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Dynamic Bayesian Networks

 Directed graphical models of stochastic processes

 Represent hidden and observed variables with different 
dependencies

 Generalize Hidden Markov Models (HMM)



Goal is Inference

 Will generally like to perform inference: P(xt | y1:T)

 Why not discretize and use the “Forward-Backward” 
algorithm for exact inference?

 Very quickly can become untenable.

 Fart Left coupled HMM with 5 
chains

 Left DBN to monitor waste water 
treatment plant.

 Murphy and Weiss 2001



Approximate Inference
 Sampling
 Particle Filters

 Variational
 (Ghahramani and Hinton 1998) Switching Linear 

Dynamical System

 (Ghahramani and Jordan 1997) Factorial Hidden Markov 
Models

 Variational Subset
 Greedy projection algorithms
 Where projection provides a simpler approximate belief

 Expectation Propagation



Problem Setup

 xt – super node that contains all latent variables at a time 
point.

 y1:T – fixed and is included in the definition of the 
potentials: ψt(xt-1,t) ≡ ψt(xt-1, xt , yt)



Goal: Infer P(xt | y1:T) 

 Find the marginal “beliefs” or the probability 
distributions of the latent variables at a given time 
given all the evidence.

 Pearl’s Belief Propagation (1988)

 Specific case of the sum-product rule in factor graphs 
(Kschischang et al., 2001)

 Note: In chain factor graphs variable nodes simply 
pass received messages on to the next function node.



Message Propagation

1. Compute estimate of distribution at local function node:

2. Integrate out all variables except xt’ (xt’ the node to which the 
message is sent) to get current estimate of the belief               
and project this belief onto a distribution in the exponential 
family: 

3. Conditionalize, i.e. divide by message from Xt’ to ψt



Belief Approximation
 Project belief takes an exponential family form:

 Where γt = canonical parameters and f(xt) the sufficient statistics.

 If the forward and backward messages are initialized as:

 With                             then the canonical parameters αt and βt will 

fully specify the messages αt(xt) and βt(xt).

 Thus the belief can be specified as a combination of the messages



Moment Matching
 To project the belief                  to the best exponential family 

approximation  is found when the Kullback-Leibler (KL) divergence 
is minimized:

 Minima is found when the moments of P(x) and q(x) are matched.

 Function g converts from canonical form to moments

KL(p|q)            KL(q|p)            KL(q|p)

Bishop 2006



Computing Forward and Backward 
Messages
 Compute αt such that:

 With βt kept fixed:

 Similarly Compute βt-1 such that:

 Note: without the projection to the exponential family this is basically 

the standard forward backward algorithm. 

 Order of message updating is free



Example: Switching Linear 
Dynamical System

 Potentials:

 Messages are taken to be conditional Gaussian potentials:



Example: Step 1
 Compute estimate of distribution at local function node :

 Messages are combinations of M Gaussian potentials one for each switch 

state i. Transform to a representation with moments



Example: Step 2
 Integrate and sum out components zt-1 and st-1:

 Integration over zt-1 can be done directly:

 Summation over st-1 yields a mixture of Gaussians and must be 
approximated using moment matching:



Example: Step 3
 Forward message is found by dividing the approximate belief by the 

backward message :

= Convert to Canonical form



Observations
 Backward pass is symmetric to the forward pass.

 Forward filtering pass is equivalent to a popular inference 

algorithm for switching linear dynamical system (GPB2 –

Bar-Shalom and Li 1993)

 Backward smoothing pass improves upon current algorithms 

because no additional approximations were required.

 Forward and Backward passes can be iterated until 

convergence.

 Expectation propagation can be used to iteratively improve 

other methods for inference in DBNs (e.g. Murphy and 

Weiss 2001)

 But this algorithm does not always converge



Bethe Free Energy
 Fixed points of expectation propagation correspond to fixed 

points of the “Bethe free energy” (Minka, 2001)

 Expectation constraints

 Under these constraints the free energy function may not be 

convex. i.e. Can have local fixed points.



Double Loop Algorithm
 Linearly bound concave part:

 For each outer loop step reset the bound:

 For inner loop solve convex constrained minimization 

problem, guaranteeing:



Inner Loop
 Change to a constrained maximization problem over 

Lagrange multipliers δt:

 With:                                        and substituting:

 “That is, δ can be interpreted as the difference between the 

forward and backward messages, γ as their sum”.
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Inner Loop Maximization
 In terms of:                                                                  gradient 

with respect to δt:

 Set to 0:

 Damp update:

 Outer-loop can be re-written as the update:



Damped Expectation Propagation
 Minimization of the free energy under the expectation 

constraints is equivalent to “Saddle Point” problem.

 Double-loop algorithm solves this problem, but “Full 
completion in the inner loop is required  to guarantee 
convergence”

 Gradient descent-ascent behavior can be achieved by 
damping the full updates in EP:

 Stable fixed points of damped EP must be at least local minima of 
Bethe free energy



Simulations
 Randomly generated switching linear dynamical systems.

 T varied between 2 and 5, number of switches between 2 and 4

 “Exact” beliefs calculated using an algorithm by (Lauritzen, 

1992) using a strong junction tree.

 Compared approximate algorithm beliefs to exact beliefs using 

KL divergence.



Simulation Results

 Undamped EP

 One forward pass yields acceptable results

 KL drops after 1 to 2 more passes

 Double-loop and damped EP converge to same point



Simulation Results

 “Difficult Instance” 

 Undamped stuck in a limit cycle (solid line)

 Damped EP (ε = 0.5), allows stable convergence 

 Double-loop converges but usually takes longer



Non Convergence
 One Instance where damped EP did not converge 

 Does it make sense to force convergence using double-loop?

 Compared KL divergence after a single forward pass and after convergence

For “easy” (damped EP) and “difficult” (double-loop)

 Conclude:

 It makes sense to search for the 

minimum of the free energy using 

more exhaustive means.

 Convergence of undamped belief 

propagation is an indication of the 

quality of an approximation



Conclusion
 Introduced a belief propagation algorithm for DBN that is 

symmetric for both forwards and backward messages

 Project beliefs and derive messages from approximate 
beliefs rather than approximate messages

 Derived double-loop algorithm guaranteed to converge

 Derived damped EP as a single-loop version

 Property that when it converges this must be a minimum of 
Bethe free energy.

 Thus minimum KL divergence for approximation

 Undamped EP works well in many cases

 When it fails could be due to:

 Need for damping

 Need for “more tedious” double-loop algorithm
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Dynamic Bayesian Networks

 Directed graphical models of stochastic processes

 Represent hidden and observed variables with different 
dependencies

 Generalize Hidden Markov Models (HMM)



Goal is Inference

 Will generally like to perform inference: P(xt | y1:T)

 Why not discretize and use the “Forward-Backward” 
algorithm?

 O(TS2), S=num states

 Fart Left coupled HMM with 5 
chains

 Left DBN to monitor waste water 
treatment plant.

 Murphy and Weiss 2001



Forwards Backward Algorithm
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Frontier Algorithm

 Method to compute αt and βts without the need to form the 

QN x QN transition matrix:

 N = number of hidden nodes

 Q = number possible states of a node

 “Sweep” a Markov Blanket forwards then backwards across 

the DBN.

 The set of nodes composed of a node’s

the parents, children, and children’s other 

parents.

 Every other node is conditionally

independent of A when conditioned on A’s

Markov blanket.
Wikipedia



Frontier Algorithm

 F “Frontier Set” = Nodes in Markov Blanket, Nodes to left = 

L, Nodes to right = R.

 At every step F “d-separates” L and R.

 A joint distribution over nodes in F is maintained.



Frontier Algorithm

 A node is added from R to F as soon as all parents are in F

 To add a node multiply by conditional probability table (CPT) 

 A node is moved from F to L as soon as all children are in F

 To remove a marginalize by the removed node.



Frontier Algorithm

Add X(1)t

Add X(2)t

Rem X(1)t-1

Forward 
Message



Frontier Algorithm (Observations)

 Exact Inference takes O(TNQN+2) time and space:

 N = number of hidden nodes

 Q = number possible states of a node

 Exponential in the size of the largest frontier

 Optimal ordering of additions and removals to minimize F is NP-

Hard.

 For regular DBNs when unrolled, the frontier algorithm is 

equivalent to the junction tree algorithm.

 Frontier sets correspond to: maximal cliques in the moralized 

triangulated graph.



Factored Frontier Algorithm
 Approximate the belief state with a product of marginals:

 When a node is added the node’s CPT is multiplied by the 
product of factors corresponding to its parents. 

 Joint distribution for the family

 Parent nodes are immediately marginalized out

 Can be done for any node in any order as long as parents are 
added first.

 Joint distribution over frontier nodes is maintained in 
factored form.

 Takes O(TNQF+1)
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Boyen-Koller Algorithm

 Belief state with a product of marginals over C clusters:

 Where            is a subset of the variables 

 Accuracy depends on size of clusters used to approximate belief 

state

 Exact inference corresponds to using a single cluster with all 

hidden variables at a time slice

 Most aggressive approximation uses N clusters one per variable  

 very similar to FF
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BK and FF as Special Cases of Loopy 
Belief Propagation

 Pearl’s belief propagation algorithm computes exact marginal 
posterior probabilities in graphs without cycles

 Generalizes the forward-backward algorithm to trees.

 Assumes messages coming into a node are independent.

 FF makes the same assumption

 Both algorithms are equivalent if the order of messages in LBP is 
specified

 Normally LBP every node computes λ and π messages in parallel and 
then sends out to all of the neighbors

 However, messages can be computed in a forwards backward approach. 
First send π (α) from left to right, then send  λ (β) messages from right to 
left.

 FF and BK are equivalent to one iteration LBP, thus they can be 
improved by iterating more than once.



Experiments

 Used a coupled HMM (CHMM) with 10 
chains trained with real highway data.

 Define L1 error as:
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Results

 Damping was necessary 
with LBP.

 Iterating with damped 

LBP improves just a 

single run of BK



Results Water Network



Results Speed
 BK and FF / LBP have a 

running time linear in N

 BK is slower because of 

repeated 

marginalizations

 When N<11 BK slower 

than exact inference



Conclusions
 Described a simple approximate inference algorithm for 

DBNs and shown equivalence to LBP

 Shown a connection between BK and LBP

 Showed empirically that LBP can improve FF and BK.
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