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Twenty Thousand Feet view

@ Given a model # and data x = {xy,...xn}.

o We want to learn the model .
o Make predictions about a new data point xp1.
@ Being Bayesians we want to
@ Estimate the posterior distribution over the model(parameters)
p(0]x)
o Estimate the predictive distribution
plxnsalx) = [ p(xns1l0)p(0]x)do
@ Finally we go one step further and assume our parameters
grow with data.
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Dirichlet Processes — Stick Breaking Representation
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Dirichlet Process Mixtures

@ Generalization of finite mixture models.
@ A Dirichlet Process prior is placed over mixture components.

@ Nonparametric, do not have to specify the number of
components before hand.
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DP Mixture Model

1. Draw V; | ~ Beta(l, ), i=1{1,2,...}
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Posterior over the latent variables

o Let W={V,n* Z} and let 0 = {a, \}
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Posterior over the latent variables

o Let W={V,n* Z} and let 0 = {a, \}
@ Posterior over the latent variables takes the form:
o p(wlx, 8) = exp{log(p(x, w|6)) — log | p(x, w|d))dw}
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Posterior over the latent variables

o Let W={V,n* Z} and let 0 = {a, \}
@ Posterior over the latent variables takes the form:
o p(wlx, 8) = exp{log(p(x, w|6)) — log | p(x, w|d))dw}

@ The integral over the latent variables, makes exact computation of
the posterior intractable.
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Approximate Inference

@ Posterior is intractable.

@ Use either MCMC or approximate deterministic inference
techniques.

@ Here the authors present a mean field variational method.
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Variational Inference

o logp(x|0) = log/p(w,x|0)dw
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Variational Inference

o logp(x|0) = log

o logp(x|0) = log
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Variational Inference

o logp(x|0) = log/p(w,x|0)dw

o o, X = 10 w M
logp(x|6) /g/qu( ) o (w)
_ p(W, x|6)
° = /ogIEqm
p(W, x|0)
° = Ralos W)
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Variational Inference

(]

foge(xit) = fog [ p(w,x[6)cw

@ logp(x|t) = Io w M
fogpx(%) Ig/qy( ) qv(w)

o = /ogEqW

° > Eq/oglm

o =E,[logp(W,x|0)] — Eq[logg, (W)] = L(q)

David Blei and Michael Jordan Variational Inference for Dirichlet Process Mixtures



Variational Inference

@ KL(qu(w)llp(w(x,0)) = logp(x|0) — (Eq[logp(W, x|0)] — Eq[logq. (W)])
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Variational Inference

@ KL(qu(w)l|[p(w|x,0)) = logp(x|0) — (Eq[logp(W, x|6)] — Eq[logq. (W)])
@ Equivalently, log(p(x|0)) > Eq[logn(W,x|))] — Eq[logq. (W)]

s With the bound being tight when g, (w) = p(w|x, 6)
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Variational Inference

@ KL(qu(w)l|[p(w|x,0)) = logp(x|0) — (Eq[logp(W, x|6)] — Eq[logq. (W)])
@ Equivalently, log(p(x|0)) > Eq[logn(W,x|))] — Eq[logq. (W)]

s With the bound being tight when g, (w) = p(w|x, 6)
@ argmaxL(q) < argminKL(q,(w)||p(w|x, 8))
v v
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Variational Inference

@ KL(qu(w)l|[p(w|x,0)) = logp(x|0) — (Eq[logp(W, x|6)] — Eq[logq. (W)])
@ Equivalently, log(p(x|0)) > Eq[logn(W,x|))] — Eq[logq. (W)]

s With the bound being tight when g, (w) = p(w|x, 6)
@ argmaxL(q) < argminKL(q,(w)||p(w|x, 8))
v v
® qg,(w) is the variational distribution and v is the
corresponding variational parameter.

@ Note that the marginal probability of the data has no
variational parameter.
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Mean Field Variational Inference

@ Further assume that the variational distribution factorizes as
M
qv(w) = [[;Z1 qum(wm)
@ Now,

log(p(x|0)) > Eq[logp(W,x|0)] — Eq[logq,(W)] (1)

log(p(x|0)) > Eq[logp(W|x, 0) + log(p(x|0))] — Eq[logq.(W)]  (2)

M

log(p(x|0)) > log(p(x|0)) + Eq[logp(W|x.0)] — > Eqllogqum(Won)] (3)

m=1
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Coordinate Ascent

@ Optimize with respect to v; holding all v}, j # i constant.
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Coordinate Ascent

@ Optimize with respect to v; holding all v}, j # i constant.

o If p(wi|lw_;,x,8) is an exponential family distribution
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Coordinate Ascent

@ Optimize with respect to v; holding all v}, j # i constant.
o If p(wi|lw_;,x,8) is an exponential family distribution

@ Then the corresponding variational parameter v; which
optimizes the KL divergence has a closed form solution.

David Blei and Michael Jordan Variational Inference for Dirichlet Process Mixtures



Nonparametrics

@ The treatment so far has been general.

@ It applies to parametric cases just as much as it does to
nonparametrics.

@ Further innovations required to apply it to nonparametric
cases.
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Back to stick breaking

> ——t—tHe
Y A ~— 7
m=u 7o = va(1 —wvy) \ -

73 = v3(1 —v2)(1 —v1)

4 A

o Ifany v, =1, mj(v) =0,Vj >t
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Variational approximation for the DP mixture

@ Recall, W ={V,n* Z} and 6 = {a, \}

log(p(x|0)) = — Eq[logq,(W)]
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Variational approximation for the DP mixture

@ Recall, W ={V,n*,Z} and 0 = {a, \}

log(p(x|r, V) =

—Eqllogq(V,n*, Z)]
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Variational approximation for the DP mixture

@ Recall, W ={V,n*,Z} and 0 = {a, \}

log(p(x|r, V) =

—Eqllogq(V,n*, Z)]

@ Truncate by setting g(vr =1) = 1.

o We are truncating the variational distribution. The model is
still Nonparametric.
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Variational approximation for the DP mixture [l

@ The varlatlonal dlstrlbutlon now becomes

V 77 Z H q’}’t Vi Hqﬁ(nt Hqcbn(zn

® gy (vt) are chosen to be beta dlstrlbutlons, g-.(n;) are some
distributions in the exponential family and gy, (z,) are
multinomial distributions.

@ The variational parameters are

V:{’71’"'a’YT—lyTla"'7TT5¢15"'5¢N} (4)
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Some Gory Details

log(p(x|a, A)) =

T—-1 T N
~Eql [ @ (v) [T a7 (r) [ [ 0 (20)]
t=1 t=1 n=1
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Some Gory Details

log(p(x|a, A)) > Egllogp(V|e)] + Eqllogp(n™| )]
N

+> (Eqllogp(Z,|V)] + Eqllogp(xa| Zn)])

n=1

T-1 T N
“Eg[ [ ave(ve) [T 9 () T . (20)]
t=1 t=1 n=1
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Some Gory Details Il

T
@ In m(v) was finite dimensional p(Z, = t|V) = H(m)I(Z":t)
t=1
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Some Gory Details Il

T
@ In m(v) was finite dimensional p(Z, = t|V) = H(m)I(Z":t)
t=1
@ In our infinite dimensional case p(Z, = t|V) =
TIOATTIZ (@ = vy "5 = = T2, (Vo) &= (T (1 — V)P
t=1
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Some Gory Details Il

T
@ In m(v) was finite dimensional p(Z, = t|V) = H(m)I(Z":t)
t=1

@ In our infinite dimensional case p(Z, = t|V) =

TIOATTIZ (@ = vy "5 = = T2, (Vo) &= (T (1 — V)P

t=1
@ Equivalently,

p(Z,|V) = H VHE=I(1 v H2>1) (5)
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Some Gory Details Il

T
@ In m(v) was finite dimensional p(Z, = t|V) = H(m)I(Z":t)
t=1
@ In our infinite dimensional case p(Z, = t|V) =
[TOITIS (@ = vi) &= = T2, (Vo) " =TT (1 = Vi) P
=1
° ItEquivaIentIy,
p(Za|V) = H Sl VI VAR (5)
o With the truncation at T, we have
T
Eqllogp(ZalV)] = Y a(Zy > t)Eqllog(1— V;)]
t=1

+q(Zn = t)Eq4[logV4]
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Comparison with Collapsed and Truncated Gibbs sampling

@ Collapsed - Analogous to parametric cases. Integrating over G
and ™ leads to a Polya Urn Scheme.

@ Ben will talk more about this.
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Truncated Gibbs Sampling

Issue of sampling from the infinite dimensional quantity V.

Solution: Truncate V to some fixed quantity T.

Unlike truncating in the variational case, the true distribution
is truncated.

(]

The truncated process >~ DP when the truncation level is
large relative to the number of data points.
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Experimental Setup

@ The model - DP mixture of Gaussians, with fixed covariance.

@ Toy problem - Each dataset contians 100 train and test
points, with data dimensionality varying from 5 to 50.

@ Each dimensionality has 10 synthetic datasets.
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Dim Mean held out log probability (Std err)
\"aria,tioua,l Collapsed Gibbs  Truncated Gibbs

5 -148.08 (3.93) -147.93 (3.88)

10 5

20 -492.32 (7.54)

30 -720.05 (7.92) -720. ]QE:QG)

40 -941.04 (10.15)  -940.71 (10.23)

50 -115 1 o1 (15. "3) -1148.51 (14.78)  -1147.48 (14.55)

Table 1: Average held-out log probability for the predictive distributions given by vari-
ational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.
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Convergence Time Comparison

1500 2200 3200 4700

Time in seconds
500 700 1000

300
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Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.
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Model Selection

initial iteration 2 iteration 5

@ Truncation level was set at 20.

@ Only 5 mixture components get used.
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Large Scale applicability

50 . i

e hﬁﬁﬂﬁﬂ ﬁﬁ
EE I.ﬂ II

@ Clusters 5000 real world images.
@ Each image is represented as 192 dimensional vectors.
@ Convergence in 4 hours ~ 16 iterations of Gibbs sampling.
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Coordinate Ascent

@ Optimize with respect to v; holding all v}, j # i constant.
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Coordinate Ascent

@ Optimize with respect to v; holding all v}, j # i constant.

@ Terms containing v; are

I = Eqllogp(W;|W_j, x, 0)] — Eqllogq,;(W;)]  (7)
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Coordinate Ascent

@ Optimize with respect to v; holding all v}, j # i constant.

@ Terms containing v; are
li = Eq[logp(W;|W _;, x, 8)] — Eq[logq, ;(W;)] (7)
o If,
)T wi—a(g(w-1,x,0))}
(8)

p(wilw_1,x,0) = h(w;)exp{g(w_1,x,0

@ then,
vi = Eqlg(w-1,x,0)] 9)
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Predicitve Distribution

Py |x, o) = / (Z m::v)pr:a-_.\.-m:;::]) dP(v.n* | x. )\ ).

t=1

T
plengr | X a,A) = Z E, [m( V)] Eq [plzny1 | )]
*:1
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Truncated Gibbs Sampling

[

. For k<

. independently sample Z,, from

plzn = k| v,n",x) = m(v)p(e, [ ),
. independently sample V}, from Beta(vs.1,y.2), where
L+ 1 =H]

K N
Y2 = a3 e =il

Vel =

This step follows from the conjugacy between the multinomial distribution and
the truncated stick-breaking construction, which is a generalized Dirichlet distri-
bution (Connor and Mosimann 1969).

{1,..., K}, independently sample 5 from p(z; | 7). This distribution is
in the same family as the base distribution, with parameters

A2 Lz
T2 = M+, [z

Tk,1
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