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Expectation Propagation
for Approximate Inference

iIn Dynamic Bayesian




Dynamic Bayesian Networks

P(xs|x7) P(x3|x23) P(x4]x3)
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P(y1]x1) P(yalxa)

* Directed graphical models of stochastic processes

* Represent hidden and observed variables with different
dependencies

* Generalize Hidden Markov Models (HMM)
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oal is Inference

/

Fart Left coupled HMM with 5
chains

Left DBN to monitor waste water
treatment plant.

Murphy and Weiss 2001

Will generally like to perform inference: P(x, | y,.1)

Why not discretize and use the “Forward-Backward”
algorithm for exact inference?

Very quickly can become untenable.



Approximate Inference

Sampling
e Particle Filters
Variational

e (Ghahramani and Hinton 1998) Switching Linear
Dynamical System

e (Ghahramani and Jordan 1997) Factorial Hidden Markov
Models

Variational Subset

e Greedy projection algorithms
« Where projection provides a simpler approximate belief
« Expectation Propagation



Problem Setup

P(x2[x1) P(x3|x2) P(x4|x3)
P(x1) X (\_,@(\_,@(\_

> X4

P(y1]x1) P(yalxa)

T
P(xyr1,y1:1) = H Dt (Xe—1, X, Yt)
t=1

De(Xe—1, X, ¥e) = P(Xe[x0-1) Py |xe)
* x, — super node that contains all latent variables at a time
point.
* y,.r - fixed and is included in the definition of the
potentials: y(X.q,0) = (X1, X;, Vi)
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‘Goal: Infer P(x, | y,.1)

Find the marginal “beliefs” or the probability
distributions of the latent variables at a given time
given all the evidence.

Pearl’s Belief Propagation (1988)

Specific case of the sum-product rule in factor graphs
(Kschischang et al., 2001)

Note: In chain factor graphs variable nodes simply
pass received messages on to the next function node.
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lessage Propagation
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Compute estimate of distribution at local function node:

P(Xt—l,t) X Oét—l(Xt—l)wt(xt—l,t)ﬁt(xt)

Integrate out all variables except x, (x, the node to which the
message is sent) to get current estimate of the belief p(x; )
and project this belief onto a distribution in the exponential

family: qp (th )

Conditionalize, i.e. divide by message from X, to v,



Belief Approximation

Project belief takes an exponential family form:

g (x;) o oYi f(xt)

e  Where vy, = canonical parameters and f(x,) the sufficient statistics.
e If the forward and backward messages are initialized as:

Oét(xt) x eaff(xt) Bt(Xt) X eﬁff(xt)

e With a: =, =0 thenthecanonical parameters o, and 3, will
fully specify the messages o,(x;) and g,(x,).

e  Thus the belief can be specified as a combination of the messages

v, = oy + 3,
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Moment Matching

To project the belief P(xv) to the best exponential family

approximation is found when the Kullback-Leibler (KL) divergence

is minimized: Px)
X

q(x)

KL(P|q) = f dx P(x)log

Minima is found when the moments of P(x) and q(x) are matched.

Bishop 2006

7 |
KL(p|q) KL(q|p)
Function g converts from canonical form to moments

5(7) = (£00), = [ dxqgfx) = [ dx Poof(x)




}nputing Forward'and Backward™

Messages

Compute o, such that:

(F(xt)),, = (E(x1)),, = glou + B))

With B, kept fixed:

ar = g~ ((F(xt));,) — By
Similarly Compute B, , such that:

E(xt-1))p, =(E(xi-1)),, | = g8lar1+8,4)

Note: without the projection to the exponential family this is basically
the standard forward backward algorithm.

Order of message updating is free
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Dynamical System 3
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e Potentials:
AT -
H’L(SJ_LL: Zi_1,t) =

po(silsi_1)®(ze; Aijzi—1,Qij)®(yi; Cimr, Ry)

*  Messages are taken to be conditional Gaussian potentials:
2 2 . o e’
ap_1(8;_1,24-1) Pa(sa—l)‘l’(zt—lami,n—ls1”?:,5—1)

155’1&(3’{:2&) X P,S(e‘?f')‘l’(ztamfiuIffg)a
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Example: Step 1

Compute estimate of distribution at local function node :

J

@L—l(«‘?i_lszz—l)@,(«‘?; 1,0 4t—1 z) 7)!( Zz)

Messages are combinations of M Gaussian potentials one for each switch
state i. Transform to a representation with moments

Fa

P(sy? ) 4 Zi—1,0) o Piy®(ze—1,05 g, Vig)
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Example: Step 2

Integrate and sum out components z,_ and s, :
Integration over z,_, can be done directly:

Fa

f)(sifl,u Z;) X ﬁijq)(zﬁ Ihi-javij)

Summation over s, yields a mixture of Gaussians and must be
approximated using moment matching:

qt (‘v‘f ZL) — ﬁjq’(zﬁ ﬁlj: V}')
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- Example: Step 3

Forward message is found by dividing the approximate belief by the
backward message :

vt (St, Zt) = Convert to Canonical form ¢ (St : Zt)

5?&(3?5: Zt)
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‘Observations

Backward pass is symmetric to the forward pass.

Forward filtering pass is equivalent to a popular inference
algorithm for switching linear dynamical system (GPB2 —
Bar-Shalom and Li 1993)

Backward smoothing pass improves upon current algorithms
because no additional approximations were required.

Forward and Backward passes can be iterated until
convergence.

Expectation propagation can be used to iteratively improve
other methods for inference in DBNs (e.g. Murphy and
Weiss 2001)

But this algorithm does not always converge
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ethe Free Energy

Fixed points of expectation propagation correspond to fixed
points of the “Bethe free energy” (Minka, 2001)

/

T—1
F(p,q) = — Z /dXt qi(x¢) log qi (x:)
t=1

T ~
. Pr(xp—1,
+ E dx; 1,1 Pe(x¢—1,4)log xio1,0)
r—1 (UF

(Xt—l,t)

Expectation constraints
(E(xe))p, = (£(x0))g, = E(x2))p,

Under these constraints the free energy function may not be
convexX. I.e. Can have local fixed points.
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Double Loop Algorithm

Linearly bound concave part:

T—1
Fbound (f): q, qud) - Z /dxt dt (Xt) lOg qgld(xt)
t=1

T o~
+E dxi—1 ¢ Pe(x¢—1,¢)log d) :
— (i

(Xt—l,t)

For each outer loop step reset the bound:

Fbound (ﬁ; q, qold) — F(ﬁa Q)
For inner loop solve convex constrained minimization
problem, guaranteeing:

F(ﬁnewj quew) S FbOUIld (ﬁnewi qnewJ qud) S FbOU.Ild (137 q) qud) — F(ﬁ) Q)
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Inner Loop

Change to a constrained maximization problem over
Lagrange multipliers o;:

T
Fi(v,0) = — Zlog Zy with
t=1

T T
4= /dxt_l,t -1 10—y (xy_y 4)ePe T0)

With:  logg°“(x,) = »,f(x,) and substituting:

1 1

Q= 5(% +0;) and B, = 5(% — 0¢)

“That is, o can be interpreted as the difference between the
forward and backward messages, y as their sum”.



Inner Loop Maximization
Interms of: &, = & (a;_1,8,) and B, = B,(ay, B,,,) gradient
with respect to o;:

OF (v,0 1 3 -
19(;; ) =3 [g(at + B:) — glay ‘|‘16t)]

Set to 0: 5" =6 = 6y — B,
Damp update: 87" =8, +€5(6, — )
Outer-loop can be re-written as the update:

1 -
,Tilew _ g—1 (5 |:g(0£,5 + Bt) + g(&t + /Bt)])



Damped Expectation Propagation

Minimization of the free energy under the expectation
constraints 1s equivalent to “Saddle Point” problem.

min max F'(vy,d) with F(v,8) = Fo(v) + Fi (7, d)

Y ]
T-1 _
and Fy(vy) = Z log/dxt eYe Fxt)
t=1

Double-loop algorithm solves this problem, but “Full
completion in the inner loop Is required to guarantee

convergence”
Gradient descent-ascent behavior can be achieved by
damping the full updates in EP: o = &y B, = B,

Stable fixed points of damped EP must be at least local minima of
Bethe free energy
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‘Simulations

Randomly generated switching linear dynamical systems.
e T varied between 2 and 5, number of switches between 2 and 4

“Exact” beliefs calculated using an algorithm by (Lauritzen,
1992) using a strong junction tree.

e Compared approximate algorithm beliefs to exact beliefs using
KL divergence.

)23;1 KL(P,|P,)



Simulation Results

typical "easy" instance
10" .

KL-divergence
o

0.5 1 1.5 2
number of iterations

Undamped EP

e  One forward pass yields acceptable results
. KL drops after 1 to 2 more passes
° Double-loop and damped EP converge to same point



Simulation Results

typical "difficult" instance
10> . . .

-
o
—
g

KL-divergence

—
o
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I

I

I
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10 : : : :
0 5 10 15 20 25
number of iterations

“Difficult Instance”
° Undamped stuck in a limit cycle (solid line)
. Damped EP (¢ = 0.5), allows stable convergence
. Double-loop converges but usually takes longer
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‘Non Convergence

One Instance where damped EP did not converge
o Does it make sense to force convergence using double-loop?
o Compared KL divergence after a single forward pass and after convergence
For “easy” (damped EP) and “difficult” (double-loop) .

+  "difficult" ins1alnces 7
10" b O ‘easy" instancles ) / +
. +// +
. e
Conclude: : e
o A2 [b=cszcoocamscoooasse ﬁt_):, __________ +o e ]
e It makes sense to search for the > Ty gﬁ ity ’
E . + +
minimum of the free energy using = o i}ﬁﬁ A
. o 4 +
more exhaustive means. 5 S iiﬁo #
- 2 // 4—' 9_"': +
e  Convergence of undamped belief ; N 5‘1%8 = B;%ﬂ o
. . - & o : +
propagation is an indication of the o %’@%%é%%o *O *
I i i & & o + +
quality of an approximation ’ " 0.0 .
e T %C§+@é%§%€8000 A
oQ Ogj%%)&a €80 5°° o §
1072 107" 10° 10 10%

KL after forward pass
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‘Conclusion

Introduced a belief propagation algorithm for DBN that Is
symmetric for both forwards and backward messages

Project beliefs and derive messages from approximate
beliefs rather than approximate messages

Derived double-loop algorithm guaranteed to converge

Derived damped EP as a single-loop version

e  Property that when it converges this must be a minimum of
Bethe free energy.

e  Thus minimum KL divergence for approximation
Undamped EP works well in many cases

e  When it fails could be due to:

e Need for damping

e Need for “more tedious” double-loop algorithm
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The Factored Frontier
Algorithm for
Approximate Inference in
- DBNs




Dynamic Bayesian Networks

P(xs|x7) P(x3|x23) P(x4]x3)
Pxy) X (x2[x1. ,@ (x3]x2. ,@ (xa|x3

> X4

P(y1]x1) P(yalxa)

* Directed graphical models of stochastic processes

* Represent hidden and observed variables with different
dependencies

* Generalize Hidden Markov Models (HMM)



Fart Left coupled HMM with 5

chains

Left DBN to monitor waste water

treatment plant.

Murphy and Weiss 2001

Will generally like to perform inference: P(x, | y,.1)

Why not discretize and use the “Forward-Backward”
algorithm?

O(TS?), S=num states



Forwards Backward Algorithm

 def

atl Foe P(Xt =1 | yl:t)

 def

IBtI = P(X, =1 Y1)
i - - I i
7 = P(X; =1] Y1) x5
def
Transition Matrix M (l, j) = P(Xt+1 — j | Xt = I)
def
Diagonal Evidence Wt (i, I) o P(yt | Xt ) I)

Matrix

-
a, < WM« ,

ﬁt 5 Wt+1 Mﬂtﬂ
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“Frontier Algorithm

Method to compute o, and s without the need to form the
QN x QN transition matrix:

e N = number of hidden nodes
e Q = number possible states of a node

“Sweep” a Markov Blanket forwards then backwards across
the DBN.

e The set of nodes composed of a node’s

the parents, children, and children’s other '_'_'j-f/’ Q | \‘
parents. ,: q §E{> p :.

e Every other node is conditionally ‘- S A
independent of A when conditioned on A’s \__/ -

_Fr €1
Markov blanket. |
Wikipedia
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Frontier Algorithm

Y Ny WA e L N Y N Y — | -
AR '\_/' ' X_[ZJ} \ /"ﬁ\ J '\}:1_[”\' N/ '\__/' N/ VA RN _/' (j‘ )‘
\ /‘ — N
Y ,/'< Y ) }’“\ Y '}ﬁ\l N YN . -~ ~
|\ |\ NI /&2 J /U AN &AL 10
\ \ S R
e e I/‘< Y ialea N Y |~
N N A N A NN N s N RN . ji' L |
_ A

CONIOY (N Y T NI X N Y —~ |
N RN N N N N N A N NSNS L)
A A
N (Y (N Y CONEY CNCY Y0 N[
|\ |\ )\ |\ |\ [\ W, f\_ )

add X1(1) add X2(t) remove X1(t-1)  add X3(t) remove X2(t-1)

F “Frontier Set” = Nodes in Markov Blanket, Nodes to left =
L, Nodes to right =R

At every step F “d-separates” L and R.
A joint distribution over nodes in F Is maintained.
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Frontier Algorithm

N Y ff_\‘ ’?[;}
N RN _/ '/k._/
o |do
AN AN A NS
N T N I/’"\I N
A LA N
ale e
N AN N N
N TN / N7y
NN N \__ VARG J
add X1(t)

4o

/‘\/\
\/"ﬁ.\/
\
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\/

/\
\_/

/\
\/

N
R

add X2(1)

N
N

Y
A\

|/—\ -/_\]
NV AN

N TN
) ] .I
A BN

N e Ty
S

remove X1(t-1)

N Y
)

'\/

S
|\

add X3(t)

remove X2(t-1)

A node is added from R to F as soon as all parents are in F
e To add a node multiply by conditional probability table (CPT)

A node i1s moved from F to L as soon as all children are in F
e To remove a marginalize by the removed node.



Frontier Algorithm

O O O

-
NIV

-
O

Rem X(1)t-1

Forward
Message

O
O

N
/

O O

N

/\IO

16
o

)
N

()
\_/

O [ow| 00| @0 oo oo

o |do [oP| ob Q\ﬂ &40

o oo |do oo |owl Bo

O oo 0o oo |do oo

O oo 0o oo oo oo
add X1(1) add X2(1) remove X1(t-1)  add X3(0) remove X2(t-1)
clﬁf'

Fio = P(XQ:E,XQ:_’? Z )
= P(X7IX{ 1. XP 0, X)) x Fy
Fiz = P(X;?, X7 [y1:0-1) = Z Fi o
Fyn = P(X[ N y1a1) =
ap = P(X;{ N [y1.) oc Py | X)) x Fy y

= P(X2,
f ,JYQ:_’TI|1U1:1&—1) = P(X|,

4—1)

=1
X,

-2
X ) x Fo
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Frontier Algorithm (Observations)

Exact Inference takes O(TNQN*?) time and space:
e N = number of hidden nodes
e Q = number possible states of a node
Exponential in the size of the largest frontier
e Optimal ordering of additions and removals to minimize F is NP-
Hard.
For regular DBNs when unrolled, the frontier algorithm is
equivalent to the junction tree algorithm.

» Frontier sets correspond to: maximal cliques in the moralized
triangulated graph.
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Factored Frontier Algorithm

Approximate the belief state with a product of marginals:

P(X, 1 Yae) = [T, PCX{ ] Vi)

When a node 1s added the node’s CPT is multiplied by the
product of factors corresponding to its parents.

e Joint distribution for the family
e Parent nodes are immediately marginalized out

e Can be done for any node in any order as long as parents are
added first.

Joint distribution over frontier nodes i1s maintained In
factored form.

Takes O(TNQF*)
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‘Boyen-Koller Algorithm

Belief state with a product of marginals over C clusters:
C C
P(X¢ | Vi) zl_Lle)(Xt | Yit)
Where X¢& is a subset of the variables {X/}

e Accuracy depends on size of clusters used to approximate belief
state

e Exact inference corresponds to using a single cluster with all
hidden variables at a time slice

e Most aggressive approximation uses N clusters one per variable
- very similar to FF



'BK'and FF as Special'Cases of Loopy

Belief Propagation

Pearl’s belief propagation algorithm computes exact marginal
posterior probabilities in graphs without cycles

Generalizes the forward-backward algorithm to trees.

Assumes messages coming into a node are independent.

e FF makes the same assumption

e Both algorithms are equivalent if the order of messages in LBP is
specified
« Normally LBP every node computes A and = messages in parallel and
then sends out to all of the neighbors

- However, messages can be computed in a forwards backward approach.
First send = (o) from left to right, then send A () messages from right to
left.

e FF and BK are equivalent to one iteration LBP, thus they can be
Improved by iterating more than once.
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Experiments

Used a coupled HMM (CHMM) with 10
chains trained with real highway data.

Define L1 error as:

Atzz:ilzil' P(Xit =S| Y1) — I:A)(Xit =S| Yir)|

)

()

()

S

O
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Results

0.08-

Damping was necessary i
with LBP. .l
Iterating with damped

LBP improves just a oos

single run of BK s |

iterations



" Results Water Network
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Results Speed
BK and FF / LBP have a o

running time linear in N

BK is slower because of
repeated
marginalizations

e \When N<11 BK slower
than exact inference

elapsed time per slice (seconds)
o
]
on

/
-0 jtree
]
1+~ bk
--+-. Impy.1
| - Ioopyz /*
T
-+ loopy 4 )
Py )
A
e
./- -_.'-
*7 )
./ 4 m ‘.-+
./ X -#-H
i "’-l,' _
AT et e .
t_/' + '.’.‘_._..5__. ) -.-+r'_—
i ___.;x,-.;.:.g'%:{- P R
1 ’ ° ! 9 1

num. chains
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Conclusions

Described a simple approximate inference algorithm for
DBNs and shown equivalence to LBP

Shown a connection between BK and LBP
Showed empirically that LBP can improve FF and BK.
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a1(l) = p(x1,51=1)

Shakhnarovich 1996,CS195-5
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0:1(1) = P(XhSl = 1) = Po(l)P (X1|31 = 1);

Shakhnarovich 1996,CS195-5



p(x1,s1=1) = po(1)p(x1|s1 =1);

p(x1,51 =2) = po(2)p(x1|s1=2);

Shakhnarovich 1996,CS195-5



ai1(l) = p(x1,s1=1) = po(l)p(x1|s1 =1),
a1(2) = p(x1,s1=2) = po(2)p(x1|s1=2)

Shakhnarovich 1996,CS195-5
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Computing forward probabilities: ¢t = 2

ai(l) = p(x1,s1=1) = po(l)p(x1|s1 =1),
a1(2) = p(x1,s1=2) = po(2)p(x1|s1=2)

ag(l) = p(l'{l,l'{g,.ig = ]_) = p(Xl, 859 = ].)p (1'{2 | S92 = 1)
= [a1(1)p(1 — 1)+ a1 (2)p(2 — 1) p(x2 | s2 = 1)
[@1(2)p(1 — 2) + 1 (2)p(2 — 2)] p (X2 | 52 = 2)

Shakhnarovich 1996,CS195-5



Shakhnarovich 1996,CS195-5



Bi(s) = p(Xeqr,. . XN | st = 5) RN, R

An(s) = p(@|sn=s) =1
Bi(s) = Y Ip(s = &) (Xeg1|s041 =) Besa(s)]

Shakhnarovich 1996,CS195-5
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_ p(Xpy . X, 8, =8)p(Xpsq,-- XN | 5¢ = 5)
p(X1,...,XN)
_ a(s)By(s)
> ae(s")Be(s")

Shakhnarovich 1996,CS195-5



