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Introduction
p(z) o< I] i)

Goal: Efficiently approximate intractable distributions

Features of Expectation Propagation (EP):

e Deterministic, iterative method for computing
approximate posterior distributions

o Approximating distribution may be selected from any
exponential family
« Framework for extending loopy Belief Propagation (BP):

- Structured approximations for greater accuracy
- Inference for continuous non-Gaussian models



Outline

Background

» Graphical models

e Exponential families
Expectation Propagation (EP)

« Assumed Density Filtering
* EP for unstructured exponential families

Connections to Belief Propagation
« BP as a fully factorized EP approximation

* Free energy interpretations
e Continuous non-Gaussian models

 Structured EP approximations



Clutter Problem

po(z) = N(z;0,1001)

pi(yilz) = (1 —w)N(y;; z,I) + wN(0,101)

yl y2 y3 yn

n independent observations from a Gaussian distribution
of unknown mean x embedded in a sea of clutter

n
p(x|y1, ..., yn) x po(x) ] pilyilz)
1=1

—» posterior is a mixture of 2" Gaussians



Exponential Families

q(z;0) = exp {Z Oapal(r) — <l>(9)}

¢ —> exponential (canonical) parameter vector
do(x) —> potential function
$d(#) —> log partition function (normalization)

Examples:
e Gaussian

e Poisson
e Discrete multinomial

e Factorized versions of these models



Manipulation of Exponential Families

q(z;0) = exp {Z Oapal(r) — <l>(9)}

Products: q(x; 01)q(x; 02) < q(z; 01 + 62)
, 0
Quotients: a(z: 01) x q(xz; 01 — 0>)
q(x; 02)

May not preserve normalizability
Projections: 6" = argmin D (p(x) || ¢(x;0))
0

Optimal solution found via moment matching:

[ a(@:6")pa(@) do = [ p(x)ga(a) de



Assumed Density Filtering (ADF)
p(z) o< I] i)

» Choose an approximating exponential family q(x; 6)

e |nitialize by approximating the first compatibility function:
gl = arg min D (41 (2) || ¢(:6))
« Sequentially incorporate all other compatibilities:

o' = arg min D (i(2)a(z; 01 | a(;0))

The current best estimate g(z; 8~ 1) of the product
distribution is used to guide the incorporation of 1, ()

— Superior to approximating );(2) individually



ADF for the Clutter Problem

— — Exact
—— ADF

p(6,D)

ADF Is sensitive to the order in which compatibility
functions are incorporated into the posterior



ADF as Compatibility Approximation
p(x) o [T wi)
o' = arg min D (i(2)a(z; 01 | a(;0))

Standard View: Sequential approximation of the posterior

Alternate View: Sequential approximation of compatibilities
q(z; 0Y)

Q(x; 91) X mi(x)Q(«T; gi_l) mz(x) X C](.CE; 97;_1)

m;(x) —> exponential approximation to ;(x)

member of exponential family ¢(x; 8)



Expectation Propagation

Idea: Iterate the ADF compatibility function approximations,
always using the best estimates for all but one function to
Improve the exponential approximation to the remaining term

Initialization:
» Choose starting values for the compatibility approximations:

mi(z) =1

* Initialize the corresponding posterior approximation:

a(;0) o [T mi(x)



EP Iteration

. Choose some m;(x) to refine.

. Remove the effects of m;(x) from the current estimate:

m; ()

. Update the posterior approximation to q(x;6), where

9" = arg min D (q(z; 0\)pi(2) || x; 0))

. Refine the exponential approximation to m(x) as
q(z; 0%)
q(z; 0\Y)

m;(x) o



EP for the Clutter Problem
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EP generally shows quite good performance, but is not

guaranteed to converge



Relationship to Belief Propagation

 BP Is a special case of EP
e Many results characterizing BP can be extended to EP

e EP provides a mechanism for constructing improved
approximations for models where BP performs poorly

 EP extends local propagation methods to many models
where BP is not possible (continuous non-Gaussian)

Explore relationship for special case of pairwise MRFs:

1
p(fU):E 1] ¥s.i(zs, z1)
(s,t)eE



Belief Propagation

e Combine the information from all nodes in the graph
through a series of local message-passing operations

p(rs) = « H mis(Ts)

tel(s)

r(s) — neighborhood of node s (adjacent nodes)
mts(azs) —» message sent from node t to node s

(“sufficient statistic” of t's knowledge about s)



BP Message Updates

G‘”““/OO

¢ — e
x s Tt

N

mts(xs)=04/x Vst(@s, ) ] mue(ae) day

u€el (t)\s

1. Combine incoming messages, excluding that from node s,
with the local observation to form a distribution over &

2. Propagate this distribution from node t to node s using the
pairwise interaction potential ¥s¢(xs, x¢)

3. Integrate out the effects of o



Fully Factorized EP Approximations
C](CU; 9) — H C]S(ZUS)

seY

Each g.(x) can be a general discrete multinomial distribution
(no restrictions other than factorization)

ms,t(x& r1) = mi—s(Ts)ms—i(r)
— Compatibility approximations in same exponential family

Initialization:
* Initialize compatibility approximations mg (X,X;)

* |nitialize each term in the factorized posterior approximation:

qs(Ts) x H mi—s(Ts)
tel(s)



Factorized EP Iteration |

1. Choose some mg (Xs,X;) to refine.

—> M (X, X,) INvolves only X, and x;, so the approximations
q,(x,) for all other nodes are unaffected by the EP update

2. Remove the effects of mg (X, X,) from the current estimate:

qs(s) _
qs\t(xs) > Mi—s(Ts) B uel‘l_([s)\t use)
qt\s(ﬂit) X (1) — H My—st(Tt)

ms—)t(xt) - vel (t)\s



Factorized EP Iteration I

3. Update the posterior approximation by determining the
appropriate marginal distributions:

gs(zs) = Z¢S,t(m37xt)Qs\t(xS)Qt\s(xt)
qi(we) = ) Ps1(xs, ) g\ () gp 5 (1)

4. Refine the exponential approximation to mg (X,X,) as

mise(ms) o ) S u aiw) TT mesea)

qs\t(%) T vel (t)\s
ms—>t(~’11t) X Qt(xt) — Zws,t(ws,xt) H mu—>s(fb‘s)
Qt\s(xt) Ts uel(s)\t

——— Standard BP Message Updates



Bethe Free Energy

p(x) =% 1] ¥si(zs,z) ] vs(as)

(Svt)eg seV
G(q,p) = /qst(ms z¢) log 9s.1(Ts, 21) drs 4+ /qs(xs)log gs(xs)
(s,t)e€ QS($S)Qt($t)¢s,t($s,$t) sEY 3(;133)

BP: Minimize subject to marginalization constraints

/C]s,t(ws,ﬂ?t) drs = qi(xt)

EP: Minimize subject to expectation constraints

[ s(ws, v balar) dass = [ arlwe)galer) day



Implications of Free Energy Interpretation

Fixed Points
 EP has a fixed point for every product distribution p(x)

« Stable EP fixed points must be local minima of the Bethe
free energy (converse does not hold)

Double Loop Algorithms
e Guaranteed convergence to local minimum of Bethe

« Separate Bethe into sum of convex and concave parts:

Outer Loop: Bound concave part linearly

Inner Loop: Solve constrained convex minimization



Are Double Loop Algorithms Worthwhile?
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Non-Gaussian Message Passing

e Choose an approximating exponential family

« Modify the BP marginalization step to perform moment
matching: construct best local exponential approximation

Switching Linear Dynamical Systems

3 —] 54 St —> discrete “system mode”

(a1) Z+ — conditionally Gaussian

. . . . yt—>observation

Exact Posterior: Mixture of exponentially many Gaussians

EP Approximation: Single Gaussian for each discrete state



Structured EP Approximations

O O O
O O O
O O O

Original Fully Factorized EP Structured EP
(Belief Propagation)

 Structured EP approximations employ triangulated graphs
to allow closed-form exponential family projections

« Can unify structured EP-style approximations and region
based Kikuchi-style approximations in common framework

» Every discrete EP entropy approximation has a corresponding
region graph entropy and GBP algorithm (Welling, Minka, Teh, UAIOS5)

« EP for continuous variables goes beyond GBP



