
ELSEVIER

Web caching with consistent hashing

David Karger 1, Alex Sherman Ł,1, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina,
Ken Iwamoto, Brian Kim, Luke Matkins, Yoav Yerushalmi

MIT Laboratory for Computer Science, 545 Technology Square, Room 321, Cambridge, MA 02139, USA

Abstract

A key performance measure for the World Wide Web is the speed with which content is served to users. As traffic
on the Web increases, users are faced with increasing delays and failures in data delivery. Web caching is one of the key
strategies that has been explored to improve performance.
An important issue in many caching systems is how to decide what is cached where at any given time. Solutions have

included multicast queries and directory schemes.
In this paper, we offer a new Web caching strategy based on consistent hashing. Consistent hashing provides an

alternative to multicast and directory schemes, and has several other advantages in load balancing and fault tolerance.
Its performance was analyzed theoretically in previous work; in this paper we describe the implementation of a
consistent-hashing-based system and experiments that support our thesis that it can provide performance improvements.
 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Caching; Hashing; Load balancing

1. Introduction

As the World Wide Web becomes a dominant
medium for information distribution, mechanisms
for delivering Web traffic efficiently and reliably are
needed. However, today’s data delivery methods are
prone to unpredictable delays and frequent failures.
Two main causes of these delays and failures are
congested networks and swamped servers. Data trav-
els slowly through congested networks. Swamped
servers (facing more simultaneous requests than their
resources can support) will either refuse to serve cer-
tain requests or will serve them very slowly. Network
congestion and server swamping are common be-

Ł Corresponding author.
1 E-mail: {karger,asherman}@theory.lcs.mit.edu

cause network and server infrastructure expansions
have not kept pace with the tremendous growth in
Internet use.
Servers and networks can become swamped unex-

pectedly and without any prior notice. For example,
a site mentioned as the ‘cool site of the day’ on the
evening news may have to deal with a 10,000-fold
increase in traffic during the next day. Thus, plan-
ning ahead is of limited benefit; the best schemes
for handling load will adapt to changing circum-
stances.

1.1. Web caching

Caching has been employed to improve the ef-
ficiency and reliability of data delivery over the
Internet. A nearby cache can serve a (cached) page

 1999 Published by Elsevier Science B.V. All rights reserved.

126

quickly even if the originating server is swamped
or the network path to it is congested. While this
argument provides the self-interested user with the
motivation to exploit caches, it is worth noting that
using widespread use of caches also engenders a
general good: if requests are intercepted by nearby
caches, then fewer go to the source server, reducing
load on the server and network traffic to the benefit
of all users.
The most obvious approach, of providing a group

of users with a single, shared caching machine, has
several drawbacks. If the caching machine fails, all
users are cut off from the Web. Even while running,
a single cache is limited in the number of users
it can serve, and may become a bottleneck during
periods of intense use. Finally, two important limits
arise on the hit rate a single cache can achieve. First,
since the amount of storage available is limited, the
cache will suffer ‘false misses’ when requests are
repeated for objects which it was forced to evict
for lack of space. Second, the limit on the number
of users that the cache can serve works against the
desire to aggregate requests from as many users as
possible for caching purposes: typically, the more
user requests are aggregated together, the better the
hit rate becomes as one user requests objects already
requested by other users.

1.2. Related work

To achieve fault tolerance, scalability, and aggre-
gation of larger numbers of requests (which improves
hit rates) several groups [2,4,5,7] have proposed us-
ing systems of several cooperating caches. These
systems all share certain common properties. Every
client selects one primary cache in the system. A
request from the client goes to its primary cache. If
the primary cache misses, instead of going directly
to the content server, it tries to locate the requested
resource in other cooperating caches. If it succeeds,
a slow fetch of the resource from the content server
is replaced by a fetch of the resource from a (pre-
sumably closer) cooperating cache. Thus, the other
cooperating caches serve as a ‘second level cache’ to
reduce the cost of misses in the primary cache.
The systems differ in precisely how data is lo-

cated in the case of a primary cache miss. Some
schemes broadcast a query to all other caches using

multicast [7] or UDP broadcasts [2]. Besides con-
suming excess bandwidth with broadcast queries, the
primary cache must wait for all cooperating caches
to report misses before it contacts the content server;
this can slow down performance on second-level
cache misses. Other schemes use directories, either
centralized [5] or repeatedly broadcast to support
local queries [4]. Directory queries or transmissions
also consume bandwidth, and centralized directories
can become new points of failure in the system [5].
Another problem with all these systems is the

duplication of data among caches. Any cache might
be queried for any piece of data, which will cause
it to store a copy. On a second-level hit, network
bandwidth and time are wasted copying the data to
another cache. Worse, these copies evict other pages
that can be requested, reducing the number of cache
hits. If cooperating caches are all ‘near’ each other,
one might hope to effect a larger cache (with fewer
false misses) by storing each object only at one or a
few machines [9].

1.3. Our work

In this paper we suggest an approach that does
away with all inter-cache communication, yet allows
caches to behave together in one coherent system.
Cache Resolver, the distributed Web caching system
that we developed, eliminates inter-cache communi-
cation on a miss by letting clients decide for them-
selves which cache has the required data. Instead
of contacting a primary cache that, on a miss, lo-
cates the desired resource in another cache, a user’s
browser directly contacts the one cache that should
contain the required resource. Browsers make their
decision with help of a hash function that maps re-
sources (or URLs) to a dynamically changing set of
available caches.
Hashing provides several benefits over broadcast-

and directory-based schemes. A machine can locally
compute exactly which cache should contain a given
object. A unicast suffices to get the object or de-
termine that it is not cached, decreasing network
usage compared to other schemes. It also discovers
misses faster than multicast schemes that must wait
for all caches to respond. It avoids the maintenance
and query overhead associated with directory based
schemes. It does not create new points of failure for

127

the system — indeed, our scheme exhibits substan-
tial reliability properties that we will discuss later.
Although the above advantages seem enough to

motivate a hash-based solution, we also explored an-
other aspect: it lets us push the page-location task
down to the individual clients. A directory-based
location scheme involves too much overhead to in-
volve every browser, but a hash-based scheme is
easy to implement at the browser level. Thus, prior
schemes assumed that each client always contacted
one fixed primary cache which, on a miss, contacted
other caches to see if they had the page. We let
the browser decide directly which cache to contact.
This removes the need for an intermediary cache,
thus improving response time. Furthermore, since all
clients contact the same cache for a given page, our
caching system suffers only one miss per page, re-
gardless of the number of cooperating caches, rather
than one (primary-cache-) miss per cache per page.
This reduces the miss rate. The miss rate is further
reduced because we avoid making redundant copies
of a page; this leaves more space for other pages to
be kept in the cache and hit.
While a hash-based scheme has several attractive

properties, non-trivial issues must be considered to
implement it properly. A theoretical paper developed
a tool called consistent hashing to address some of
these issues [6]. This is the basis of our current
implementation work.
A similar proposal for the Cache Array Rout-

ing Protocol (CARP) appeared in an Internet Draft
[3]. CARP is used in the Microsoft Proxy Cache
[8]. CARP shares many of the intuitions of our ap-
proach, though it has not been justified theoretically
as in [6]. An important difference between our pro-
posal and that of CARP is how our hash function
is implemented. Current browsers do not have all
the functionality needed to support such a scheme.
CARP places all consistent hashing responsibility on
the browser, which creates some drawbacks we will
discuss later. We instead make unusual (but correct)
use of the Domain Name System (DNS) to support
the browsers’ use of hash functions. With modi-
fication to browsers, consistent hashing could be
implemented entirely inside them without recourse
to DNS; however, the DNS approach exhibits some
benefits which may make it the correct one for the
long term.

1.4. Paper overview

In Section 2 of the paper, we describe consistent
hashing in more detail. In Section 3, we describe the
implementation of our Web caching system that uses
consistent hashing. We compare our system to other
Web caching systems in Section 4. We mention other
positive aspects of our Web caching system, such as
fault tolerance and load balancing, in Section 5. We
conclude in Section 6.

2. Consistent hashing

Our system is based on consistent hashing, a
scheme developed in a previous theoretical paper [6].
Here, we motivate consistent hashing and describe its
simple implementation. After outlining its theoretical
justification, we describe experiments showing that
it also works well in practice.

2.1. Needs

The goal of our system is to let any client perform
a local computation that maps a URL to the partic-
ular cache that contains it. Hashing is a commonly
used tool for this purpose. For example, given a set
of 23 caches numbered 0; : : :; 22, we might hash
URL u to cache h.u/ D 7uC4mod 23 (we can think
of the URL u as a bit-string which represents a large
number). A common intuition about hash functions
is that they tend to distribute their inputs ‘randomly’
among the possible locations. Such a random distri-
bution will intuitively be even, meaning that no one
cache becomes responsible for handling a dispropor-
tionate share of requested pages. This load-balancing
feature of hashing is highly desirable in our appli-
cation, since a disproportionately loaded cache will
become the bottleneck for the entire system.
Unfortunately, standard hashing has several draw-

backs when applied to a caching system. Perhaps the
most obvious is that caching machines will come up
and go down over time. Consider what happens when
a 24th cache is added to the system just described.
A natural change is to begin using the hash function
h0.u/ D 7u C 4mod 24. Unfortunately, under such
a change, essentially every URL is remapped to a
new cache. This has the effect of flushing all those

128

A

B

1
2

3
4

5

(i)

5

A

B

C

1

2

3
4

5

(ii)

Servers:A,B,C
Items: 1,2,3,4,5

Fig. 1. (i) Both URLs and caches are mapped to points on a circle using a standard hash function. A URL is assigned to the closest
cache going clockwise around the circle. Items 1, 2, and 3 are mapped to cache A. Items 4, and 5 are mapped to cache B . (ii) When a
new cache is added, the only URLs that are reassigned are those closest to the new cache going clockwise around the circle. In this case,
when we add the new cache, only items 1 and 2 move to the new cache C . Items do not move between previously existing caches.

URLs from the caching system: if our system looks
for a URL in the new location, the fact that it is
cached in the old is useless — we get a miss. This
problem is exacerbated by the fact that information
propagates through the Internet asynchronously. At
any one time, different clients will have different
information about what caches are up or down. We
refer to the set of caches that a given machine knows
about as its view, and observe that at any time, many
different views will pervade the system. This has two
potential drawbacks. If each view causes a URL to
map to a different cache, we will soon find that each
URL is stored in all caches — precisely the problem
we were trying to avoid. Furthermore, with these
multiple views in place it becomes difficult to argue
that all caches will receive the same amount of load
— the different views could steer too much load to
one cache, even if each view in isolation appears to
balance load appropriately.
Thus, it is critical for our hash function to map

items consistently: regardless of the existence of
multiple, changing views of the system, each item
should be mapped to only a small number of ma-
chines, and in such a way that all machines get
roughly the same load of items.

2.2. Consistent hashing

A simple-to-implement consistent hash function
[6] satisfies the needs described in the previous

section. Choose some standard base hash function
that maps strings to the number range [0; : : :; M].
Dividing by M , think of it as a hash function that
maps to the range [0; 1], which can in turn be thought
of as the unit circle 2. Each URL is thus mapped to a
point on the unit circle. At the same time, map every
cache in the system to a point on the unit circle. Now
assign each URL to the first cache whose point it
encounters moving clockwise from the URL’s point.
An example is shown in Fig. 1.
Consistent hashing is easy to implement. All the

‘cache points’ can be stored in a binary tree, and the
clockwise successor to a URL’s point can be found
(after hashing the URL point) via a single search
in the binary tree. This supports consistent hashing
to n caches in O.log n/ time; an alternative imple-
mentation [6] that breaks the circle into equal-length
intervals and ‘groups’ the cache points according to
interval can improve this lookup to constant time, re-
gardless of the number of caches. It should be noted
that the scheme proposed in CARP [3,8] takes time
linear in the number of caches, and is thus much less
scalable to large numbers of caches.
For technical reasons detailed in [6], it is quite im-

portant to make a small number of copies of each
cache point — that is, to map several copies of each

2 For convenience, we will refer to a circle with unit circumfer-
ence as a unit circle. Usually a unit circle denotes a circle with a
radius of one.

129

cache to different ‘random’ points on the unit circle.
This produces a more uniform distribution of URLs
to caches.

2.3. Analysis

We now explain why the consistent hashing scheme
just described will have the properties we desire. This
is an intuitive summary of formal arguments [6].
Our argument draws from the intuition that the

base hash function will map both URLs and cache
points ‘randomly’ to the unit circle. Consider what
happens when we add a new cache c to the system.
This cache is mapped into the unit circle, and ‘steals’
certain URLs from other caches. Which URLs are
stolen? Those that lie near c on the circle. But by
our intuition, URLs are random on the circle. Thus
few of them are likely to be near c, meaning that few
will be stolen. Observing that URLs which are not
stolen by the new cache do not move, we deduce our
first desired property: when we add a new cache, few
URLs change. Thus most of the cached items persist
as hits in the modified system.
A similar argument applies to the problem of

multiple views. A cache will get stuck with an item
only if it is the closest cache to the item in some
view. But if the cache is far from the item, then (by
the intuition about random placement of caches) it
becomes quite likely that in every view, some cache
is closer. This prevents the cache from being stuck
with the item. It follows that only caches close to
an item will have to hold it. But the intuition about
random placement of caches tells us that only a few
caches end up near any one item. In other words,
even when there are many caches, only a few caches
are ever responsible for any one item.
The intuitions are formalized in the following the-

orem of [6]. The theorem refers to a good base hash
function (the one used to map URLs and caches to the
unit circle). In [6] it is shown that a random universal
hash function constructed according to certain princi-
ples is good. In practice, standard hash functions that
mix well (e.g., MD5) will most likely suffice.

Theorem 2.1 ([6]). Consider a system with m cach-
ing machines and c clients, each with a view of an ar-
bitrary set of half the caching machines. If !.log m/
copies of each caching machine are made and the

copies and URLs are mapped to the unit circle us-
ing a good basic hash function, then the following
properties hold:
Balance: In any one view, URLs are distributed uni-
formly over the caching machines in the view.

Load: Over all the views, no machine gets more than
O.log c/ times the average number of URLs.

Spread: No URL is stored in more than O.log c/
caches.
Consistent hashing is therefore a good hashing

scheme to use in the dynamically changing and
uncertain domain of the Internet.

2.4. Implementation results

We list a few brief statistics that demonstrate the
usefulness of consistent hashing. First, consistent
hashing is a relatively fast operation. For our testing
environment, we set up a cache view using 100 caches
and created 1000 copies of each cache on the unit cir-
cle. We timed the dynamic step of consistent hashing
on a Pentium II 266 MHz chip. (The dynamic step
includes URL string evaluation, base hash function
evaluation, and traversing a binary tree.) On average
each call to the hash function took 20µs. This is about
0.1% of the total time necessary to transmit a 20-kB
file from a local cache over 10 Mbit Ethernet. The
value of 20 µs can be significantly reduced if we use
a bucket array in the underlying cache view represen-
tation as opposed to the regular binary tree currently
used by our implementation.
We also took some measurements to show that

consistent hashing balances well among the caches,
as its low load property stipulates. We used a week’s
worth of logs from the theory.lcs.mit.eduWeb
server. During that period of time, a total of 26,804
unique URL requests were made. We ran these
unique URLs through our hash function with a vary-
ing number of caches to see how well it would
distribute the files among the caches.

Caches Avg. entries Std. Dev. Std. Dev. as
in cache % of mean

3 8934 246 2.7
5 5360 173 3.2
8 3350 112 3.4
10 2680 68 2.6

130

The above data shows that the standard deviation
of the number of entries is quite low: around 3% of
the mean. These numbers improve when the data set
is larger.
In a second experiment, we mapped 1500 names

to caches using multiple views, involving 80 ma-
chines of which 5 were variably up or down in each
view. The total number of (item,cache) pair rose to
1877, only a 25% increase on the base number.

3. Our system

As outlined above, the system we aim to imple-
ment seemed simple: a few standard, non-interacting
Web caches combined with some hashing logic on
the browsers. But when we began to implement our
system, we quickly discovered that current browsers
are not flexible enough to support consistent hashing
unaided. Thus, in order to build a system compatible
with current browsers, we made extensive use of the
Domain Name System (DNS) to support consistent
hashing. Our Web caching system, called the Cache
Resolver, consists of three major components: the
actual cache machines for storing the content, users’
browsers that direct requests toward virtual caches,
and the domain name servers (also known as resolu-
tion units) that use consistent hashing to resolve the
virtual caches into specific physical addresses of the
cache machines.

3.1. Caches

We installed a distribution of the Squid proxy
cache package. A proxy cache replies with the data
if it has a valid copy stored. Otherwise, it fetches the
data from the original Web server and stores a copy
as well. Squid uses an LRU replacement strategy.
For load-balancing and fail-over purposes that will
be discussed later, we run additional software on the
same physical machines as the caches that monitors
the squid process. When queried by other units of our
system, this software replies with the status (dead or
alive) and load information of the cache. When the
squid is alive, the load represents the byte transfer
rate at which the cache serves its Web requests over
the last 30-s interval of service.

3.2. Mapping to caches

To implement browsers’ consistent hashing, our
first hope was to exploit the autoconfiguration
function present in most commonly used browsers
(Netscape 2.0x and higher and Internet Explorer 3.01
and higher). Users can specify a function written in
JavaScript that will be invoked on every request
and will select a list of proxy caches to be con-
tacted based on the URL string being requested. The
browser contacts the proxy caches in the order listed
until it contacts one that responds with the data.
Unfortunately, autoconfiguration is too limited to

support consistent hashing. The fundamental prob-
lem is that the autoconfiguration script is down-
loaded once, manually. Should the set of proxy
caches change, the mapping function would become
incorrect.
In order to get around this problem, we decided

to use DNS. We could set up our own DNS servers,
and modify them to support consistent hashing. This
consistent hashing could be ‘propagated’ to browsers
during name resolution. More precisely, we wrote an
autoconfigure script that performs a standard hash of
the input URL to a range of 1000 names that we call
virtual caches. We then used DNS to map the 1000
virtual cache names onto actual cache IP addresses
via consistent hashing.
In our testing, we discovered that some versions of

the browsers under some operating systems will not
reinvoke DNS even if they contain an expired resolu-
tion of a virtual name. If the cache identified by that
resolution goes down, the browser will fail to load
the page. To ameliorate this problem, our script actu-
ally returns a list of names (here, five names) instead
of just one, to make up for the problem of ‘broken’
browsers. By returning a list, we allow these broken
browsers a few more chances to achieve a working
resolution of a physical name. The last value on the
list is ‘DIRECT’ which is understood by the browser
as an instruction to connect directly to the content
server if all the other names fail.

3.3. DNS servers

The primary function of our DNS system is to
resolve the virtual names generated by the users’
JavaScript function to the actual physical IP ad-

131

dresses of the caches. We use a number of DNS
servers each running a copy of unmodified BIND
8.0 distribution, an implementation of DNS protocol.
BIND reads the mappings of virtual names to IP
addresses from a records file, that is being updated
dynamically by another program, called ‘dnshelper’.
Dnshelper monitors the set of caches, and runs con-
sistent hashing to map all of the 1000 virtual names
(see Section 3.2) to the range of only the live cache
machines. If the set of available caches changes,
‘dnshelper’ signals BIND to reload the records file
that contains new mappings.
The large number of virtual cachesmeans that each

will receive only a tiny fraction of the total system
load. Consistent hashing guarantees that the num-
ber of virtual names assigned to each cache will be
evenly distributed among the caches. These two facts
together ensure that page load is uniformly distributed
over caches.We describe more advanced load balanc-
ing strategies with consistent hashing in Section 5.2.

3.3.1. Discussion of DNS
Our use of DNS does in some sense violate our

plan to place cache location functionality inside the
browsers. However, it can be defended on several
fronts. DNS is a standard tool for locating objects,
and we are using it in that capacity instead of go-
ing to the effort of implementing our own protocol.
Note that on any page request, a typical non-caching
browser will perform a DNS resolution to find the
page’s server. We are simply replacing that reso-
lution with one to identify a cache. Such a DNS
resolution typically goes to a nearby DNS resolver,
so should not add substantial latency to the page re-
quest. While our system now becomes dependent on
proper functioning of DNS, any failure of DNS will
likely bring the user’s browsing to an end anyway, so
we haven’t really added a failure point to the system.
A second argument regarding DNS is that the

per-request lookups can be done away with if our
system proves itself. DNS is used only to create a
mapping from a set of 1000 names to IP addresses.
With minor modifications to browsers, such a map-
ping can easily be stored at the browser. Indeed,
current browsers already maintain a cache of roughly
10 DNS entries; all we would have to do is raise
this to 1000. Thanks to the properties of consistent
hashing, the entries don’t even need to be particu-

larly up to date. Thus, a browser can be very lazy
about updating its map, dropping a particular cache
if it fails to respond, and lazily downloading updated
lists of available caches when it happens to open a
connection to a cache.
Although we could get rid of DNS, at present we

see no reason to do so. In our experiments, DNS
resolution never noticeably affected the performance
of our system.

4. Tests

We implemented our Web caching system be-
cause we believed that our design warranted a better
performance than the existing Web caching system
we studied. In this paper we compare our Cache
Resolver against two such systems: the Harvest Sys-
tem and the CRISP described in Section 1.2. We
demonstrate results that corroborate our hypothesis.

4.1. Test setup

To test our system, we used a network of seven
machines connected to one 100-Mb switch. Three of
the machines ran Squid, the proxy cache program.
Another machine was designated as a Web server
and was placed on a 10-Mb link in order to make
data transfer with the Web server costly. Another
machine ran a copy of BIND and was the designated
domain name server using consistent hashing to
resolve names from a virtual space of 1000 names
and the three proxy caches. The sixth machine was
used to run the test driver. The last machine was used
either as a directory for the CRISP test or a parent
cache in the Harvest System test.

4.2. Test driver

For the test driver, we used Surge [1], a Web load
generating tool developed at Boston University. The
designers of Surge studied Web traffic and developed
their generator to simulate a proper distribution of
object request sizes and frequencies. Prior to the test,
Surge generates a database of files to be copied to the
Web server. We generated a database of 1500 files of
varying sizes with a total size of 34 Mb. Surge also
generates a sequence of requests that it goes through

132

during the test, where each file could be requested
more than once. The number of clients each running
a specified number of threads is specified to Surge as
an argument. Surge then simulates those clients that
together go through a request schedule that Surge
creates. Each request represents an object with a
number of embedded Web files that may overlap
among several objects and different files may be
requested different numbers of times. The detailed
mathematical distribution model used by Surge to
simulate a Web server load is described in [1].
We modified Surge to run in two separate modes:

Common Mode and Cache Resolver Mode. Common
Mode represents a common cache setup where a set
of users always use one local cache and when a
miss occurs, that cache either fetches the data from
another cache or from the primary content server. For
the Common Mode, we run Surge with three clients,
where each client talks to its own proxy cache. (A
client in Surge runs many threads and represents
a whole set of users.) The Cache Resolver Mode
was designed to test our system. In this mode, each
of the three clients executes a simple hash function
similar to the autoconfiguration function utilized by
our users. That function takes the URL requested
as input and returns a set of virtual names. Surge
clients proceed to resolve the names in that set to IP
addresses through our DNS unit.

4.3. Results

We ran tests to compare the Cache Resolver with
the Common Mode under various proxy cache con-

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5 10 15 20 25 30 35 40

Ca
ch

e M
iss

 R
at

e

Size of Each Cache in MBytes

Cache Resolver Mode Miss Rate
Common Mode Miss Rate

25

30

35

40

45

50

55

60

65

70

5 10 15 20 25 30 35 40

Av
er

ag
e R

eq
ue

st
La

te
nc

y
in

 M
ill

ise
co

nd
s

Size of Each Cache in MBytes

Cache Resolver Mode Latency
Common Mode Latency

Fig. 2. Common Mode vs. Cache Resolver Mode. X-axis represents cache sizes in Mb of all the caches used in the test and Y-axis is the
cache miss rate (left figure) and average latency in milliseconds (right figure).

figurations. We then analyzed proxy cache logs to
compare miss rates for different test runs. We ex-
pected to see lower miss rates for the Cache Re-
solver Mode for two reasons. First of all, the Cache
Resolver Mode assigns data to specific caches. Also,
in these tests we varied cache capacities from 9 Mb
to 36 Mb. Since the total database is 34 Mb, caches
with smaller sizes will have higher miss rates, be-
cause data could be forced out of caches with LRU.
In each test we ran, caches were cleared from previ-
ous data storage. The three caches were equal in their
capacities for each test. Capacities took on values of
9, 12, 18, 24, 30 and 36 Mb for different tests. In the
first set of tests we did not configure proxy caches
to communicate among one another. They simply
fetched data from the origin server on a miss. For
this basic configuration, Fig. 2 shows higher miss
rate displayed by the Common Mode than the Cache
Resolver Mode. The difference in the miss rates is
even higher with smaller cache capacities, where
the data duplication of the Common Mode has even
worse effect.
We also used our setup to test three other com-

mon cache system configurations. We tested Sibling
Configuration, where all three caches were set up
as siblings and used multicast protocol to check for
data in other caches on a miss. We tested a Hierar-
chy Configuration, where we added another cache as
a parent to the siblings in the style of the Harvest
approach. Finally, we tested a CRISP configuration,
where a central directory was set up to be queried
by all the caches on a miss. For each system, we
measured the primary cache miss rate (the miss rate

133

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5 10 15 20 25 30 35 40

M
iss

 R
at

e

Size of Each Cache in MB

Sibling Config -First Cache Miss
Sibling Config - System Miss

Crispy Config -First Cache Miss
Crispy Config - System Miss

Hierarchy Config -First Cache Miss
Hierarchy Config -System Miss

25

30

35

40

45

50

55

60

65

70

5 10 15 20 25 30 35 40

Av
er

ag
e R

eq
ue

st
La

te
nc

y
in

 M
ill

ise
co

nd
s

Size of Each Cache in MBytes

Cache Resolver Mode Latency
Sibling Config Latency

Hierarchy Config Latency
Crispy Squid Config Latency

Fig. 3. Miss rates and latencies of three additional configurations.

at the first cache queried by users) and system miss
rate (the miss rate of the whole cache system, when
no cache had the required data). Fig. 3 shows that the
primary cache miss rate for all three configurations
resembles the miss rate of the Common Cache Mode
displayed in Fig. 2, and the system miss rate for all
of the configurations is almost as good as the Cache
Resolver Mode’s miss rate. For these three systems,
there is a penalty associated with the primary cache
miss, namely, additional inter-cache communication
to check who has the data and inter-cache data trans-
fer. In addition, each inter-cache data transfer results
in data duplication which leaves less room in the
cache’s disk and, most importantly, RAM for fast
user service. When the user is left to decide which
cache to turn to via a hash function, the penalties
associated with extra communication in the critical
loop is avoided.

5. Extensions

In this section, we discuss extensions to our basic
system that provide locality to users, load balancing
and fault tolerance.

5.1. Locality

Regardless of caching scheme, user latency is
greatly influenced by the proximity of the cache
servers. Our system ensures that users are always
served by the caches in their physically local regions.
Our caches are split among geographical regions

and the users are served only from the caches in
their region. We place the knowledge of determining
the users’ geographical region inside the JavaScript
function in the users’ browsers. The JavaScript func-
tion is customizable: when users download it, they
are given a choice of regions. The virtual names
generated by the JavaScript function take on the
following form: A456.ProxyCache3.com, where
‘456’ is the hash of the URL and ‘3’ represents the
variable geographical region.
We then split our DNS system into a two-layer

hierarchy. The top layer DNS servers resolve for
the part of the name that contains geographical in-
formation and direct the user’s DNS resolver to a
set of bottom layer DNS servers that correspond
to the user’s geographical region. The bottom layer
DNS servers are placed physically in a specific ge-
ographical region of caches and they resolve vir-
tual names in terms of IP addresses of only those
caches.
When resolving the name such as A456.Proxy

Cache3.com, the user’s DNS resolver is first di-
rected to a top layer DNS that can resolve the second
part of the name: ‘proxyCache3’ and then that DNS
directs it to a set of bottom layer DNS servers that re-
solve the first part of the name: ‘A456’. The bottom
layer DNS resolves in terms of its geographically
local servers, which are also local to the user.

5.2. Advanced load balancing: hot pages

We have mentioned in Section 2 that we achieve
load balancing among our servers since each server

134

in a local region is assigned to the same fraction of
virtual names. This is probably a good approxima-
tion when most items are requested with the same
frequency. However, there is a number of items on
the World Wide Web that are very popular, and
others that are not. Items that are popular, such as
the CNN front page, for example, will be requested
with far greater frequency than most other items.
Such ‘hot’ items will cause a high load on the cache
servers that are responsible for caching these items.
Such servers can easily get swamped with requests,
and either die or start servicing users very slowly.
In order to handle this situation, ideally we would

want to know which resources are hot and make sure
that the hot resources are served by a larger set of
caches. This decision would need to take place at our
bottom layer DNS servers that ultimately determine
the mapping between virtual names and IP addresses.
The solution is to map a ‘hot’ virtual name to a list
of IP addresses instead of just one. By default, when
configured to return a list, BIND DNS round robins
through the list, so only a fraction of the users will
get a specific IP address when querying DNS for that
virtual name. Thus the load from that ‘hot’ virtual
name will be spread among the IP addresses on the
list returned by BIND DNS.
Unfortunately, it is not trivial to establish which

virtual names are hot and which are not. However,
we do get some indication from the load measure
on each cache. Since the DNS servers know the
mapping from virtual names to IP addresses we can
establish which set of virtual names is responsible for
a high load on a particular cache. That set includes
one or more hot virtual names. Because we want
to prevent servers from being swamped, we take
an aggressive step by spreading all of the virtual
names mapped to a hot server to all of the caches
in the region. (Meaning that immediately we map
each virtual name in the set to the list of all cache
IP addresses in the region so that load caused by this
virtual name is spread to the entire region.) Then, we
slowly reduce the size of the mapping by subtracting
from it one IP address at a time. If, at any point,
a reduction step causes the load on the server to
increase again, we reverse the reduction and reduce
from a different subset of the spread names. In this
way, we soon reach a balance with some virtual
names mapped to variable size lists of caches.

5.3. Fault tolerance

In addition to efficient cache management and
load balancing, our system demonstrates a very high
level of fault tolerance. First of all, since the physical
IP addresses are abstracted from the user through
virtual names, users are protected from failures of
individual caches. Browsers are not required to time
out on attempting to connect to those machines,
as the virtual names will resolve to alternative IP
addresses. In addition, our system is free of single
points of failure, such as the centralized directory
of the CRISP. If the centralized directory fails, the
CRISP system breaks and the cache machines start
acting as individual caches. In our system, there are
no units solely responsible for critical tasks such
as the centralized directory of CRISP, or a primary
cache that serves as system entry point for a group
of users. In the Cache Resolver, as long as some
DNS machines function, the virtual names will be
resolved, and as long as some caches in a region are
alive, the virtual names can be resolved in terms of
their IP addresses.

6. Conclusion

In Section 4, we compared our system to other
cache systems. We demonstrated that when the user
is responsible for knowing which cache has the ap-
propriate data, significant penalties in the critical
loop of a user request can be avoided. This knowl-
edge can be provided to the user with a hash func-
tion. Since it is likely that users of a large network,
such as the Internet, may have inconsistent views
of live caches, we suggest the use of a Consistent
Hash function which balances data quite well de-
spite conflicting user views. Additionally, we have
described implementation of our system that uses
Consistent Hash function in order to show that it is
quite practical to integrate such a system into the
World Wide Web. Our system handles locality is-
sues, balances load among caches, and possesses a
high level of fault tolerance that is absent from other
Web caching systems. In conclusion, we believe that
through the efficient use of caches, consistent hash-
ing can significantly improve the efficiency of the
World Wide Web.

135

Acknowledgements

We would like to thank Frans Kaashoek for his
help and advice.

References

[1] P. Barford and M. Crovella, Generating representative Web
workloads for network and server performance evaluation,
in: Sigmetrics, 1997.

[2] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz and
K. Worrell, A hierarchical Internet objectcache, in: USENIX,
1996.

[3] J. Cohen, N. Phadnis, V. Valloppillil and K.W. Ross, Cache
array routing protocol v. 1.0, http://www.ietf.org/internet-dra
fts/draft-vinod-carp-v1-03.txt, September 1997.

[4] L. Fan, P. Cao, J. Almeida and A.Z. Broder, Summary cache:
a scalable wide-area Web-cache sharing protocol, Technical

Report 1361, Computer Science Department, University of
Wisconsin, Madison, February 1998.

[5] S.A. Gadde, J. Chase and M. Rabinovich, A taste of crispy
squid, in: Workshop on Internet Server Performance, June
1998, http://www.cs.duke.edu/ari/cisi/crisp/

[6] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin
and R. Panigrahy, Consistent hashing and random trees:
distributed cachine protocols for relieving hot spots on the
World Wide Web, in: Proc. 29th Annu. ACM Symp. on
Theory of Computing, 1997, pp. 654–663.

[7] R. Malpani, J. Lorch and D. Berger, Making World Wide
Web caching servers cooperate, in: Proc. 4th Int. World
Wide Web Conference, 1995, pp. 107–110.

[8] Microsoft Proxy Server, White paper, http://www.microsoft.
com/proxy/guide/CarpWP.asp, 1998.

[9] P. Yu and E.A. MaxNair, Performance study of a collab-
orative method for hierarchical caching in proxy servers,
Technical Report RC 21026, IBM T.J. Watson Research
Center, 1997.

