}} \mid \mathbf{y}_{\mathrm{t}: \mathrm{T}}\right)$
- Why not discretize and use the "Forward-Backward" algorithm for exact inference?
- Very quickly can become untenable.

Approximate Inference

- Sampling
- Particle Filters
- Variational
- (Ghahramani and Hinton 1998) Switching Linear Dynamical System
- (Ghahramani and Jordan 1997) Factorial Hidden Markov Models
- Variational Subset
- Greedy projection algorithms
- Where projection provides a simpler approximate belief
- Expectation Propagation

Problem Setup

- \mathbf{x}_{t} - super node that contains all latent variables at a time point.
- $y_{1: T}$ - fixed and is included in the definition of the potentials: $\psi_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}-1}, \mathrm{t}\right) \equiv \psi_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}-1}, \mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}\right)$

Goal: Infer $P\left(\mathbf{x}_{\mathrm{t}} \mid \mathbf{y}_{1: \mathrm{T}}\right)$

- Find the marginal "beliefs" or the probability distributions of the latent variables at a given time given all the evidence.
- Pearl's Belief Propagation (1988)
- Specific case of the sum-product rule in factor graphs (Kschischang et al., 2001)
- Note: In chain factor graphs variable nodes simply pass received messages on to the next function node.

Message Propagation

$$
\psi_{1}
$$

$$
\psi_{2}
$$

$$
\psi_{3}
$$

1. Compute estimate of distribution at local function node:

$$
\hat{P}\left(\mathbf{x}_{t-1, t}\right) \propto \alpha_{t-1}\left(\mathbf{x}_{t-1}\right) \psi_{t}\left(\mathbf{x}_{t-1, t}\right) \beta_{t}\left(\mathbf{x}_{t}\right)
$$

2. Integrate out all variables except $\mathbf{x}_{\mathrm{t}^{\prime}}\left(\mathbf{x}_{\mathrm{t}^{\prime}}\right.$ the node to which the message is sent) to get current estimate of the belief $\hat{P}\left(\mathbf{x}_{t^{\prime}}\right)$ and project this belief onto a distribution in the exponential family:

$$
q_{t^{\prime}}\left(\mathbf{x}_{t^{\prime}}\right)
$$

3. Conditionalize, i.e. divide by message from X_{t}, to ψ_{t}

Belief Approximation

- Project belief takes an exponential family form:

$$
q_{t}\left(\mathbf{x}_{t}\right) \propto \mathrm{e}^{\boldsymbol{\gamma}_{t}^{T} \mathbf{f}\left(\mathbf{x}_{t}\right)}
$$

- Where $\gamma_{t}=$ canonical parameters and $f\left(x_{t}\right)$ the sufficient statistics.
- If the forward and backward messages are initialized as:

$$
\alpha_{t}\left(\mathbf{x}_{t}\right) \propto \mathrm{e}^{\boldsymbol{\alpha}_{t}^{T} \mathbf{f}\left(\mathbf{x}_{t}\right)} \quad \beta_{t}\left(\mathbf{x}_{t}\right) \propto \mathrm{e}^{\boldsymbol{\beta}_{t}^{T} \mathbf{f}\left(\mathbf{x}_{t}\right)}
$$

- With $\alpha_{t}=\beta_{t}=\mathbf{0}$ then the canonical parameters α_{t} and β_{t} will fully specify the messages $\alpha_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right)$ and $\beta_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right)$.
- Thus the belief can be specified as a combination of the messages

$$
\gamma_{t}=\boldsymbol{\alpha}_{t}+\boldsymbol{\beta}_{t}
$$

Moment Matching

- To project the belief $\hat{P}\left(\mathbf{x}_{t^{\prime}}\right)$ to the best exponential family approximation is found when the Kullback-Leibler (KL) divergence is minimized:

$$
\mathrm{KL}(\hat{P} \mid q)=\int d \mathbf{x} \hat{P}(\mathbf{x}) \log \left[\frac{\hat{P}(\mathbf{x})}{q(\mathbf{x})}\right]
$$

- Minima is found when the moments of $\mathrm{P}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ are matched.

$K L(p \mid q)$

KL(q|p)

KL(q|p)

Bishop 2006

Function \mathbf{g} converts from canonical form to moments

$$
\mathbf{g}(\gamma) \equiv\langle\mathbf{f}(\mathbf{x})\rangle_{q} \equiv \int d \mathbf{x} q(\mathbf{x}) \mathbf{f}(\mathbf{x})=\int d \mathbf{x} \hat{P}(\mathbf{x}) \mathbf{f}(\mathbf{x})
$$

Computing Forward and Backward

Messages

- Compute α_{t} such that:

$$
\left\langle\mathbf{f}\left(\mathbf{x}_{t}\right)\right\rangle_{\hat{p}_{t}}=\left\langle\mathbf{f}\left(\mathbf{x}_{t}\right)\right\rangle_{q_{t}}=\mathbf{g}\left(\boldsymbol{\alpha}_{t}+\boldsymbol{\beta}_{t}\right)
$$

- With β_{t} kept fixed:

$$
\boldsymbol{\alpha}_{t}=g^{-1}\left(\left\langle\mathbf{f}\left(\mathbf{x}_{t}\right)\right\rangle_{\hat{p}_{t}}\right)-\boldsymbol{\beta}_{t}
$$

- Similarly Compute β_{t-1} such that:

$$
\left\langle\mathbf{f}\left(\mathbf{x}_{t-1}\right)\right\rangle_{\hat{p}_{t}}=\left\langle\mathbf{f}\left(\mathbf{x}_{t-1}\right)\right\rangle_{q_{t-1}}=\mathbf{g}\left(\boldsymbol{\alpha}_{t-1}+\boldsymbol{\beta}_{t-1}\right)
$$

- Note: without the projection to the exponential family this is basically the standard forward backward algorithm.
- Order of message updating is free

Example: Switching Linear

Dynamical System

- Potentials:

$$
\begin{aligned}
& \psi_{t}\left(s_{t-1, t}^{i, j}, \mathbf{z}_{t-1, t}\right)= \\
& \quad p_{\psi}\left(s_{t}^{j} \mid s_{t-1}^{i}\right) \Phi\left(\mathbf{z}_{t} ; A_{i j} \mathbf{z}_{t-1}, Q_{i j}\right) \Phi\left(\mathbf{y}_{t} ; C_{j} \mathbf{z}_{t}, R_{j}\right)
\end{aligned}
$$

- Messages are taken to be conditional Gaussian potentials:

$$
\begin{aligned}
\alpha_{t-1}\left(s_{t-1}^{i}, \mathbf{z}_{t-1}\right) & \propto p_{\alpha}\left(s_{t-1}^{i}\right) \Psi\left(\mathbf{z}_{t-1} ; \mathbf{m}_{i, t-1}^{\alpha}, V_{i, t-1}^{\alpha}\right) \\
\beta_{t}\left(s_{t}^{j}, \mathbf{z}_{t}\right) & \propto p_{\beta}\left(s_{t}^{j}\right) \Psi\left(\mathbf{z}_{t} ; \mathbf{m}_{j, t}^{\beta}, V_{j, t}^{\beta}\right)
\end{aligned}
$$

Example: Step 1

- Compute estimate of distribution at local function node :

$$
\begin{aligned}
& \hat{P}\left(s_{t-1, t}^{i, j}, \mathbf{z}_{t-1, t}\right) \propto \\
& \quad \alpha_{t-1}\left(s_{t-1}^{i}, \mathbf{z}_{t-1}\right) \psi_{t}\left(s_{t-1, t}^{i, j}, \mathbf{z}_{t-1, t}\right) \beta_{t}\left(s_{t}^{j}, \mathbf{z}_{t}\right)
\end{aligned}
$$

Messages are combinations of M Gaussian potentials one for each switch state i. Transform to a representation with moments

$$
\hat{P}\left(s_{t-1, t}^{i, j}, \mathbf{z}_{t-1, t}\right) \propto \hat{p}_{i j} \Phi\left(\mathbf{z}_{t-1, t} ; \hat{\mathbf{m}}_{i j}, \hat{V}_{i j}\right)
$$

Example: Step 2

- Integrate and sum out components $\mathbf{z}_{\mathrm{t}-1}$ and $\mathbf{s}_{\mathrm{t}-1}$:
- Integration over $\mathbf{z}_{\mathrm{t}-1}$ can be done directly:

$$
\hat{P}\left(s_{t-1, t}^{i, j}, \mathbf{z}_{t}\right) \propto \hat{p}_{i j} \Phi\left(\mathbf{z}_{t} ; \hat{\mathbf{m}}_{i j}, \hat{V}_{i j}\right)
$$

- Summation over $\mathbf{s}_{\mathrm{t}-1}$ yields a mixture of Gaussians and must be approximated using moment matching:

$$
q_{t}\left(s_{t}^{j}, \mathbf{z}_{t}\right)=\hat{p}_{j} \Phi\left(\mathbf{z}_{t} ; \hat{\mathbf{m}}_{j}, \hat{V}_{j}\right)
$$

Example: Step 3

- Forward message is found by dividing the approximate belief by the backward message :

$$
\alpha_{t}\left(s_{t}, \mathbf{z}_{t}\right)=\frac{\text { Convert to Canonical form } q_{t}\left(s_{t}, \mathbf{z}_{t}\right)}{\beta_{t}\left(s_{t}, \mathbf{z}_{t}\right)}
$$

Observations

- Backward pass is symmetric to the forward pass.
- Forward filtering pass is equivalent to a popular inference algorithm for switching linear dynamical system (GPB2 -Bar-Shalom and Li 1993)
- Backward smoothing pass improves upon current algorithms because no additional approximations were required.
- Forward and Backward passes can be iterated until convergence.
- Expectation propagation can be used to iteratively improve other methods for inference in DBNs (e.g. Murphy and Weiss 2001)
- But this algorithm does not always converge

Bethe Free Energy

- Fixed points of expectation propagation correspond to fixed points of the "Bethe free energy" (Minka, 2001)

$$
\begin{aligned}
F(\hat{p}, q) & =-\sum_{t=1}^{T-1} \int d \mathbf{x}_{t} q_{t}\left(\mathbf{x}_{t}\right) \log q_{t}\left(\mathbf{x}_{t}\right) \\
& +\sum_{t=1}^{T} \int d \mathbf{x}_{t-1, t} \hat{p}_{t}\left(\mathbf{x}_{t-1, t}\right) \log \left[\frac{\hat{p}_{t}\left(\mathbf{x}_{t-1, t}\right)}{\psi_{t}\left(\mathbf{x}_{t-1, t}\right)}\right]
\end{aligned}
$$

- Expectation constraints

$$
\left\langle\mathbf{f}\left(\mathbf{x}_{t}\right)\right\rangle_{\hat{p}_{t}}=\left\langle\mathbf{f}\left(\mathbf{x}_{t}\right)\right\rangle_{q_{t}}=\left\langle\mathbf{f}\left(\mathbf{x}_{t}\right)\right\rangle_{\hat{p}_{t+1}}
$$

Under these constraints the free energy function may not be convex. i.e. Can have local fixed points.

Double Loop Algorithm

- Linearly bound concave part:

$$
\begin{gathered}
F_{\text {bound }}\left(\hat{p}, q, q^{\mathrm{old}}\right)=-\sum_{t=1}^{T-1} \int d \mathbf{x}_{t} q_{t}\left(\mathbf{x}_{t}\right) \log q_{t}^{\mathrm{old}}\left(\mathbf{x}_{t}\right) \\
+\sum_{t=1}^{T} \int d \mathbf{x}_{t-1, t} \hat{p}_{t}\left(\mathbf{x}_{t-1, t}\right) \log \left[\frac{\hat{p}_{t}\left(\mathbf{x}_{t-1, t}\right)}{\psi_{t}\left(\mathbf{x}_{t-1, t}\right)}\right]
\end{gathered}
$$

- For each outer loop step reset the bound:

$$
F_{\text {bound }}\left(\hat{p}, q, q^{\text {old }}\right)=F(\hat{p}, q)
$$

- For inner loop solve convex constrained minimization problem, guaranteeing:
$F\left(\hat{p}^{\text {new }}, q^{\text {new }}\right) \leq F_{\text {bound }}\left(\hat{p}^{\text {new }}, q^{\text {new }}, q^{\text {old }}\right) \leq F_{\text {bound }}\left(\hat{p}, q, q^{\text {old }}\right)=F(\hat{p}, q)$

Inner Loop

- Change to a constrained maximization problem over Lagrange multipliers δ_{t} :

$$
\begin{aligned}
F_{1}(\gamma, \boldsymbol{\delta}) & =-\sum_{t=1}^{T} \log Z_{t} \text { with } \\
Z_{t} & =\int d \mathbf{x}_{t-1, t} \mathrm{e}^{\boldsymbol{\alpha}_{t-1}^{T} \mathbf{f}\left(\mathbf{x}_{t-1}\right)} \psi_{t}\left(\mathbf{x}_{t-1, t}\right) \mathrm{e}^{\boldsymbol{\beta}_{t}^{T} \mathbf{f}\left(\mathbf{x}_{t}\right)}
\end{aligned}
$$

- With: $\quad \log q^{\text {old }}\left(\mathbf{x}_{t}\right) \equiv \gamma_{t} \mathbf{f}\left(\mathbf{x}_{t}\right)$ and substituting:

$$
\boldsymbol{\alpha}_{t}=\frac{1}{2}\left(\boldsymbol{\gamma}_{t}+\boldsymbol{\delta}_{t}\right) \text { and } \boldsymbol{\beta}_{t}=\frac{1}{2}\left(\boldsymbol{\gamma}_{t}-\boldsymbol{\delta}_{t}\right)
$$

"That is, $\boldsymbol{\delta}$ can be interpreted as the difference between the forward and backward messages, γ as their sum".

Inner Loop Maximization

- In terms of: $\quad \tilde{\boldsymbol{\alpha}}_{t} \equiv \tilde{\boldsymbol{\alpha}}_{t}\left(\boldsymbol{\alpha}_{t-1}, \boldsymbol{\beta}_{t}\right)$ and $\tilde{\boldsymbol{\beta}}_{t} \equiv \tilde{\boldsymbol{\beta}}_{t}\left(\boldsymbol{\alpha}_{t}, \boldsymbol{\beta}_{t+1}\right)$ gradient with respect to δ_{t} :

$$
\frac{\partial F_{1}(\gamma, \boldsymbol{\delta})}{\partial \boldsymbol{\delta}_{t}}=\frac{1}{2}\left[\mathbf{g}\left(\tilde{\boldsymbol{\alpha}}_{t}+\boldsymbol{\beta}_{t}\right)-\mathbf{g}\left(\boldsymbol{\alpha}_{t}+\tilde{\boldsymbol{\beta}}_{t}\right)\right]
$$

Set to 0:

$$
\delta_{t}^{\mathrm{new}}=\tilde{\boldsymbol{\delta}}_{t} \equiv \tilde{\boldsymbol{\alpha}}_{t}-\tilde{\boldsymbol{\beta}}_{t}
$$

$$
\text { Damp update: } \quad \delta_{t}^{\text {new }}=\boldsymbol{\delta}_{t}+\epsilon_{\delta}\left(\tilde{\boldsymbol{\delta}}_{t}-\boldsymbol{\delta}_{t}\right)
$$

- Outer-loop can be re-written as the update:

$$
\gamma_{t}^{\mathrm{new}}=\mathbf{g}^{-1}\left(\frac{1}{2}\left[\mathbf{g}\left(\boldsymbol{\alpha}_{t}+\tilde{\boldsymbol{\beta}}_{t}\right)+\mathbf{g}\left(\tilde{\boldsymbol{\alpha}}_{t}+\boldsymbol{\beta}_{t}\right)\right]\right)
$$

Damped Expectation Propagation

- Minimization of the free energy under the expectation constraints is equivalent to "Saddle Point" problem.

$$
\min _{\boldsymbol{\gamma}} \max _{\boldsymbol{\delta}} F(\boldsymbol{\gamma}, \boldsymbol{\delta}) \text { with } F(\boldsymbol{\gamma}, \boldsymbol{\delta}) \equiv F_{0}(\boldsymbol{\gamma})+F_{1}(\boldsymbol{\gamma}, \boldsymbol{\delta})
$$

$$
\text { and } F_{0}(\gamma)=\sum_{t=1}^{T-1} \log \int d \mathbf{x}_{t} \mathrm{e}^{\boldsymbol{\gamma}_{t}^{T} \mathbf{f}\left(\mathbf{x}_{t}\right)}
$$

- Double-loop algorithm solves this problem, but "Full completion in the inner loop is required to guarantee convergence"
- Gradient descent-ascent behavior can be achieved by damping the full updates in EP:

$$
\boldsymbol{\alpha}_{t}=\tilde{\boldsymbol{\alpha}}_{t} \quad \boldsymbol{\beta}_{t}=\tilde{\boldsymbol{\beta}}_{t}
$$

- Stable fixed points of damped EP must be at least local minima of Bethe free energy

Simulations

- Randomly generated switching linear dynamical systems.
- T varied between 2 and 5, number of switches between 2 and 4
- "Exact" beliefs calculated using an algorithm by (Lauritzen, 1992) using a strong junction tree.
- Compared approximate algorithm beliefs to exact beliefs using KL divergence.

$$
\sum_{t=1}^{T} \mathrm{KL}\left(P_{t} \mid \hat{P}_{t}\right)
$$

Simulation Results

- Undamped EP
- One forward pass yields acceptable results
- KL drops after 1 to 2 more passes
- Double-loop and damped EP converge to same point

Simulation Results

- "Difficult Instance"
- Undamped stuck in a limit cycle (solid line)
- Damped EP $(\varepsilon=0.5)$, allows stable convergence
- Double-loop converges but usually takes longer

Non Convergence

- One Instance where damped EP did not converge
- Does it make sense to force convergence using double-loop?
- Compared KL divergence after a single forward pass and after convergence For "easy" (damped EP) and "difficult" (double-loop)

- Conclude:

- It makes sense to search for the minimum of the free energy using more exhaustive means.
- Convergence of undamped belief propagation is an indication of the quality of an approximation

Conclusion

- Introduced a belief propagation algorithm for DBN that is symmetric for both forwards and backward messages
- Project beliefs and derive messages from approximate beliefs rather than approximate messages
- Derived double-loop algorithm guaranteed to converge
- Derived damped EP as a single-loop version
- Property that when it converges this must be a minimum of Bethe free energy.
- Thus minimum KL divergence for approximation
- Undamped EP works well in many cases
- When it fails could be due to:
- Need for damping
- Need for "more tedious" double-loop algorithm

The Factored Frontier Algorithm for Approximate Inference in DBNs

Kevin Murphy and Yair Weiss

Presented by Mark Buller

Dynamic Bayesian Networks

- Directed graphical models of stochastic processes
- Represent hidden and observed variables with different dependencies
- Generalize Hidden Markov Models (HMM)

Goal is Inference

- Fart Left coupled HMM with 5 chains
- Left DBN to monitor waste water treatment plant.
- Murphy and Weiss 2001
- Will generally like to perform inference: $P\left(\mathbf{x}_{\mathrm{t}} \mid \mathbf{y}_{\mathrm{t}: \mathrm{T}}\right)$
- Why not discretize and use the "Forward-Backward" algorithm?
- $\mathrm{O}\left(\mathrm{TS}^{2}\right), \mathrm{S}=$ num states

Forwards Backward Algorithm

$$
\begin{aligned}
& \alpha_{t}^{i} \stackrel{\operatorname{def}}{=} P\left(X_{t}=i \mid y_{1: t}\right) \\
& \beta_{t}^{i} \stackrel{\text { def }}{=} P\left(X_{t}=i \mid y_{t+1: T}\right)
\end{aligned}
$$

$$
\gamma_{t}^{i} \stackrel{d e f}{=} P\left(X_{t}=i \mid y_{1: T}\right) \propto \alpha_{t}^{i} \beta_{t}^{i}
$$

Transition Matrix

$$
M(i, j)=P\left(X_{t+1}=j \mid X_{t}=i\right)
$$

Diagonal Evidence Matrix

$$
\begin{gathered}
W_{t}(i, i)=P\left(y_{t} \mid X_{t}=i\right) \\
\alpha_{t} \propto W_{t} M^{T} \alpha_{t-1} \\
\beta_{t} \propto W_{t+1} M \beta_{t+1}
\end{gathered}
$$

Frontier Algorithm

- Method to compute α_{t} and $\beta_{\mathrm{t}} \mathrm{s}$ without the need to form the $Q^{N} x Q^{N}$ transition matrix:
- $\mathrm{N}=$ number of hidden nodes
- $\mathrm{Q}=$ number possible states of a node
- "Sweep" a Markov Blanket forwards then backwards across the DBN.
- The set of nodes composed of a node's the parents, children, and children's other parents.
- Every other node is conditionally independent of A when conditioned on A's Markov blanket.

Frontier Algorithm

- F "Frontier Set" = Nodes in Markov Blanket, Nodes to left = L, Nodes to right $=R$.
- At every step F " d-separates" L and R.
- A joint distribution over nodes in F is maintained.

Frontier Algorithm

add X 1 (t)

add $\mathrm{X} 2(\mathrm{t})$

remove $\mathrm{X} 1(\mathrm{t}-1)$

add $\mathrm{X} 3(\mathrm{t})$

remove $\mathrm{X} 2(\mathrm{t}-1)$

x

- A node is added from R to F as soon as all parents are in F
- To add a node multiply by conditional probability table (CPT)
- A node is moved from F to L as soon as all children are in F
- To remove a marginalize by the removed node.

Frontier Algorithm

Add $\mathrm{X}(1) \mathrm{t} \quad F_{t, 0} \stackrel{\text { def }}{=} \alpha_{t-1}=P\left(X_{t-1}^{1: N} \mid y_{1: t-1}\right)$

$$
F_{t, 1}=P\left(X_{t}^{1}, X_{t-1}^{1: N} \mid y_{1: t-1}\right)=P\left(X_{t}^{1} \mid X_{t-1}^{1}, X_{t-1}^{2}\right) \times F_{t, 0}
$$

Add X(2)t $\quad F_{t, 2}=P\left(X_{t}^{1: 2}, X_{t-1}^{1: N} \mid y_{1: t-1}\right)$

$$
=P\left(X_{t}^{2} \mid X_{t-1}^{1}, X_{t-1}^{2}, X_{t-1}^{3}\right) \times F_{t, 1}
$$

$\begin{array}{ll}\operatorname{RemX}(\mathbf{1}) \mathrm{t} \mathbf{1} & F_{t, 3}=P\left(X_{t}^{1: 2}, X_{t-1}^{2: N} \mid y_{1: t-1}\right)=\sum_{X_{t-1}^{1}} F_{t, 2} \\ & F_{t, N}=P\left(X^{1: N}\right.\end{array}$
Forward
Message

$$
\alpha_{t}=P\left(X_{t}^{1: N} \mid y_{1: t}\right) \propto P\left(y_{t} \mid X_{t}^{1: N}\right) \times F_{t, N}
$$

Frontier Algorithm (Observations)

- Exact Inference takes $\mathrm{O}\left(\mathrm{TNQ}^{\mathrm{N}+2}\right)$ time and space:
- $\mathrm{N}=$ number of hidden nodes
- $\mathrm{Q}=$ number possible states of a node
- Exponential in the size of the largest frontier
- Optimal ordering of additions and removals to minimize F is NPHard.
- For regular DBNs when unrolled, the frontier algorithm is equivalent to the junction tree algorithm.
- Frontier sets correspond to: maximal cliques in the moralized triangulated graph.

Factored Frontier Algorithm

- Approximate the belief state with a product of marginals:

$$
P\left(X_{t} \mid y_{\mathrm{l}: t}\right) \approx \prod_{i=1}^{N} P\left(X_{t}^{i} \mid y_{\mathrm{lit}}\right)
$$

- When a node is added the node's CPT is multiplied by the product of factors corresponding to its parents.
- Joint distribution for the family
- Parent nodes are immediately marginalized out
- Can be done for any node in any order as long as parents are added first.
- Joint distribution over frontier nodes is maintained in factored form.
- Takes O(TNQ $\left.{ }^{\text {F+1 }}\right)$

Boyen-Koller Algorithm

- Belief state with a product of marginals over C clusters:

$$
P\left(X_{t} \mid y_{\mathrm{t}: t}\right) \approx \prod_{c=1}^{C} P\left(X_{t}^{c} \mid y_{\mathrm{tit}}\right)
$$

- Where X_{t}^{c} is a subset of the variables $\left\{X_{t}^{i}\right\}$
- Accuracy depends on size of clusters used to approximate belief state
- Exact inference corresponds to using a single cluster with all hidden variables at a time slice
- Most aggressive approximation uses N clusters one per variable
- very similar to FF

BK and FF as Special Cases of Loopy Belief Propagation

- Pearl's belief propagation algorithm computes exact marginal posterior probabilities in graphs without cycles
- Generalizes the forward-backward algorithm to trees.
- Assumes messages coming into a node are independent.
- FF makes the same assumption
- Both algorithms are equivalent if the order of messages in LBP is specified
- Normally LBP every node computes λ and π messages in parallel and then sends out to all of the neighbors
- However, messages can be computed in a forwards backward approach. First send $\pi(\alpha)$ from left to right, then send $\lambda(\beta)$ messages from right to left.
- FF and BK are equivalent to one iteration LBP, thus they can be improved by iterating more than once.

Experiments

- Used a coupled HMM (CHMM) with 10 chains trained with real highway data.
- Define L1 error as:

$$
\Delta_{t}=\sum_{i=1}^{N} \sum_{s=1}^{Q}\left|P\left(X_{i}^{t}=s \mid y_{1: T}\right)-\hat{P}\left(X_{i}^{t}=s \mid y_{1: T}\right)\right|
$$

Results

- Damping was necessary with LBP.
- Iterating with damped LBP improves just a single run of BK

Results Water Network

Results Speed

- BK and FF / LBP have a running time linear in N
- BK is slower because of repeated marginalizations
- When $\mathrm{N}<11$ BK slower than exact inference

Conclusions

- Described a simple approximate inference algorithm for DBNs and shown equivalence to LBP
- Shown a connection between BK and LBP
- Showed empirically that LBP can improve FF and BK.

Computing forward probabilities: $t=1$

Shakhnarovich 1996,CS195-5

Computing forward probabilities: $t=1$

Shakhnarovich 1996,CS195-5

Computing forward probabilities: $t=1$

Shakhnarovich 1996,CS195-5

Computing forward probabilities: $t=2$

Shakhnarovich 1996,CS195-5

Computing forward probabilities: $t=2$

Shakhnarovich 1996,CS195-5

Forward probabilities: recursion

$$
\alpha_{t}(s)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, s_{t}=s\right)
$$

$$
\begin{aligned}
\alpha_{1}(s) & =p_{0}(s) p\left(\mathrm{x}_{1} \mid s_{1}=s\right) \\
\alpha_{t}(s) & =\left[\sum_{s^{\prime}} \alpha_{t-1}\left(s^{\prime}\right) p\left(s^{\prime} \rightarrow s\right)\right] p\left(\mathrm{x}_{t} \mid s_{t}=s\right)
\end{aligned}
$$

Backward probabilities

$$
\beta_{t}(s) \triangleq p\left(\mathrm{x}_{t+1}, \ldots, \mathrm{x}_{N} \mid s_{t}=s\right)
$$

$$
\begin{aligned}
\beta_{N}(s) & =p\left(\varnothing \mid s_{N}=s\right) \triangleq 1 \\
\beta_{t}(s) & =\sum_{s^{\prime}}\left[p\left(s \rightarrow s^{\prime}\right) p\left(\mathrm{x}_{t+1} \mid s_{t+1}=s^{\prime}\right) \beta_{t+1}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Shakhnarovich 1996,CS195-5

State posterior probability

$$
\begin{aligned}
\gamma_{t}(s) & \triangleq p\left(s_{t}=s \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right) \\
& =\frac{p\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}, s_{t}=s\right)}{p\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\overbrace{p\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{t}, s_{t}=s\right)}^{\alpha_{t}(s)} \overbrace{p\left(\mathrm{x}_{t+1}, \ldots, \mathrm{x}_{N} \mid s_{t}=s\right)}^{\beta_{t}(s)}}{p\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)} \\
& =\frac{\alpha_{t}(s) \beta_{t}(s)}{\sum_{s}^{\prime} \alpha_{t}\left(s^{\prime}\right) \beta_{t}\left(s^{\prime}\right)}
\end{aligned}
$$

