Variational Inference for Dirichlet Process Mixtures

David Blei and Michael Jordan

May 5, 2010

Twenty Thousand Feet view

- Given a model θ and data $\mathbf{x} = \{x_1, ... x_N\}$.
 - We want to learn the model $\hat{\theta}$.
 - Make predictions about a new data point x_{N+1} .
- Being Bayesians we want to
 - Estimate the posterior distribution over the model(parameters) $p(\theta|\mathbf{x})$
 - Estimate the predictive distribution $p(x_{N+1}|\mathbf{x}) = \int p(x_{N+1}|\theta)p(\theta|\mathbf{x})d\theta$
- Finally we go one step further and assume our parameters grow with data.

Dirichlet Processes - Stick Breaking Representation

- $V_i \sim Beta(1, \alpha)$
- $\eta_i^* \sim G_0$

$$\bullet \ \pi_i(\mathbf{v}) = v_i \prod_{l=1}^{j-1} (1 - v_l)$$

$$\bullet \ G = \sum_{i=1}^{\infty} \pi_i(\mathbf{v}) \delta \eta_i^*$$

Dirichlet Process Mixtures

- Generalization of finite mixture models.
- A Dirichlet Process prior is placed over mixture components.
- Nonparametric, do not have to specify the number of components before hand.

DP Mixture Model

- 1. Draw $V_i \mid \alpha \sim \text{Beta}(1, \alpha), \quad i = \{1, 2, \ldots\}$
- 2. Draw $\eta_i^* | G_0 \sim G_0, \quad i = \{1, 2, \ldots\}$
- 3. For the nth data point:
 - (a) Draw $Z_n \mid \{v_1, v_2, \ldots\} \sim \text{Mult}(\pi(\mathbf{v})).$
 - (b) Draw $X_n | z_n \sim p(x_n | \eta_{z_n}^*)$.

Posterior over the latent variables

$$\bullet$$
 Let $\mathbf{W} = \{\mathbf{V}, \pmb{\eta^*}, \mathbf{Z}\}$ and let $\theta = \{\alpha, \lambda\}$

Posterior over the latent variables

- Let $\mathbf{W} = \{\mathbf{V}, \boldsymbol{\eta}^*, \mathbf{Z}\}$ and let $\theta = \{\alpha, \lambda\}$
- Posterior over the latent variables takes the form:
- $p(\mathbf{w}|\mathbf{x}, \theta) = exp\{log(p(\mathbf{x}, \mathbf{w}|\theta)) log \int p(\mathbf{x}, \mathbf{w}|\theta))d\mathbf{w}\}$

Posterior over the latent variables

- Let $\mathbf{W} = \{\mathbf{V}, \boldsymbol{\eta}^*, \mathbf{Z}\}$ and let $\theta = \{\alpha, \lambda\}$
- Posterior over the latent variables takes the form:
- $p(\mathbf{w}|\mathbf{x}, \theta) = \exp\{log(p(\mathbf{x}, \mathbf{w}|\theta)) log \int p(\mathbf{x}, \mathbf{w}|\theta))d\mathbf{w}\}$
 - The integral over the latent variables, makes exact computation of the posterior intractable.

Approximate Inference

- Posterior is intractable.
- Use either MCMC or approximate deterministic inference techniques.
- Here the authors present a mean field variational method.

•
$$log p(\mathbf{x}|\theta) = log \int p(\mathbf{w}, \mathbf{x}|\theta) d\mathbf{w}$$

•
$$log p(\mathbf{x}|\theta) = log \int p(\mathbf{w}, \mathbf{x}|\theta) d\mathbf{w}$$

$$\bullet \ logp(\mathbf{x}|\theta) = log \int q_{\nu}(\mathbf{w}) \frac{p(\mathbf{w}, \mathbf{x}|\theta) d\mathbf{w}}{q_{\nu}(\mathbf{w})}$$

•
$$log p(\mathbf{x}|\theta) = log \int p(\mathbf{w}, \mathbf{x}|\theta) d\mathbf{w}$$

$$\bullet \ logp(\mathbf{x}|\theta) = log \int q_{\nu}(\mathbf{w}) \frac{p(\mathbf{w}, \mathbf{x}|\theta) d\mathbf{w}}{q_{\nu}(\mathbf{w})}$$

$$ullet = log \mathbb{E}_q rac{p(\mathbf{W}, \mathbf{x} | heta)}{q_
u(\mathbf{W})}$$

$$ullet \geq \mathbb{E}_q log rac{p(\mathbf{W}, \mathbf{x} | heta)}{q_
u(\mathbf{W})}$$

•
$$log p(\mathbf{x}|\theta) = log \int p(\mathbf{w}, \mathbf{x}|\theta) d\mathbf{w}$$

$$\bullet \ logp(\mathbf{x}|\theta) = log \int q_{\nu}(\mathbf{w}) \frac{p(\mathbf{w}, \mathbf{x}|\theta) d\mathbf{w}}{q_{\nu}(\mathbf{w})}$$

$$ullet = log \mathbb{E}_q rac{p(\mathbf{W}, \mathbf{x} | heta)}{q_
u(\mathbf{W})}$$

$$ullet \geq \mathbb{E}_q log rac{
ho(\mathbf{W}, \mathbf{x} | heta)}{q_
u(\mathbf{W})}$$

$$\bullet = \mathbb{E}_q[logp(\mathbf{W}, \mathbf{x} | \theta)] - \mathbb{E}_q[logq_{\nu}(\mathbf{W})] \equiv \mathcal{L}(q)$$

$$\bullet \ \, \mathit{KL}(q_{\nu}(\mathbf{w})||p(\mathbf{w}|\mathbf{x},\theta)) = logp(\mathbf{x}|\theta) - (\mathbb{E}_q[logp(\mathbf{W},\mathbf{x}|\theta)] - \mathbb{E}_q[logq_{\nu}(\mathbf{W})])$$

- $KL(q_{\nu}(\mathbf{w})||p(\mathbf{w}|\mathbf{x},\theta)) = logp(\mathbf{x}|\theta) (\mathbb{E}_q[logp(\mathbf{W},\mathbf{x}|\theta)] \mathbb{E}_q[logq_{\nu}(\mathbf{W})])$
- Equivalently, $log(p(\mathbf{x}|\theta)) \ge E_q[logp(\mathbf{W}, \mathbf{x}|\theta))] E_q[logq_{\nu}(\mathbf{W})]$
 - ullet With the bound being tight when $q_{
 u}(\mathbf{w}) = p(\mathbf{w}|\mathbf{x}, heta)$

- $\bullet \ \, \mathit{KL}(q_{\nu}(\mathbf{w})||p(\mathbf{w}|\mathbf{x},\theta)) = logp(\mathbf{x}|\theta) (\mathbb{E}_q[logp(\mathbf{W},\mathbf{x}|\theta)] \mathbb{E}_q[logq_{\nu}(\mathbf{W})])$
- Equivalently, $log(p(\mathbf{x}|\theta)) \ge E_q[logp(\mathbf{W}, \mathbf{x}|\theta))] E_q[logq_{\nu}(\mathbf{W})]$
 - With the bound being tight when $q_{\nu}(\mathbf{w}) = p(\mathbf{w}|\mathbf{x}, \theta)$
- $\underset{\nu}{\operatorname{argmax}} \mathcal{L}(q) \Leftrightarrow \underset{\nu}{\operatorname{argmin}} \mathsf{KL}(q_{\nu}(\mathbf{w})||p(\mathbf{w}|\mathbf{x},\theta))$

- $KL(q_{\nu}(\mathbf{w})||p(\mathbf{w}|\mathbf{x},\theta)) = logp(\mathbf{x}|\theta) (\mathbb{E}_q[logp(\mathbf{W},\mathbf{x}|\theta)] \mathbb{E}_q[logq_{\nu}(\mathbf{W})])$
- Equivalently, $log(p(\mathbf{x}|\theta)) \ge E_q[logp(\mathbf{W}, \mathbf{x}|\theta))] E_q[logq_{\nu}(\mathbf{W})]$
 - With the bound being tight when $q_{\nu}(\mathbf{w}) = p(\mathbf{w}|\mathbf{x},\theta)$
- $\underset{\nu}{\operatorname{argmax}} \mathcal{L}(q) \Leftrightarrow \underset{\nu}{\operatorname{argmin}} \mathsf{KL}(q_{\nu}(\mathbf{w})||p(\mathbf{w}|\mathbf{x},\theta))$
- $q_{\nu}(\mathbf{w})$ is the *variational distribution* and ν is the corresponding variational parameter.
- Note that the marginal probability of the data has no variational parameter.

Mean Field Variational Inference

- Further assume that the variational distribution factorizes as $q_{\nu}(\mathbf{w}) = \prod_{i=1}^{M} q_{\nu m}(w_m)$
- Now,

$$log(p(\mathbf{x}|\theta)) \ge \mathbb{E}_q[logp(\mathbf{W}, \mathbf{x}|\theta)] - \mathbb{E}_q[logq_{\nu}(\mathbf{W})]$$
 (1)

•

$$log(p(\mathbf{x}|\theta)) \ge \mathbb{E}_q[logp(\mathbf{W}|\mathbf{x},\theta) + log(p(\mathbf{x}|\theta))] - \mathbb{E}_q[logq_{\nu}(\mathbf{W})]$$
(2)

•

$$log(p(\mathbf{x}|\theta)) \ge log(p(\mathbf{x}|\theta)) + \mathbb{E}_q[logp(\mathbf{W}|\mathbf{x},\theta)] - \sum_{m=1}^{M} \mathbb{E}_q[logq_{\nu m}(W_m)]$$
(3)

• Optimize with respect to ν_i holding all ν_j , $j \neq i$ constant.

- Optimize with respect to ν_i holding all ν_i , $j \neq i$ constant.
- If $p(w_i|\mathbf{w}_{-i},\mathbf{x},\theta)$ is an exponential family distribution

- Optimize with respect to ν_i holding all ν_i , $j \neq i$ constant.
- If $p(w_i|\mathbf{w}_{-i},\mathbf{x},\theta)$ is an exponential family distribution
- Then the corresponding variational parameter ν_i which optimizes the KL divergence has a closed form solution.

Nonparametrics

- The treatment so far has been general.
- It applies to parametric cases just as much as it does to nonparametrics.
- Further innovations required to apply it to nonparametric cases.

Back to stick breaking

• If any $v_t = 1$, $\pi_j(v) = 0, \forall j > t$

Variational approximation for the DP mixture

• Recall,
$$\mathbf{W} = \{\mathbf{V}, \boldsymbol{\eta}^*, \mathbf{Z}\}$$
 and $\theta = \{\alpha, \lambda\}$
$$\log(p(\mathbf{x}|\theta)) \geq \mathbb{E}_q[logp(\mathbf{W}, \mathbf{x}|\theta)] - \mathbb{E}_q[logq_{\nu}(\mathbf{W})]$$

Variational approximation for the DP mixture

• Recall, $\mathbf{W} = \{\mathbf{V}, \boldsymbol{\eta}^*, \mathbf{Z}\}$ and $\theta = \{\alpha, \lambda\}$ $\log(p(\mathbf{x}|\alpha, \lambda)) \geq \mathbb{E}_q[\log p(\mathbf{V}|\alpha)] + \mathbb{E}_q[\log p(\boldsymbol{\eta}^*|\lambda)]$ $+ \sum_{n=1}^{N} (\mathbb{E}_q[\log p(Z_n|\mathbf{V})] + \mathbb{E}_q[\log p(x_n|Z_n)])$ $- \mathbb{E}_q[\log q(\mathbf{V}, \boldsymbol{\eta}^*, \mathbf{Z})]$

Variational approximation for the DP mixture

• Recall, $\mathbf{W} = \{\mathbf{V}, \boldsymbol{\eta^*}, \mathbf{Z}\}$ and $\theta = \{\alpha, \lambda\}$

$$\begin{aligned} \log(p(\mathbf{x}|\alpha,\lambda)) & \geq & \mathbb{E}_q[logp(\mathbf{V}|\alpha)] + \mathbb{E}_q[logp(\boldsymbol{\eta}^*|\lambda)] \\ & + \sum_{n=1}^{N} (\mathbb{E}_q[logp(Z_n|\mathbf{V})] + \mathbb{E}_q[logp(\mathbf{x}_n|Z_n)]) \\ & - \mathbb{E}_q[logq(\mathbf{V},\boldsymbol{\eta}^*,\mathbf{Z})] \end{aligned}$$

- Truncate by setting $q(v_T = 1) = 1$.
- We are truncating the variational distribution. The model is still Nonparametric.

Variational approximation for the DP mixture II

• The variational distribution now becomes

$$q(\mathbf{v}, oldsymbol{\eta^*}, \mathbf{z}) = \prod_{t=1}^{T-1} q_{\gamma_t}(v_t) \prod_{t=1}^T q_{ au_t}(\eta_t^*) \prod_{n=1}^N q_{\phi_n}(z_n)$$

- $q_{\gamma_t}(v_t)$ are chosen to be beta distributions, $q_{\tau_t}(\eta_t^*)$ are some distributions in the exponential family and $q_{\phi_n}(z_n)$ are multinomial distributions.
- The variational parameters are

$$\nu = \{\gamma_1, ..., \gamma_{T-1}, \tau_1, ..., \tau_T, \phi_1, ..., \phi_N\}$$
 (4)

$$\begin{aligned} log(p(\mathbf{x}|\alpha,\lambda)) & \geq & \mathbb{E}_{q}[logp(\mathbf{V}|\alpha)] + \mathbb{E}_{q}[logp(\eta^{*}|\lambda)] \\ & + \sum_{n=1}^{N} (\mathbb{E}_{q}[logp(Z_{n}|\mathbf{V})] + \mathbb{E}_{q}[logp(x_{n}|Z_{n})]) \\ & - \mathbb{E}_{q}[\prod_{t=1}^{T-1} q_{\gamma_{t}}(v_{t}) \prod_{t=1}^{T} q_{\tau_{t}}(\eta_{t}^{*}) \prod_{n=1}^{N} q_{\phi_{n}}(z_{n})] \end{aligned}$$

$$\begin{aligned} log(p(\mathbf{x}|\alpha,\lambda)) & \geq & \mathbb{E}_{q}[logp(\mathbf{V}|\alpha)] + \mathbb{E}_{q}[logp(\eta^{*}|\lambda)] \\ & + \sum_{n=1}^{N} (\mathbb{E}_{q}[logp(Z_{n}|\mathbf{V})] + \mathbb{E}_{q}[logp(x_{n}|Z_{n})]) \\ & - \mathbb{E}_{q}[\prod_{t=1}^{T-1} q_{\gamma_{t}}(v_{t}) \prod_{t=1}^{T} q_{\tau_{t}}(\eta_{t}^{*}) \prod_{n=1}^{N} q_{\phi_{n}}(z_{n})] \end{aligned}$$

• In $\pi(\mathbf{v})$ was finite dimensional $p(Z_n = t | \mathbf{V}) = \prod_{t=1}^{I} (\pi_t)^{\mathcal{I}(Z_n = t)}$

- In $\pi(\mathbf{v})$ was finite dimensional $p(Z_n = t | \mathbf{V}) = \prod_{t=1}^{n} (\pi_t)^{\mathcal{I}(Z_n = t)}$
- In our infinite dimensional case $p(Z_n = t | \mathbf{V}) =$ $\prod_{l=1}^{\infty} (V_t \prod_{l=1}^{t-1} (1 V_l))^{\mathcal{I}(Z_n = t)} = \prod_{t=1}^{\infty} (V_t)^{\mathcal{I}(Z_n = t)} (\prod_{l=1}^{t-1} (1 V_l))^{\mathcal{I}(Z_n = t)}$

- In $\pi(\mathbf{v})$ was finite dimensional $p(Z_n = t | \mathbf{V}) = \prod_{t=1}^{n} (\pi_t)^{\mathcal{I}(Z_n = t)}$
- In our infinite dimensional case $p(Z_n = t | \mathbf{V}) =$

$$\prod_{t=1}^{\infty} (V_t \prod_{l=1}^{t-1} (1 - V_l))^{\mathcal{I}(Z_n = t)} = \prod_{t=1}^{\infty} (V_t)^{\mathcal{I}(Z_n = t)} (\prod_{l=1}^{t-1} (1 - V_l))^{\mathcal{I}(Z_n = t)}$$

Equivalently,

$$p(Z_n|\mathbf{V}) = \prod_{t=1}^{\infty} V_t^{\mathcal{I}(Z_n=t)} (1 - V_t)^{\mathcal{I}(Z_n > t)}$$
 (5)

- In $\pi(\mathbf{v})$ was finite dimensional $p(Z_n = t | \mathbf{V}) = \prod_{t=1}^n (\pi_t)^{\mathcal{I}(Z_n = t)}$
- In our infinite dimensional case $p(Z_n = t | \mathbf{V}) =$ $\prod_{t=1}^{\infty} (V_t \prod_{l=1}^{t-1} (1 V_l))^{\mathcal{I}(Z_n = t)} = \prod_{t=1}^{\infty} (V_t)^{\mathcal{I}(Z_n = t)} (\prod_{l=1}^{t-1} (1 V_l))^{\mathcal{I}(Z_n = t)}$
- Equivalently,

$$p(Z_n|\mathbf{V}) = \prod_{t=1}^{\infty} V_t^{\mathcal{I}(Z_n=t)} (1 - V_t)^{\mathcal{I}(Z_n > t)}$$
 (5)

With the truncation at T, we have

$$\begin{split} \mathbb{E}_q[logp(Z_n|\mathbf{V})] &= \sum_{t=1}^T q(Z_n > t) \mathbb{E}_q[log(1-V_t)] \\ &+ q(Z_n = t) \mathbb{E}_q[logV_t] \end{split}$$

(6)

Comparison with Collapsed and Truncated Gibbs sampling

- Collapsed Analogous to parametric cases. Integrating over G and η^* leads to a Polya Urn Scheme.
- Ben will talk more about this.

Truncated Gibbs Sampling

- Issue of sampling from the infinite dimensional quantity V.
- Solution: Truncate V to some fixed quantity T.
- Unlike truncating in the variational case, the true distribution is truncated.
- ullet The truncated process \simeq DP when the truncation level is large relative to the number of data points.

Experimental Setup

- The model DP mixture of Gaussians, with fixed covariance.
- Toy problem Each dataset contians 100 train and test points, with data dimensionality varying from 5 to 50.
- Each dimensionality has 10 synthetic datasets.

Results

\mathbf{Dim}	Mean held out log probability (Std err)		
	Variational	Collapsed Gibbs	Truncated Gibbs
5	-147.96 (4.12)	-148.08 (3.93)	-147.93 (3.88)
10	-266.59 (7.69)	-266.29 (7.64)	-265.89 (7.66)
20	-494.12 (7.31)	-492.32 (7.54)	-491.96 (7.59)
30	-721.55 (8.18)	-720.05 (7.92)	-720.02 (7.96)
40	-943.39 (10.65)	-941.04 (10.15)	-940.71 (10.23)
50	-1151.01 (15.23)	-1148.51 (14.78)	-1147.48 (14.55)

Table 1: Average held-out log probability for the predictive distributions given by variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

Convergence Time Comparison

Figure 3: Mean convergence time and standard error across ten data sets per dimension for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

Model Selection

- Truncation level was set at 20.
- Only 5 mixture components get used.

Large Scale applicability

- Clusters 5000 real world images.
- Each image is represented as 192 dimensional vectors.
- \bullet Convergence in 4 hours $\simeq 16$ iterations of Gibbs sampling.

• Optimize with respect to ν_i holding all ν_i , $j \neq i$ constant.

- Optimize with respect to ν_i holding all ν_i , $j \neq i$ constant.
- Terms containing ν_i are

$$I_{i} = \mathbb{E}_{q}[logp(W_{i}|\mathbf{W}_{-i},\mathbf{x},\boldsymbol{\theta})] - \mathbb{E}_{q}[logq_{\nu i}(W_{i})]$$
 (7)

- Optimize with respect to ν_i holding all ν_i , $j \neq i$ constant.
- Terms containing ν_i are

$$I_{i} = \mathbb{E}_{q}[logp(W_{i}|\mathbf{W}_{-i},\mathbf{x},\boldsymbol{\theta})] - \mathbb{E}_{q}[logq_{\nu i}(W_{i})]$$
 (7)

If,

$$p(w_i|\mathbf{w}_{-1},\mathbf{x},\theta) = h(w_i)exp\{g(\mathbf{w}_{-1},\mathbf{x},\theta)^T w_i - a(g(\mathbf{w}_{-1},\mathbf{x},\theta))\}$$
(8)

then,

$$\nu_i = \mathbb{E}_q[g(\mathbf{w}_{-1}, \mathbf{x}, \theta)] \tag{9}$$

Predicitve Distribution

$$p(x_{N+1} \mid \mathbf{x}, \alpha, \lambda) = \int \left(\sum_{t=1}^{\infty} \pi_t(\mathbf{v}) p(x_{N+1} \mid \eta_t^*) \right) dP(\mathbf{v}, \boldsymbol{\eta}^* \mid \mathbf{x}, \lambda, \alpha).$$

$$p(x_{N+1} \mid \mathbf{x}, \alpha, \lambda) \approx \sum_{t=1}^{T} \mathbf{E}_q \left[\pi_t(\mathbf{V}) \right] \mathbf{E}_q \left[p(x_{N+1} \mid \eta_t^*) \right]$$

Truncated Gibbs Sampling

1. For $n \in \{1, ..., N\}$, independently sample Z_n from

$$p(z_n = k | \mathbf{v}, \eta^*, \mathbf{x}) = \pi_k(\mathbf{v})p(x_n | \eta_k^*),$$

2. For $k \in \{1, ..., K\}$, independently sample V_k from Beta $(\gamma_{k,1}, \gamma_{k,2})$, where

$$\gamma_{k,1} = 1 + \sum_{n=1}^{N} \mathbf{1} [z_n = k]$$

 $\gamma_{k,2} = \alpha + \sum_{i=k+1}^{K} \sum_{n=1}^{N} \mathbf{1} [z_n = i].$

This step follows from the conjugacy between the multinomial distribution and the truncated stick-breaking construction, which is a generalized Dirichlet distribution (Connor and Mosimann 1969).

 For k ∈ {1,...,K}, independently sample η^k_k from p(η^k_k | τ_k). This distribution is in the same family as the base distribution, with parameters

$$\begin{array}{rcl} \tau_{k,1} & = & \lambda_1 + \sum_{i \neq n} \mathbf{1} \left[z_i = k \right] x_i \\ \tau_{k,2} & = & \lambda_2 + \sum_{i \neq n} \mathbf{1} \left[z_i = k \right]. \end{array} \tag{27}$$