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Dynamic Bayesian Networks

 Directed graphical models of stochastic processes

 Represent hidden and observed variables with different 
dependencies

 Generalize Hidden Markov Models (HMM)



Goal is Inference

 Will generally like to perform inference: P(xt | y1:T)

 Why not discretize and use the “Forward-Backward” 
algorithm for exact inference?

 Very quickly can become untenable.

 Fart Left coupled HMM with 5 
chains

 Left DBN to monitor waste water 
treatment plant.

 Murphy and Weiss 2001



Approximate Inference
 Sampling
 Particle Filters

 Variational
 (Ghahramani and Hinton 1998) Switching Linear 

Dynamical System

 (Ghahramani and Jordan 1997) Factorial Hidden Markov 
Models

 Variational Subset
 Greedy projection algorithms
 Where projection provides a simpler approximate belief

 Expectation Propagation



Problem Setup

 xt – super node that contains all latent variables at a time 
point.

 y1:T – fixed and is included in the definition of the 
potentials: ψt(xt-1,t) ≡ ψt(xt-1, xt , yt)



Goal: Infer P(xt | y1:T) 

 Find the marginal “beliefs” or the probability 
distributions of the latent variables at a given time 
given all the evidence.

 Pearl’s Belief Propagation (1988)

 Specific case of the sum-product rule in factor graphs 
(Kschischang et al., 2001)

 Note: In chain factor graphs variable nodes simply 
pass received messages on to the next function node.



Message Propagation

1. Compute estimate of distribution at local function node:

2. Integrate out all variables except xt’ (xt’ the node to which the 
message is sent) to get current estimate of the belief               
and project this belief onto a distribution in the exponential 
family: 

3. Conditionalize, i.e. divide by message from Xt’ to ψt



Belief Approximation
 Project belief takes an exponential family form:

 Where γt = canonical parameters and f(xt) the sufficient statistics.

 If the forward and backward messages are initialized as:

 With                             then the canonical parameters αt and βt will 

fully specify the messages αt(xt) and βt(xt).

 Thus the belief can be specified as a combination of the messages



Moment Matching
 To project the belief                  to the best exponential family 

approximation  is found when the Kullback-Leibler (KL) divergence 
is minimized:

 Minima is found when the moments of P(x) and q(x) are matched.

 Function g converts from canonical form to moments

KL(p|q)            KL(q|p)            KL(q|p)

Bishop 2006



Computing Forward and Backward 
Messages
 Compute αt such that:

 With βt kept fixed:

 Similarly Compute βt-1 such that:

 Note: without the projection to the exponential family this is basically 

the standard forward backward algorithm. 

 Order of message updating is free



Example: Switching Linear 
Dynamical System

 Potentials:

 Messages are taken to be conditional Gaussian potentials:



Example: Step 1
 Compute estimate of distribution at local function node :

 Messages are combinations of M Gaussian potentials one for each switch 

state i. Transform to a representation with moments



Example: Step 2
 Integrate and sum out components zt-1 and st-1:

 Integration over zt-1 can be done directly:

 Summation over st-1 yields a mixture of Gaussians and must be 
approximated using moment matching:



Example: Step 3
 Forward message is found by dividing the approximate belief by the 

backward message :

= Convert to Canonical form



Observations
 Backward pass is symmetric to the forward pass.

 Forward filtering pass is equivalent to a popular inference 

algorithm for switching linear dynamical system (GPB2 –

Bar-Shalom and Li 1993)

 Backward smoothing pass improves upon current algorithms 

because no additional approximations were required.

 Forward and Backward passes can be iterated until 

convergence.

 Expectation propagation can be used to iteratively improve 

other methods for inference in DBNs (e.g. Murphy and 

Weiss 2001)

 But this algorithm does not always converge



Bethe Free Energy
 Fixed points of expectation propagation correspond to fixed 

points of the “Bethe free energy” (Minka, 2001)

 Expectation constraints

 Under these constraints the free energy function may not be 

convex. i.e. Can have local fixed points.



Double Loop Algorithm
 Linearly bound concave part:

 For each outer loop step reset the bound:

 For inner loop solve convex constrained minimization 

problem, guaranteeing:



Inner Loop
 Change to a constrained maximization problem over 

Lagrange multipliers δt:

 With:                                        and substituting:

 “That is, δ can be interpreted as the difference between the 

forward and backward messages, γ as their sum”.

)()(log ttt
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Inner Loop Maximization
 In terms of:                                                                  gradient 

with respect to δt:

 Set to 0:

 Damp update:

 Outer-loop can be re-written as the update:



Damped Expectation Propagation
 Minimization of the free energy under the expectation 

constraints is equivalent to “Saddle Point” problem.

 Double-loop algorithm solves this problem, but “Full 
completion in the inner loop is required  to guarantee 
convergence”

 Gradient descent-ascent behavior can be achieved by 
damping the full updates in EP:

 Stable fixed points of damped EP must be at least local minima of 
Bethe free energy



Simulations
 Randomly generated switching linear dynamical systems.

 T varied between 2 and 5, number of switches between 2 and 4

 “Exact” beliefs calculated using an algorithm by (Lauritzen, 

1992) using a strong junction tree.

 Compared approximate algorithm beliefs to exact beliefs using 

KL divergence.



Simulation Results

 Undamped EP

 One forward pass yields acceptable results

 KL drops after 1 to 2 more passes

 Double-loop and damped EP converge to same point



Simulation Results

 “Difficult Instance” 

 Undamped stuck in a limit cycle (solid line)

 Damped EP (ε = 0.5), allows stable convergence 

 Double-loop converges but usually takes longer



Non Convergence
 One Instance where damped EP did not converge 

 Does it make sense to force convergence using double-loop?

 Compared KL divergence after a single forward pass and after convergence

For “easy” (damped EP) and “difficult” (double-loop)

 Conclude:

 It makes sense to search for the 

minimum of the free energy using 

more exhaustive means.

 Convergence of undamped belief 

propagation is an indication of the 

quality of an approximation



Conclusion
 Introduced a belief propagation algorithm for DBN that is 

symmetric for both forwards and backward messages

 Project beliefs and derive messages from approximate 
beliefs rather than approximate messages

 Derived double-loop algorithm guaranteed to converge

 Derived damped EP as a single-loop version

 Property that when it converges this must be a minimum of 
Bethe free energy.

 Thus minimum KL divergence for approximation

 Undamped EP works well in many cases

 When it fails could be due to:

 Need for damping

 Need for “more tedious” double-loop algorithm
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Dynamic Bayesian Networks

 Directed graphical models of stochastic processes

 Represent hidden and observed variables with different 
dependencies

 Generalize Hidden Markov Models (HMM)



Goal is Inference

 Will generally like to perform inference: P(xt | y1:T)

 Why not discretize and use the “Forward-Backward” 
algorithm?

 O(TS2), S=num states

 Fart Left coupled HMM with 5 
chains

 Left DBN to monitor waste water 
treatment plant.

 Murphy and Weiss 2001



Forwards Backward Algorithm
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Frontier Algorithm

 Method to compute αt and βts without the need to form the 

QN x QN transition matrix:

 N = number of hidden nodes

 Q = number possible states of a node

 “Sweep” a Markov Blanket forwards then backwards across 

the DBN.

 The set of nodes composed of a node’s

the parents, children, and children’s other 

parents.

 Every other node is conditionally

independent of A when conditioned on A’s

Markov blanket.
Wikipedia



Frontier Algorithm

 F “Frontier Set” = Nodes in Markov Blanket, Nodes to left = 

L, Nodes to right = R.

 At every step F “d-separates” L and R.

 A joint distribution over nodes in F is maintained.



Frontier Algorithm

 A node is added from R to F as soon as all parents are in F

 To add a node multiply by conditional probability table (CPT) 

 A node is moved from F to L as soon as all children are in F

 To remove a marginalize by the removed node.



Frontier Algorithm

Add X(1)t

Add X(2)t

Rem X(1)t-1

Forward 
Message



Frontier Algorithm (Observations)

 Exact Inference takes O(TNQN+2) time and space:

 N = number of hidden nodes

 Q = number possible states of a node

 Exponential in the size of the largest frontier

 Optimal ordering of additions and removals to minimize F is NP-

Hard.

 For regular DBNs when unrolled, the frontier algorithm is 

equivalent to the junction tree algorithm.

 Frontier sets correspond to: maximal cliques in the moralized 

triangulated graph.



Factored Frontier Algorithm
 Approximate the belief state with a product of marginals:

 When a node is added the node’s CPT is multiplied by the 
product of factors corresponding to its parents. 

 Joint distribution for the family

 Parent nodes are immediately marginalized out

 Can be done for any node in any order as long as parents are 
added first.

 Joint distribution over frontier nodes is maintained in 
factored form.

 Takes O(TNQF+1)
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Boyen-Koller Algorithm

 Belief state with a product of marginals over C clusters:

 Where            is a subset of the variables 

 Accuracy depends on size of clusters used to approximate belief 

state

 Exact inference corresponds to using a single cluster with all 

hidden variables at a time slice

 Most aggressive approximation uses N clusters one per variable  

 very similar to FF
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BK and FF as Special Cases of Loopy 
Belief Propagation

 Pearl’s belief propagation algorithm computes exact marginal 
posterior probabilities in graphs without cycles

 Generalizes the forward-backward algorithm to trees.

 Assumes messages coming into a node are independent.

 FF makes the same assumption

 Both algorithms are equivalent if the order of messages in LBP is 
specified

 Normally LBP every node computes λ and π messages in parallel and 
then sends out to all of the neighbors

 However, messages can be computed in a forwards backward approach. 
First send π (α) from left to right, then send  λ (β) messages from right to 
left.

 FF and BK are equivalent to one iteration LBP, thus they can be 
improved by iterating more than once.



Experiments

 Used a coupled HMM (CHMM) with 10 
chains trained with real highway data.

 Define L1 error as:
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Results

 Damping was necessary 
with LBP.

 Iterating with damped 

LBP improves just a 

single run of BK



Results Water Network



Results Speed
 BK and FF / LBP have a 

running time linear in N

 BK is slower because of 

repeated 

marginalizations

 When N<11 BK slower 

than exact inference



Conclusions
 Described a simple approximate inference algorithm for 

DBNs and shown equivalence to LBP

 Shown a connection between BK and LBP

 Showed empirically that LBP can improve FF and BK.
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