
BorderPatrol: Isolating Events for Black-box Tracing

Eric Koskinen
Department of Computer Science

Brown University
115 Waterman St., Providence,

Rhode Island 02912, USA
ejk@cs.brown.edu

John Jannotti
Department of Computer Science

Brown University
115 Waterman St., Providence,

Rhode Island 02912, USA
jj@cs.brown.edu

ABSTRACT

Causal request traces are valuable to developers of large con-
current and distributed applications, yet difficult to obtain.
Traces show how a request is processed, and can be ana-
lyzed by tools to detect performance or correctness errors
and anomalous behavior.

We present BorderPatrol, which obtains precise request
traces through systems built from a litany of unmodified
modules. Traced components include Apache, thttpd, Post-
greSQL, TurboGears, BIND and notably Zeus, a closed-
source event-driven web server. BorderPatrol obtains traces
using active observation which carefully modifies the event
stream observed by modules, simplifying precise observa-
tion. Protocol processors leverage knowledge about standard
protocols, avoiding application-specific instrumentation.

BorderPatrol obtains precise traces for black-box systems
that cannot be traced by any other technique. We con-
firm the accuracy of BorderPatrol’s traces by comparing to
manual instrumentation, and compare the developer effort
required for each kind of trace. BorderPatrol imposes lim-
ited overhead on real systems (approximately 10-15%) and
it may be enabled or disabled in at run-time, making it a
viable option for deployment in production environments.

Categories and Subject Descriptors

C.4 [Performance of Systems]; D.2.5 [Software Engi-
neering]: Testing and Debugging–Distributed debugging,
testing tools, tracing; K.6.1 [Project and People Man-
agement]: Systems analysis and design; K.6.4 [System
Management]

General Terms

Performance, Measurement

Keywords

Performance debugging, black box systems, distributed sys-
tems, performance analysis, causal paths

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

External

Apache-1

1 1

Apache-2

1 112 2

TurboGears-1

211

PostgreSQL-1

3 5 7 94 6 8 10

2 2

Figure 1: A BorderPatrol trace of a three-tier web appli-
cation. Four external requests (each shown with a different
arrow type) are handled by Apache in two processes. The
first request, shown in solid black, is passed on to a web-
application written in Python which makes several database
calls to fulfill the request. The programs were not modified
to obtain the trace.

1. INTRODUCTION
Today’s large-scale applications consist of many indepen-

dent modules that leverage concurrency for performance.
In many cases, the components are developed by different
groups and in different languages. Individual components
may exploit concurrency with threaded, multi-process, or
event-driven designs.

Regardless of this heterogeneity, developers want answers
to questions about their entire applications. “What path
through the system do search requests take, and where do
they spend the most time?” or “What resources are used by
clients reading email, as compared to sending email?” The
principals of interest in these queries are requests, not indi-
vidual modules. Developers would benefit from tracing tools
that follow single requests as they are passed between mod-
ules, including third-party binary modules, even as those
requests are passed and returned from remote, unmodified
systems. Figure 1 shows a trace produced by BorderPatrol,
our tool for tracing unmodified systems of black-boxes.

Beyond being used as an aid to developers, recent work
has shown that request traces can be valuable input to au-

191

tomated tools. Systems such as Pinpoint [7], Pip [13], and
Stardust [19] analyze precise request traces to identify faulty
modules, discover anomalous request paths, and make ca-
pacity plans. However, these systems rely on simple trace
gathering techniques that are unable to trace complex sys-
tems.

Obtaining precise request traces in a heterogeneous, con-
current system is difficult. It is insufficient to obtain tradi-
tional trace data, such as system call or function call logs,
since these logs do not indicate when high-level requests have
been handed off from module to module. Instead, most trac-
ing systems have advocated module-specific programmer-
supplied instrumentation which requires source-level access
and an understanding of the module architecture. While
some[1] have avoided instrumentation, they have sacrificed
precise traces for statistical information.

When an application spans multiple modules, or when a
module multiplexes several requests, request flow does not
follow module control flow. Instead requests are executed in
fragments by modules that multiplex their time among many
such requests. These modules may use operating system ab-
stractions such as processes or threads, or they may manage
concurrency themselves, using an event loop or user-level
threading package.

BorderPatrol follows requests as they move through this
cacophony of modules, written by disparate teams, loosely
aggregated with protocols that do not share a unifying re-
quest abstraction. We understand, before we begin, that
perfection is impossible. In the general case, precise black-
box tracing is impossible, since modules may act in arbitrary
ways inside their “black-boxes” particularly when presented
with simultaneous requests. However, our observation is
that real applications are not arbitrary. Through careful ob-
servation and a light-weight form of module isolation, causal
paths can be reconstructed in real-world systems.

Previous tracing systems have also recognized the impos-
sibility of precise tracing without programmer assistance.
Some have required programmer assistance in the form of
a “bread crumb” trail emitted by instrumentation, or by
stashing request identifiers inside of datastructures that are
carried throughout a framework. Neither solution is satisfy-
ing in a heterogeneous environment. Others have sacrificed
precision in favor of statistical results. In these systems,
common paths through unmodified modules can be found
with some probability, but precise traces of specific anoma-
lous paths cannot be determined. We discuss all of these
approaches in Section 8.

Our compromise, and therefore our contribution, is dif-
ferent. We present a tracing technique that actively iso-
lates black-box inputs so that request paths can be pre-
cisely observed, without materially affecting the overall ap-
plication’s ability to multiplex requests. Event isolation
(Section 3.3) unbundles concurrent input events in order
to allow the observation of a module’s behavior on a per-
event basis. When event isolation is impossible or unde-
sirable, we identify request propagation by inspection. Mes-
sage witnesses (Section 3.2) identify matched messages, usu-
ally request/response pairs. Event isolation and message
witnesses are provided by protocol processors (Section 3.1),
an abstraction that allows developers to implement protocol-
specific, rather than implementation-specific, tracing. A sin-
gle HTTP protocol processor can be used to trace various
web servers, web proxies, or even XML-HTTP services.

The techniques described in this paper are realized in a
tool called BorderPatrol, which is publicly available. Bor-
derPatrol uses library interposition to insert protocol proces-
sors between the unmodified black-boxes of a multi-module
system. For BorderPatrol to be effective, the black-boxes
must follow certain assumptions that we outline in the fol-
lowing section. We argue that these assumptions are rea-
sonable because they follow from common software archi-
tectures.

Our evaluation consists of case studies (Section 6) and
a performance evaluation (Section 7). We show that Bor-
derPatrol reconstructs causal paths through a range of di-
verse servers including Apache, thttpd, Zeus, BIND, Post-
greSQL, and TurboGears, without modifications to server
source code or the use of statistical methods. Further, we
show that the overhead of tracing is about 10-15% and can
be activated at runtime, making it a viable technique for
production environments.

2. BLACK BOXMODEL
BorderPatrol seeks to follow the repeated transfer of a

request from one black-box module to another in order to
construct causal paths that show which modules handled a
given request, in what order, and for how long. For exam-
ple, when a web application queries a database, we want to
associate the computation in the database with the origi-
nal HTTP request. Although BorderPatrol treats modules
as “black boxes,” it makes some assumptions about the way
real-world applications work that allow it to follow request
transfers.

Request traces can be thought of as chains that are made
up of two types of links. External links connect the output
of one black-box module to the input of another. Internal
links connect a module input to a module output.

External links can be observed by monitoring communica-
tion channels using any number of techniques, i.e. network
snooping, virtual machine monitoring, and system or library
call interposition.

The internal links of black boxes cannot be observed di-
rectly. Instead, BorderPatrol makes inferences based on the
assumption that the internals of black boxes are honest, im-
mediate, and independent. A black box is honest if it faith-
fully implements the basic structure of the protocols it par-
ticipates in. It is immediate if, when presented with a single
input event, it processes the input event before requesting
another input. Finally, black boxes are independent if they
process concurrent input events in the same way that they
would have processed the events if they arrived sequentially,
except for timing effects. The remainder of this section de-
tails these assumptions, and describes why we expect that
the operation of real-world black boxes operate within them.

2.1 Honesty
Sometimes, internal links can be established by observing

the contents of input and output messages. This is common
when a request is passed out of a module using the same
protocol that passed the request in, so that an identifier is
visible in both messages, for example in the nonce of an RPC
request/reply, or the URL in a proxy server request that is
forwarded to the origin server. We refer to these identifiers
as witnesses and BorderPatrol assumes they are accurate if
they exist. We expect that bugs affecting witnesses are so
basic that they are unlikely in systems mature enough to

192

consider tracing. Witnesses are used only to patch paths
when BorderPatrol’s request following techniques cannot be
used, such as when building a path through a remote, un-
traced module.

In effect, a“dishonest”module is violating its specification
so badly that it’s hard to define what BorderPatrol should
do. If a module changes the identifiers associated with a
request in an unrecognizable violation of the protocol, is it
really forwarding the original request? BorderPatrol does
not trace black-box systems, it traces systems made up of
black-boxes. The definition of a black-box is an unknown
module that adheres to a specification, and honesty requires
that adherence.

2.2 Immediacy
Usually, determining internal links is more difficult than

matching witnesses. An internal link matches a module’s
input messages to its output messages. However, the pro-
tocols used may be unrelated and the follow-on messages
may carry no identifying information that can be tied to the
original request. For example, a web page request arrives as
an HTTP request, but the application server may issue SQL
requests to the database server that bear no resemblance to
the original HTTP request. No witness oriented approach
could produce internal links for such modules.

In addition, modules multiplex requests. Tracing cannot
be accomplished simply by maintaining a map between re-
quests and the module (or even the thread within the mod-
ule) which will be handling it, then associating any fur-
ther communication with that request. For example, event-
driven systems rotate among outstanding requests using a
single thread. Additionally, a single process may collect mul-
tiple inputs (via read for example), and then work on them
consecutively with no externally identifiable break between
them.

Our model assumes that black boxes are immediate–they
are composed of pieces we refer to as fragments that do not
multiplex requests. A fragment is an internal control path
that handles individual inputs and processes them to com-
pletion. These fragments usually do not process an entire
request. The execution of the fragment runs from one in-
put event (such as data becoming available on a socket) to
another, not from request start to finish.

Since fragments immediately begin work on the request as-
sociated with their input event, BorderPatrol can determine
internal links by supplying that input, noting the output
caused by the fragment, and connecting the two. BorderPa-
trol takes a general view of output that includes any inter-
action with an outside module, such as connection creation.
We describe this process in detail in Section 5.5.

Immediacy is illustrated in Figure 2. On the left, two con-
current requests enter a black-box module, and since noth-
ing is known about the module internals, it is impossible to
match the inputs to the outputs. However, the right side
of the diagram illustrates the module’s true structure. Al-
though BorderPatrol cannot determine this structure, it is
easy to see that if the events are supplied independently, the
output can be matched with the input.

2.3 Independence
Our final assumption about black-box modules is inde-

pendence. We assume that modules will respond to two se-
quential inputs the same way they would have treated those

B

A ?

? B

A

A

A

B

A

B B

B

Figure 2: An illustration of the immediacy and indepen-
dence assumptions. Immediacy tells us that when A is sup-
plied, the black box’s next observable action will be to create
the output labeled A. Independence tells us that the black
box would not have treated A differently had it been sup-
plied simultaneously with B.

inputs if they had been received simultaneously. In a con-
crete example, we assume that an application that uses poll
will not behave differently if it must call poll twice to obtain
two ready file descriptors.

Like immediacy, the independence assumption says noth-
ing of entire requests, only the individual events that com-
prise them. We believe that inside real-world modules, mul-
tiple input events are immediately separated by the struc-
ture of well-written software. Libraries such as libevent [10]
and libasync [11], dispatch to independent event handlers
for each event. If multiple events are supplied to an event-
driven module, the internal event loop dispatches these events
serially to event handlers. In threaded applications, inde-
pendence is even clearer. Each thread in these applications
blocks waiting for a single next event (such as the completion
of a read) to proceed. There is no danger that the behav-
ior of these applications will change when event arrival is
serialized.

Although batch-oriented interfaces are a common perfor-
mance optimization, we explain in Section 4 how BorderPa-
trol is able to take advantage of independence without foiling
these optimizations. Briefly, the batch interface is still used
across the slow kernel-user boundary, but individual events
are supplied from BorderPatrol’s interposition layer to the
original module.

Independence does not imply that modules will function
internally in an identical fashion when events are reordered.
For example, a server that uses caching techniques will re-
spond with an alternate code path when the cache is pop-
ulated by an earlier request. BorderPatrol will faithfully
follow the new path. The independence assumption says
that the alternative path is correct, not identical to what
would have occurred without BorderPatrol. This change
means that BorderPatrol is not the optimal debugging tool
for finding errors due to race conditions or locking mistakes
that require fine-grained replay of identical traces. However,
correct implementations of black-box specifications will ex-
hibit independence, and remain correct while running under
BorderPatrol.

3. ACTIVE OBSERVATION
BorderPatrol employs active observation to observe and

subtly modify the event streams sent and received by mon-
itored modules. Active observation, allows BorderPatrol to
precisely trace modules that follow the assumptions of the
previous section without materially affecting module behav-
ior.

Protocol processors implement active observation in a mod-
ular way, encoding protocol knowledge, not implementation

193

knowledge. Protocol processors are used to understand and
separate multiple messages on a single channel. These pro-
cessors also record witnesses that allow path reconstruction
when external modules are used that are not traced by Bor-
derPatrol, and protocol specify attributes that may be in-
teresting to distinguish requests for user queries.

3.1 Protocol Processors
BorderPatrol uses library interposition to pass input to

protocol processors before passing it on to unmodified mod-
ules. The protocol processors identify message boundaries,
log protocol-specific attributes that users may wish to query,
and track message witnesses (see below). Although the de-
velopment of protocol processors requires more specialized
knowledge than pure black-box approaches, the knowledge is
not application-specific, but protocol-specific. We have used
the same HTTP protocol processor to trace many different
web servers with wildly varying implementations. Further-
more, these protocol processors do not fully implement the
protocol, they usually understand little beyond the basic
“envelope” of the protocol messages.

Protocol processors operate by looking for message delim-
iters or length counts in the data stream, and understand
messages only enough to log application-specific identifiers
such as URLs, SQL queries, or sequence numbers. The inter-
face from the interposition library to the protocol processor
has been designed to make these tasks easy. As a result,
the protocol processors we have implemented are between
30-150 lines of code. We discuss the details of the protocol
processor interface and implementation in Section 5.2.

3.2 Message Witnesses
Message witnesses are the simplest way to establish the

internal links from module inputs to outputs. A message
witness is data that can be extracted from input messages
and output messages to allow direct linking. Unfortunately,
witnesses are unlikely when input and output messages are
of different protocols, so they are useful mainly for linking
requests and replies, particularly for requests into modules
that cannot be traced by BorderPatrol, such as remote web
services.

Protocol processors find and log message witnesses such as
URLs and RPC identifiers. When these witnesses reappear
in responses, BorderPatrol can stitch together the request
trace that might have otherwise been lost when the request
was being handled by a remote module.

3.3 Event Isolation
In order to directly follow internal links without witnesses,

BorderPatrol supplies input events to modules one at a time.
BorderPatrol then monitors the module’s output, and as-
sumes (due to immediacy) that any activity can be attributed
to the same request as the input event. As a concrete exam-
ple consider poll, an interface that modules use to obtain
events for any number of file descriptors. At the time poll is
called, BorderPatrol has tracked the input that is available
on each channel, and can attribute each potential input to a
high-level request. By returning only one event at a time to
the black-box module, BorderPatrol can attribute the fol-
lowing fragment of computation and outputs to the request
associated with the event.

The events returned by poll are indivisible, they can be
attributed to only one request. However, when a module

Concurrent Inputs

Multi−Threaded Paradigm Event−Driven Paradigm

Event−Driven ParadigmMulti−Threaded Paradigm

Event Separation

Figure 3: BorderPatrol works because real-world servers
have straightforward internal structure. Multi-threaded
servers dispatch events independently, to separate threads
(left). Event-driven server execute in fragments that can be
pieced together by running them sequentially (right).

reads input data, there is the danger that input from sev-
eral messages, and therefore several requests, is combined.
Protocol processors allow BorderPatrol to isolate events at
the protocol level, preventing reads containing multiple mes-
sages.

When data arrives on a channel with a protocol processor,
the data may contain multiple input events that should be
isolated. The protocol processor examines the data in search
of message boundaries. If a boundary is found, only the data
leading up to the boundary is returned. On the next read,
the processor considers the cached data first, though it may
find yet another boundary, and again return a “short read.”

4. WHY DOES BORDERPATROLWORK?
Do real-world applications follow our assumptions and de-

compose cleanly to code fragments that operate on individ-
ual events? Can BorderPatrol obtain that decomposition?
This section explores typical application architectures and
explains when and why applications can be decomposed and
traced accurately.

Fundamental to real-world interactive programs, of which
servers are a subset, is the ability to handle concurrent re-
quests. Therefore, these applications must be able to accept
new requests continuously, even as previous requests are still
being processed. There are several common paradigms for
multiplexing requests. Using the taxonomy presented by Pai
et al. [12], we consider some of the most popular.

Multi-process or Multi-threaded. Servers written in
the MP/MT style maintain a pool of individual threads (or
processes). These threads loop, continuously accepting new
requests, processing each one to completion. In pseudo-code:

while (fd = accept())
while (req = read(fd))
handle_request(req);

close(fd);

Such a server is immediate and independent. While in-
side handle_request, the server will service only a single

194

request. It may interact with additional modules to aid in
servicing the request, but BorderPatrol’s tracing job is easy.
For example, the request might be an HTTP request for a
page containing user customized data obtained via an RPC
interface. BorderPatrol attributes the RPC to the top-level
request, and continues path reconstruction in the destination
module. If the destination module is not running Border-
Patrol, a witness in the RPC response can reestablish the
request path, treating the entire remote module as a sin-
gle black box. BorderPatrol does not simply assume that
sequential behavior across the RPC call, in two separate
fragments, is related. BorderPatrol follows the request back
into the web server from the remote module. The link is es-
tablished by active observation, not by assumptions about
single-threaded code.

Single Process Event-driven. SPED servers multiplex
requests across a single thread. In pseudo-code:

while(1)
events = poll();
for e in events
handler = find_handler(e);
execute(handler, e);

The handling of a single request is divided into many
smaller stages. The equivalent of handle_request() might
consist of several handlers: (1) parse the request and initiate
a connection to the RPC server (2) complete the connection
to the RPC server (3) write a message to the RPC server (4)
read the response from the RPC server and (5) compute the
HTML response and write it to the client. Further, each of
these stages might re-register the same handler to complete
a lengthy operation.

BorderPatrol ensures that the SPED process receives only
one event at a time, so all of the following actions, until the
next input, can be attributed to the input event’s request.
An illustration of this architecture appears on the right-hand
side of Figure 3.

Asymmetric Multi-Process Event-Driven AMPED
servers are similar to SPED servers, with the addition of
helper processes used to simulate asynchronous I/O. Bor-
derPatrol observes the requests from the main process and
attributes the work of the helper to the high-level request
that initiated contact with the helper. BorderPatrol will re-
quire a protocol processor in the case that the communica-
tion between the main process and helper persists on a single
channel. Simpler interactions with subprocesses that span
a single request can be handled by BorderPatrol’s default
“One-shot” protocol processor. We expect that these ad-hoc
protocols are conveniently delimited or use fixed frame sizes.
We expect implementations in the 10s of lines.

Work Queues. Applications that make use of “hidden”
work queues to pass requests from module to module will
present a problem for BorderPatrol’s tracing because of un-
observable fragment interactions. Work queues may be im-
plemented with internal data structures that cannot be ob-
served without more invasive techniques. However, some
work queue implementations do have standardized inter-
faces, and if they are implemented as shared libraries or via
IPC, fragment interactions might be observed by an “API
processor” akin to BorderPatrol’s protocol processors. Re-
gardless we were somewhat surprised, but pleased, not to
find this model in the many modules we examined.

Whodunit [6] aims to derive information from (nearly)
unmodified servers that pass requests in this manner. There

logd

Log Log Log

Path Reconstruction

li
b

b
tr

ac
e

Protocol Processor

black−box

module

Figure 4: System Overview. The solid black box represents
a traced application module. Communications (messages,
IPC, and signals) are monitored by the protocol and/or API
processors. Events are relayed through the Logging Daemon
to a raw database. Databases from multiple hosts may be
aggregated, and causal paths are reconstructed.

is potential synergy with BorderPatrol’s mechanism, though
Whodunit’s output is statistical making it inappropriate for
use in precise tracing without further adaptation.

User-level Scheduling. User-level threads may also
present difficulties for BorderPatrol, depending on imple-
mentation. Cooperative thread packages context switch only
when the current thread attempts a blocking system call. A
non-blocking version is substituted, and the thread context
is switched. The thread may be resumed when an OS notifi-
cation indicates the operation would not block. This archi-
tecture is identical to SPED for BorderPatrol’s purposes and
presents no difficulties. However, other thread packages use
asynchronous signals in order to support preemption at reg-
ular intervals. BorderPatrol does not currently support the
interception of these signals. Even if it did, these signals are
periodic and indicate only that time has passed. Treating
the package as a black box would prevent BorderPatrol from
understanding the user-level scheduling code and knowing
which thread has been activated. BorderPatrol could re-
sume tracing when an interaction with a known resource is
observed.

5. IMPLEMENTATION
BorderPatrol collects trace data from unmodified modules

through the extensive use of library interposition which can
be supplemented with data from a kernel module. The trace
data is aggregated and processed in one forward pass to
obtain request paths. An overview of the architecture is
given in Figure 4.

5.1 Library Interposition (libbtrace)
BorderPatrol’s interception framework is a series of wrap-

per functions for roughly 20 standard library functions. Our
library of wrappers, libbtrace, is pre-loaded before system
libraries using the LD_PRELOAD mechanism. Libbtrace in-
tercepts calls to libc, isolates events, invokes protocol pro-
cessors, and emits logging events. Often, an intercepted
function invokes the real libc routine as part of its work.
Libbtrace tracks the requests associated with each con-

nection in a process. BorderPatrol tracks all connection cre-
ation operations (open, socket, pipe, etc.) and modification
operations (close, dup, fcntl).
Libbtrace also tracks messages as they flow through read

and write operations. Many connections do not need to be

195

monitored since request causality doesn’t flow across them.
For example, the work involved in opening a file should be
attributed to the current request, but the request typically
doesn’t flow into the file (although we believe BorderPatrol
could be enhanced to track architectures such as mail servers
in which requests pass through the file system). For simple
file operations, BorderPatrol simply logs the interaction.

By contrast, requests do flow over many connections in a
distributed system (e.g. FastCGI connections and database
connections). In these cases, BorderPatrol (a) identifies
the protocol involved (b) invokes the protocol processor on
read/write operations on the connection, and (c) buffers
data and events when event isolation requires it.

Currently, BorderPatrol does not trace some interfaces
that it ought to in order to gain the most comprehensive
coverage. For example, signals, the kevent API, and the
AIO system calls are all ignored. These interfaces do not
appear to pose fundamental challenges, they have been ne-
glected thus far only because of their rarity.

5.2 Protocol Processors
Libbtrace also contains the protocol-specific code that

implements protocol processors. These processors provide
tracing for any application that implements the protocol,
regardless of architecture. While we envision the possibility
of dynamically selecting the appropriate protocol processor
by observing passing data, BorderPatrol currently selects
the appropriate processor based on conventions such as port
number, Unix domain path, or executable name.

The protocol processor interface consists of four functions,
two of which are used for initialization and tear-down. The
following descriptions use pseudo-code data types to elide
the details of C typing and buffer handling.
pp state pp init() Processors allocate and initialize a struc-
ture to store protocol specific state for a given communica-
tion channel in between invocations of the processor. The
allocated state is passed as the first argument to all other
functions.
void pp shutdown(pp state) When an application closes
a communication channel, processors are called to allow the
deallocation of resources obtained in pp_init.
int pp read(pp state, buffer) When data arrives on an
input channel, pp_read is invoked to log and demarcate re-
quests. The processor returns the number of bytes from the
buffer that may be passed safely to the application with-
out crossing a protocol message boundary. If the border
between two requests is found in the buffer, the processor
returns the offset of the boundary. If there is no message
boundary, the entire buffer may be passed through to the
application even if the buffer only represents a partial mes-
sage. However, for the convenience of protocol processors,
BorderPatrol can buffer partial messages in order to supply
pp_read with the complete message when more data arrives.
The processor indicates the desire for buffering by returning
PP_NEED_MORE.
int pp write(pp state, buffer) When data is being writ-
ten to an output channel, pp_write demarcates and logs,
just as pp_read. However, when BorderPatrol writes data,
there is no need to perform event isolation. The protocol
processor is invoked only to log events and witnesses.

Two protocol processors must be written for most proto-
cols. The read and write functions are used to process the
messages for a protocol in one direction. The write func-

int pp_http_read(pp_http_t state, buffer buf) {
switch(state->s) {
case DONE_1_0:

return buf.length();

case AWAIT_HEADER:
i = find_re(buf, "GET.*?HTTP/1.1\r\n.*?\r\n\r\n")
if (i==0) return PP_NEED_MORE;

url = extract_url(buf)
httpv = extract_version(buf)
log(http_req, url, state->seq++)
state->s = httpv == 1.1 ? AWAIT_HEADER : DONE_1_0;
return i

}
}

Figure 5: Example protocol processor for client to server
communication using HTTP. pp_http_read illustrates an
HTTP protocol processor for client to server communica-
tion. Due to the simplified interface, pp_http_read always
operates from the start of the message.

Protocol Processor Lines of Code
HTTP (1.0 & 1.1) 105
FastCGI 118
PostgreSQL 147
X11 (client-side only) 50
DNS (client-side only) 27
One-shot 28
Line-oriented 37

Figure 6: Protocol processor line counts. Each count in-
cludes both the client- and server-side of the protocol, except
where noted. “One-shot” is used to handle any protocol with
one request/response per connection. “Line-oriented” han-
dles any protocol that uses newline to delimit sequential
messages.

tion is invoked at the sender, and read at the receiver, but
they perform nearly the same work, except for a difference
in logging a receive or send. To process a protocol in both
directions, a second protocol processor is used that under-
stands the format of response messages.

An example pp_read for HTTP is shown in Figure 5.
HTTP is a simple, sequential protocol in which each request
is separated by two pairs of line-feed/newline characters.
This example is organized in a state transition style. The
DONE_1_0 state only applies to HTTP/1.0 clients. Once a
request header is received, the protocol processor enters this
final state since HTTP/1.0 forbids reusing a connection for
multiple requests. In the alternate state AWAIT_HEADER, the
processor looks for the request separator. If it isn’t found in
the current data, it returns PP_NEED_MORE, indicating that
the processor should be invoked again when more data has
arrived. While the partial request is cached for the benefit of
the processor, BorderPatrol also passes it through to the ap-
plication because there is no danger that the partial request
contains a request boundary. Finally, when the complete
request is recognized, attributes are parsed from the header
and logged.

BorderPatrol’s actual HTTP processor is somewhat more
complex, but not much, weighing in at 105 lines total for
all functions. Figure 6 shows line counts for several other
protocol processors, each less than 150 lines long.

BorderPatrol tracks data flowing through each file descrip-

196

Data Presented to Protocol Processor
Data

Isolated boundaries returned to the application

Inbound

GET /img/border.jpg HTTP/1.1\r\nHost: ... \r\n\r\n GET /img/backg

Figure 7: Data may arrive in chunks (dotted lines) on a
multiplexed channel without regard to message boundaries.
Protocol processors ensure that this data is supplied to ap-
plications in chunks that respect message boundaries (solid
line), allowing BorderPatrol to track the behavior of appli-
cations from the point that a message has been provided,
without confusion from further additional messages.

tor and maintains cursors to indicate which portions have
been sent to the application, presented to the protocol pro-
cessor, and not yet considered. Figure 7 demonstrates this
tracking for HTTP.

If there is any data that the application has not yet col-
lected, as much data as possible is passed to the application,
considering the application’s buffer size and the position of
the protocol processor. Otherwise, there may be additional
data, collected during a previous read, that the protocol
processor has not yet seen. This happens whenever a pro-
tocol processor consumes a partial message or one of two
contiguous messages. Finally, in the event that the proto-
col processor has been presented with all data in the buffer
(even if it contains a portion of the next protocol chunk)
and there is no cached data that can be passed to the appli-
cation, the real version of read is used to refill the internal
buffer.

Using the protocol processor on out-bound data is far sim-
pler. Application writes are never shortened. Instead, the
protocol processor is called repeatedly until all messages in
the stream have been identified and logged. The remaining
data is buffered until the next time write is invoked.

When BorderPatrol retains data in order to perform event
isolation, it must also modify the result of any future call
to poll. The buffered file descriptor is labeled readable re-
gardless of its actual condition. In this way the application
will call read again, which can be fulfilled from the buffer.

5.3 Kernel Page fault Monitor
User-level library interception is insufficient for captur-

ing entry and exit from some kernel-related processes. Bor-
derPatrol can install monitoring points in the Linux kernel
in order to observe page-fault activity. Some processes use
mmap to allow the operating system to page in data on de-
mand without an explicit call to read. Library interposition
cannot be used to observe I/O that results from page faults
on mmap-ed pages, because page faults cause a transparent
trap to the kernel. BorderPatrol includes a kernel process,
pftrace that logs page faults in specified processes. pftrace
uses kprobes to register call-backs whenever page faults oc-
cur. The process ID and time-stamps are passed through
relayfs to a user-space daemon, which forwards them to
the logging daemon.

5.4 Logging
Traces collected from the interposition library and the ker-

nel page fault monitor are sent across a named pipe to the

per-host logging daemon (logd). The logging daemon exists
to collect events from traced processes, buffer them, and
write them in batches to disk. Each thread maintains a sep-
arate connection to the log daemon, so events from different
threads may be received out of order. However, events from
any particular thread are ordered by the pipe.

The volume and frequency of events motivated a binary
logging format to limit space requirements and avoid re-
peated calls to expensive formatting functions. Each event
consists of a fixed-length header, optionally followed by a
character string and a number of integers. The event header
record includes process and thread identifiers, a cycle count
time-stamp, and event details, such as system call arguments
and return values.

5.5 Recovering Request Paths
Events are collected from each module and sorted by clock

cycles. The correlation of external links between modules
with the internal links within modules provides the causal
path of a request. Two rules allow the construction of paths
while scanning forward in time:

1. When a module receives a message associated with re-
quest r, a fragment initiates computation for r.

2. When a fragment computing r sends a message, that
message is associated with r.

Moving forward through an event stream, BorderPatrol
reconstructs the history of modules, the communication chan-
nels they engage in, and messages transmitted. As virtual
time proceeds, BorderPatrol maintains a mapping from file
descriptors to communication channels as they are created,
duplicated or destroyed. During the execution of fragments,
a module designation identifies which request the module is
currently processing. Finally, events from protocol proces-
sors indicate when messages are transmitted or received. In
accordance with Rule 2 above, these messages are associated
with the sender’s current designation. An event signaling re-
ceipt of such a message updates the recipient’s designation.

BorderPatrol can only determine the single most direct
cause of a given fragment’s executions. For example, con-
sider a module that invokes two other modules and proceeds
when both have responded. BorderPatrol will recognize that
the request has moved into each of the called modules, but
when the first returns, no further action will be observed.
When the second module returns, BorderPatrol will deter-
mine that the request has returned and will continue within
the original module, perhaps to move on yet again. In sum-
mary, BorderPatrol correctly follows forks in the request
processing path, but cannot directly detect joins because
they reflect information about what might have happened
(if a different module had returned last), rather than what
did happen in the particular trace.

In addition to explicit module communication through
IPC or data streams, causal paths also continue across pro-
cess creation. Often a module will spawn a helper module
to assist computation. For example when a web server re-
ceives a request for a CGI URL, it will fork a process which
then execs the CGI. Spawned modules consist of an implicit
initial fragment which is associated with the same request
that the parent was processing the moment it called fork.

The rules we use to recover request paths are similar in
spirit to the work of Isaacs et al. [5] in which temporal joins
correlate events in accordance with an application-specific
join schema to reconstruct paths. BorderPatrol obtains ex-

197

plicit internal and external causal links, so it is immediately
known when requests enter and exit modules.

As a result, BorderPatrol is application independent. In
contrast to join schemas, protocol processors exist solely
to identify request boundaries, and contain no application-
specific information.

Events on a single host use the cycle count as a total
order, but these clocks will not be perfectly synchronized
across multiple hosts. Since messages are logged at transmis-
sion and receipt, an approximate mapping between clocks on
each host can be obtained. This mapping is sufficient to or-
der messages, though one-way delays will not be measured
precisely.

6. CASE STUDIES
Before considering performance overhead in the next sec-

tion, we first show how BorderPatrol copes with two typi-
cal scenarios that require manual instrumentation to obtain
precise paths with previous tracing systems.

6.1 Multi-Threaded Tiers (dearinter.net)
dearinter.net is a social networking web site which invites

users to post and vote on public questions. dearinter.net

consists of a multi-threaded Python application tier (Tur-
boGears [20]) between an Apache web server [3] front-end
and a PostgreSQL database back-end.

The tiers of dearinter.net communicate using several stan-
dard protocols. Web requests arrive as HTTP requests,
Apache forwards application requests to TurboGears as Fast-
CGI messages, and TurboGears issues queries to the database
through the PostgreSQL protocol. BorderPatrol contains
protocol processors for each of these protocols. The proces-
sors are straight-forward, and none is longer than 150 lines
of code.

Examining an access log excerpt from a typical page load
motivates the need for event isolation using protocol proces-
sors. Here we see that a top-level “question” page is loaded,
followed by almost simultaneous requests for several embed-
ded images.

9:32:42.03 /question/521 HTTP/1.1 200 1949
9:32:42.24 /img/House.jpg HTTP/1.1 200 19317
9:32:42.30 /img/Mark2.jpg HTTP/1.1 200 18820
9:32:42.34 /img/Meter.jpg HTTP/1.1 200 19947

Figure 8 illustrates a portion of the events logged by Bor-
derPatrol during this page load. Only the log entries for the
Apache process are shown, in order to minimize details while
motivating protocol processors. First, the client establishes
a connection. The HTTP protocol processor recognizes a re-
quest for the URL /question/521. To service the request,
Apache connects to the FastCGI server (not shown), which
responds with data that is returned to the client. The images
are also served through the dearinter.net application server.

BorderPatrol separates protocol messages when multiple
messages occur over a single connection, a property shared
by all of the protocols used by dearinter.net. Apache sup-
ports HTTP/1.1 pipelining over persistent connections, Fast-
CGI allows multiple outstanding requests over a single socket,
and the PostgreSQL protocol allows clients to issue multiple
outstanding queries.

Notice the ProtocolIsolate event just after the request
for House.jpg. As the application is reading, the HTTP pro-
cessor notices the boundary between two HTTP requests.

KCycles Event
2,000,585 ProtocolInit(3) → https
2,000,592 Accept(16,0) → (3,:60983-:80)
2,000,860 ProtocolMsgRecv(3,https) [/question/521]
2,002,447 Socket() → 5
2,002,524 ProtocolInit(5) → fcgic
2,002,526 Connect(5,0) → (:40682-:9797)
2,002,591 ProtocolMsgSend(5,fcgic) [URI=/q...]
2,432,164 ProtocolMsgRecv(5,fcgic)
2,432,201 Close(5)
2,432,260 ProtocolMsgSend(3,https) [200]
2,435,414 ProtocolMsgRecv(3,https) [House.jpg]
2,435,462 ProtocolIsolate(67,161)
2,436,817 Socket() → 5,
2,436,914 ProtocolInit(5) → fcgic
2,436,916 Connect(5,0) → (:40683-:9797)
2,436,969 ProtocolMsgSend(5,fcgic) [House.jpg]
2,559,082 ProtocolMsgRecv(5,fcgic)
2,559,135 ProtocolMsgSend(3,https) [200]
2,560,658 Close(5)
2,560,808 ProtocolMsgRecv(3,https) [Mark2.jpg]
2,562,252 Socket() → 5
2,562,348 ProtocolInit(5) → fcgic
2,562,351 Connect(5,0) → (:40684-:9797)
2,562,391 ProtocolMsgSend(5,fcgic) [URI=Mark2...]
2,596,653 ProtocolMsgRecv(5,fcgic)
2,596,703 ProtocolMsgSend(3,https) [200]
2,598,234 Close(5)

... ...

Figure 8: Log of events relevant to the Apache process
with Event Isolation enabled on dearinter.net. Dashed lines
indicate the beginning of a code fragment. Fragments begin
at every input event and when poll indicates that a file
descriptor has become writable.

Rather than passing the compound request to the appli-
cation, it isolates and passes through the first of the two.
Apache continues immediately by contacting the FastCGI
server and relaying House.jpg. Afterward, Apache calls
read again to collect the second request for Mark2.jpg.

To illustrate independence, we generated the same work-
load with event isolation disabled in BorderPatrol. Now a
single call to read fetched multiple image requests. Regard-
less, Apache handled the requests sequentially—it created a
connection to the FastCGI server, relayed the first image,
and then repeated the process for the second image. This
serial behavior is an artifact of Apache’s architecture, not
BorderPatrol.

This scenario is a concrete example of a module inter-
action that cannot be precisely deciphered without instru-
mentation using any other tracing tool. If Apache were to
read in both requests it would be impossible to correlate
which FastCGI connection corresponded to which client re-
quest. In this example, both requests are for images that
are handled quite similarly, and we might happen to know
that Apache handles requests sequentially. In general, the
requests might be quite different, and require several module
interactions to service. An error in constructing the causal
path might, for example, attribute database access to a re-
quest for a static image rather than a dynamic Python page.

Validating Traces. We used BorderPatrol to create
traces from a workload generated by actual dearinter.net

clients from an access log provided by its developers. We val-
idated the correctness of the traces in two ways: by detailed
discussion with the developers and by comparison with ex-

198

External

Apache-2

1 1 1

Apache-1

1 1 112 2 2

TurboGears-1

2 11

PostgreSQL-1

3 3 5 7 95 7 9

11

4 6 8 104 6 8 10

2 2 12

2

Figure 9: The original trace of the application shown in
Figure 1. BorderPatrol made it easy to see that two requests
where being handled by the database in a workload that
should only require one. The application was reconfigured
to serve images from Apache.

plicit instrumentation. During these discussions, the de-
velopers confirmed even the most surprising aspects of the
trace, and found multiple opportunities for optimization.

We used the trace to create two types of user digestible
output. First, we generated a graphical view of the paths
through each module, as shown in Figure 9. Using this figure
alone, the dearinter.net developers noticed their suboptimal
configuration was causing access to the database for certain
static images. With a minor modification, the application
was reconfigured and yielded Figure 1, shown earlier.

Second, we found all PostgreSQL messages associated with
specific URL requests. A request for /tag/rabbits, caused
the following cycle-stamped queries:

316264 BEGIN; SET TRANSACTION ...
316522 SELECT NEXTVAL(’tg_visit_id_seq’)
317336 INSERT INTO tg_visit (id,visit_key,expiry)

VALUES (419704,’5c4...’,’2007-03-18...
335990 SELECT expiry,... FROM tg_visit WHERE id = 419704
336605 END
479741 BEGIN; SET TRANSACTION ...
479891 SELECT id,user_id FROM tg_visit_identity

WHERE visit_key = ’5c4...’
484013 SELECT id,tag,count FROM tag WHERE tag = ’rabbits’
485311 SELECT id,tag,count FROM tag WHERE tag = ’rabbits’
485928 SELECT id FROM qu_tag WHERE exttag_id = 1528
487024 SELECT question_id FROM qu_tag WHERE id = 2914
487778 SELECT title,sum,weight,user_id,numcomments,...

FROM question WHERE question_id = 1107
511741 SELECT user_name,email,... FROM tg_user ...
514104 SELECT id FROM qu_tag WHERE question_id = 1107
514841 SELECT tag_id FROM qu_tag WHERE id = 2911
515353 SELECT tag_id FROM qu_tag WHERE id = 2912
515782 SELECT tag_id FROM qu_tag WHERE id = 2913
516238 SELECT tag,count FROM tag WHERE id = 1525
516874 SELECT tag,count FROM tag WHERE id = 1526
517362 SELECT tag,count FROM tag WHERE id = 1527
539487 END

The first transaction generates a new unique browser cookie
to act as a temporary user identifier. The second transac-
tion generates the content of the page using several selects.
First an identifier for the “rabbits” tag is obtained, from
which the list of questions associated with that identifier
can be loaded. The developers confirmed that the subse-
quent identical query was due to a previously unknown inef-
ficiency in the structure of the application. Finally, statistics
and related questions are loaded for each question (here, only
1107). BorderPatrol followed internal and external links to
obtain the request path without knowledge of the internals
of dearinter.net.

Indeed it would have been possible to obtain the above
query log by simply inspecting PostgreSQL access logs. How-
ever, examining access logs is only effective when a single
request is being served by the system. As soon as multiple
requests arrive the log begins to conflate requests. Even if
a given server’s log has unique per-request identifiers (such
as a session ID) it would not be possible to correlate the ac-
tivity in one server’s log with the activity generated by the
same request in another server. To find the bug mentioned
above, one would have to set up an instance of dearinter.net

outside of a production environment and than manually in-
ject requests one at a time. By contrast, BorderPatrol can
automatically accumulate per-request information across all
subsystems involved.

We also manually instrumented all tiers of the dearinter.net

application. Modifications were necessary in Apache’s ac-
cept loop, HTTP processing, and FastCGI implementation;
in TurboGears’ FastCGI library; in Python’s SQLObject [16]
library; and in Postgres’ connection handling. Explicit in-
strumentation matched BorderPatrol’s inferred traces pre-
cisely. Of course, each modification consisted of only a sin-
gle line of code, but we were struck by the difficulty in two
ways. First, three very different code bases were involved,
spanning two languages. Second, it was difficult to know for
sure that our instrumentation was correct and complete.

The instrumentation would have missed communication
that we were not explicitly aware of, such as DNS lookups.
BorderPatrol’s interposition can observe all communication.
Worse, our instrumentation would have been incorrect if the
internal architectures of these programs had used multiple
threads to satisfy a single request, or multiplexed requests
on a single thread. Instrumentation code must explicitly
observe the internal links that BorderPatrol infers.

To observe these links, request information can be placed
in a data structure that is passed throughout the module
and logged during communication. Unfortunately, real sys-
tems rarely pass a request structure through their entire
code base. For example, SQLObject is not tightly tied to
TurboGears. When instrumenting SQLObject, the request
object is not accessible. In this case, it is convenient to
keep the request object in thread-local storage. However,
this technique is prone to error if the module to be instru-
mented does not have a one-to-one mapping of threads to
requests. In these cases, we believe manual instrumentation
would require pervasive understanding of the entire module
to manage knowledge of the current request.

6.2 Event-Driven Web Server (Zeus)
Zeus [21] is an enterprise-scale commercial web server,

only available to the public in binary form. We have no
direct knowledge of the internals of Zeus, though we are

199

aware it is a high-performance event-driven design. Without
source, instrumentation is impossible, and with an event-
driven architecture, binding requests to threads will not suc-
ceed.

BorderPatrol traced Zeus, including its use of FastCGI,
using the same protocol processors that traced dearinter.net,
plus a DNS processor for Zeus’s reverse lookups. A sample
access pattern is shown below.

7:58:10.03 GET /.../index.fcgi?... HTTP/1.1" 200
7:58:10.16 GET /.../statimg.fcgi HTTP/1.1" 200
7:58:10.17 GET /.../1t.gif HTTP/1.1" 200

KCycles Event
1,137,563 ProtocolInit(8,:41170-:80) → https
1,137,567 Accept(4) → 8
1,137,756 Socket() → 9
1,137,758 ProtocolInit(9) → dnsc
1,137,780 Connect(9) → (:32784-:53)
1,137,817 ProtocolMsgSend(9,dnsc,3668)
1,140,325 ProtocolMsgRecv(9,dnsc,3668)
1,140,350 Close(9)
1,140,387 ProtocolMsgRecv(8,http,0) [GET,index.fcgi]
1,141,262 Socket() → 9
1,141,342 ProtocolInit(9) → fcgic
1,141,346 Connect(9) → (/tmp/s.zeus)
1,141,540 ProtocolMsgSend(9,fcgic)
1,405,294 ProtocolMsgRecv(9,fcgic)
1,405,297 ProtocolIsolate(8,11683,0)
1,405,625 ProtocolMsgSend(8,https,0) [200]
1,407,236 ProtocolMsgRecv(9,fcgi)
1,407,238 ProtocolIsolate(8,16,0)
1,409,622 ProtocolMsgRecv(8,http,1) [GET,statimg.fcgi]
1,409,687 ProtocolIsolate(101,193,0) → 0
1,409,811 ProtocolMsgSend(9,fcgi)
1,409,862 ProtocolMsgRecv(8,http,2) [GET,1t.gif]
1,421,876 ProtocolMsgRecv(9,fcgi)
1,421,878 ProtocolIsolate(8,9716,0) → 0
1,422,567 ProtocolIsoPoll(0,0,0) → 2
1,422,590 ProtocolMsgSend(8,https,1) [200]
1,422,666 ProtocolMsgRecv(9,fcgi)
1,422,668 ProtocolIsolate(8,16,0)
1,422,927 Open(1t.gif) → 10
1,422,953 Close(10)
1,422,980 ProtocolMsgSend(8,https,2) [200]

... ...

Figure 10: Log of events with Event Isolation enabled on
Zeus. Bold events show protocol processors demarcate mes-
sage borders, detect data parameters, and perform event
isolation (ProtIsolate).

The events collected are listed in Figure 10. As in the pre-
vious case study, activity begins with the arrival of a client
connection. Zeus then connects to a name server to reverse
resolve the client IP address. The DNS protocol processor
tracks the outstanding DNS request using a witness that
consists of the UDP 4-tuple and DNS request ID. Border-
Patrol properly constructs paths and attributes time spent
in remote, unmonitored modules.

After the name is resolved, Zeus reads an HTTP request
from the client for index.fcgi. A FastCGI subprocess is
forked and a connection is established via a Unix domain
socket. Finally, Zeus writes a FastCGI message to the Fast-
CGI server, receives the response, and relays it to the client.
Next, the client requests a dynamic GIF (statimg.fcgi).

Although the requests are nearly simultaneous, overlap
in time, and are handled by a single thread in Zeus, Bor-
derPatrol can correctly correlate the FastCGI activity with
statimg.fcgi rather than with 1t.gif. This tracking does
not require serialized requests, as Figure 10 illustrates. Event
isolation supplies Zeus with the message for statimg.fcgi

first, and Zeus immediately contacts the FastCGI server.
With that connection in progress, Zeus returns to its event
loop and receives the request for 1t.gif. With the second
request in hand, Zeus receives the response from the first
request which is forwarded to the client. Finally, Zeus reads
the static image and forwards it to the client.

Validating Traces. Zeus is a binary module, and we
have no relationship with the Zeus developers, so validating
BorderPatrol’s traces was challenging. We carefully exam-
ined request paths to ensure that, for example, the expected
files were opened on the path associated with the associated
URLs and that paths reconstructed during a heavy, concur-
rent workload matched the individual paths reconstructed
from single requests.

6.3 Other Cases
In addition to the above case studies that include traces

through Zeus, Bind, Apache 1.3, TurboGears, and Post-
greSQL, we have traced many other modules in combina-
tion with these components. BorderPatrol has successfully
traced Perl scripts used as CGI and FastCGI components,
multiple web servers such as thttpd and a Java web server,
and several simple protocols using our generic“one-shot”and
“line-oriented” processors.

7. PERFORMANCE EVALUATION
Our methodology introduces overhead. In this section, we

quantify this overhead both as absolute micro-benchmarks,
and under realistic workloads for the case studies examined
in Section 6. Our experiments were conducted on a server
with a single 2.0GHz Athlon CPU and 512MB of RAM. In
all experiments the overhead of collecting and writing logs
is included. The logging daemon is run on the local machine
with the experimental application, although it could be run
remotely.
Libbtrace is interposed between the application and libc

at run-time. Library interposition by itself has negligible
overhead: less than 1%. However, libbtrace contains ini-
tialization code that produces startup overhead. For ex-
ample, when the first application call is trapped, pointers
are initialized to the real libc versions of the routines that
are interposed upon. Then BorderPatrol initializes various
data structures and connects to the logging daemon. The
first and all subsequent trapped application calls typically
involve some logging, invoking protocol processors (in the
case of I/O) and implement event isolation.

7.1 Micro-benchmarks
A series of micro-benchmarks is shown in Figure 11. We

ran experiments measuring how the request latency of a
web server (Apache) degrades under various workloads as
the number of concurrent clients are increased. In each
graph, the solid line indicates the control scenario – mea-
surements of a pure Apache server. The dotted line indi-
cates the measurement of Apache wrapped with our tracing
layer libbtrace. All workloads were generated by closed-

200

0 5 10 15 20 25 30
0

20

40

60

80

100

Concurrent Clients

L
a
te

n
c
y
 (

m
s
)

Latency (ms) for Disk−bound Workload

Control

BorderPatrol

0 5 10 15 20 25 30
0

20

40

60

80

100

Concurrent Clients

Latency (ms) for Network−bound Workload

Control

BorderPatrol

0 5 10 15 20 25 30
0

2

4

6

8

10

Concurrent Clients

Latency (ms) for File−bound Workload

Control

BorderPatrol

0 5 10 15 20 25 30
0

20

40

60

80

100

Concurrent Clients

Latency (ms) for Exec−bound Workload

Control

BorderPatrol

Figure 11: Latency overhead for three different micro-benchmark workloads. Each graph shows the untraced web server as
a solid line, and the BorderPatrol traced version as a dotted line. The workloads are disk-bound, network-bound, small-file
bound, and fork/exec-bound.

loop feedback clients, so performance reaches a plateau at
saturation.

The leftmost benchmark shows latency degradation under
a disk-bound workload. We generated a variety of files at
10MB each, and the clients fetched random subsets. At
around 5 concurrent clients, the server becomes saturated
as it cannot serve files faster than they can be loaded from
disk. The overhead was roughly the same for any level of
concurrency, with an overall mean of 5.37%.

In the second benchmark, a workload was generated con-
sisting of a single 1MB file, repeatedly fetched by increas-
ingly many clients. The file is immediately loaded into the
buffer cache, so this test measures the overhead of a network-
bound workload. As compared with the disk-bound bench-
mark, it takes longer to reach a plateau but does reach a
plateau when Apache maximizes its ability to use the net-
work. Most of the overall 7.65% overhead came from the
highly concurrent workloads.

The third benchmark shows the overhead for a workload
consisting of one small file repeatedly fetched by concurrent
clients. The file immediately is loaded into the buffer cache
and so the workload is representative of system-call intense
scenarios. Across the entire range of concurrency, the mean
overhead was 37.2%.

Finally, the far right benchmark illustrates the overhead
when workloads involve fork and exec operations. In this
benchmark, clients access a URL served by a bare-bones C
program. During fork, our implementation performs sev-
eral initializations, such as connecting the child process to
the logging daemon and allocating our bookkeeping data
structures. Our wrapped exec call performs additional ini-
tialization such as looking up the real libc calls through
dynamic linking, and more extensive bookkeeping initializa-
tion. The mean overhead for this benchmark was 307.7%, an
enormous penalty, but one that is paid only for exec. Real
workloads, particularly in performance critical applications,
will not be exec-heavy.

In summary, our methodology generates the most over-
head for workloads that involve a large amount of process
creation because each time a new process is created some
initialization routines must execute. However, if the pro-
cess is subsequently used to load data from disk (such as
a database) or communicate with other processes (such as
a web or application server) the cost is negligible. We will
now turn to realistic workloads that illustrate this point.

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Concurrent Clients

La
te

nc
y

(m
s)

Mean latency for dearinter.net

Control (Images)

BorderPatrol (Images)

Control (Pages)

BorderPatrol (Pages)

Figure 12: Latency and bandwidth overhead versus con-
current clients for dearinter.net (Apache, TurboGears and
PostgreSQL) under a representative workload generated by
replaying actual access logs.

Case Study Events Log (MB) Time (s)
dearinter.net 603,962 21.63 46.29
Zeus 268,973 10.84 203.45

Figure 13: dearinter.net consumed approximately 470kB
of log space per second during our benchmark runs. Zeus
consumed approximately significantly less – 53kB per second
– as the communication channels had few attributes to be
logged.

7.2 Case Studies
We now revisit the case studies discussed in Section 6,

and analyze the overhead for a more realistic day-to-day
workload. In addition to the computational overhead that
we discuss below, executing the application with Border-
Patrol accumulates log entries as summarized in Figure 13.
The logs are not particularly large and, of course, could be
deleted when their likely value has declined.
dearinter.net. The overhead of our implementation on dear-

inter.net is shown in Figure 12. Here the workload involves
more computation and random disk access than in the micro-
benchmarks and so it quickly reaches capacity. Additionally,
the workload includes both static and dynamic content, so
we show the overhead for each in Figure 12. For the higher-
latency dynamic pages, the overhead of our implementation
is 16.96%, whereas the overhead is 8.4% for static images
and JavaScript. The variance profile was unchanged with
our tracing methodology enabled.

201

0 5 10 15 20
0

50

100

150

200

250

300

350

400

Mean latency for Zeus (Dynamic)

Concurrent Clients

L
a

te
n

c
y
 (

m
s
)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Mean latency for Zeus (Static)

Concurrent Clients

L
a
te

n
c
y
 (

m
s
)

Figure 14: Latency and bandwidth overhead versus con-
current clients for Zeus (closed-source high-performance
event-driven web server) under a workload of mixed images.

System calls
Application Component Traced Untraced
Apache 1.3 and TurboGears 357248 324227
PostgreSQL 16194 14582

Figure 15: BorderPatrol introduces a modest overhead in
terms of system calls. Apache and TurboGears execute 10%
more system when traced. PostgreSQL executes 11% more.

Zeus. Figure 14 illustrates the latency overhead of our
implementation. We generated two workloads: dynamic
FastCGI pages to the left and static images on the right.
The mean overhead for dynamic pages is 2.0%, while static
images have a 96.4% overhead. Zeus is highly tuned for
serving static pages that fit in memory, so it is unsurprising
that BorderPatrol imposes a larger relative penalty. When
serving dynamic content through FastCGI (a workload more
reminiscent of the systems we are focused on) the overhead
is lost in the noise. The 100% error bars also show that
BorderPatrol has not negatively affected Zeus’ concurrency
profile by causing some requests to be queued excessively.

8. RELATEDWORK
Previous work in request tracing has generally focused on

either simplifying the instrumentation burden, or the use of
statistical methods that eliminate instrumentation but also
lose the ability to trace precisely.
Instrumentation. The most accurate way to correlate
concurrent inputs with outputs is to leverage application-
specific knowledge and explicitly declare which input corre-
sponds to which output.

Magpie [5] seeks to provide precise traces of applications
while minimizing the burden on developers. Their approach
is two-pronged. First, they simplify instrumentation re-
quirements by applying a general temporal join to logged
events. A temporal join allows a submodule to emit trace
events without knowledge of the global request that invoked
it. Magpie builds a path by joining locally significant at-
tributes across modules to produce a path. In addition,
Magpie takes the pragmatic step of modifying an applica-
tion framework, Microsoft’s IIS and SQL Server. Modules
written within this framework require no further modifica-
tion, though calls to external libraries would not be traced.

TraceBack [4] uses program analysis to inject runtime in-
strumentation into modules that enables a source-statement
reconstruction of program execution. From that reconstruc-
tion, Traceback attempts to reconstruct paths using tech-
niques similar to [1].

A variety of commercially available products use similar
techniques. These products instrument application frame-
works (such as WebSphere, WebLogic, Oracle E-Business,
and Siebel) with logging calls to annotate the nodes of a
causal path. The products range from the simplistic 2-tier
reconstructions in [17] to many-tier reconstructions in [18,
15].

As we found in our experience with dearinter.net (see Sec-
tion 6.1), a shortcoming of instrumentation is a practical
one: all points in the application where inputs arrive must
be modified. In large-scale applications where components
span developer groups, are written in multiple languages,
and may lack source code, modifying the application (or the
frameworks) is not always possible. Further, developers may
need to modify the application to make necessary informa-
tion available at the time it is needed for logging, adding to
their burden. Magpie’s general temporal join seeks to re-
duce this requirement though it is not clear that a join-able
attribute is easily accessible in applications that multiplex
requests on threads.

More distantly related, King [9] shows how information
flow can be used to detect intrusion. Like BorderPatrol, the
work tracks the inputs and outputs of processes. However,
where BorderPatrol uses knowledge about protocols to distill
a causal tree into per-request branches, King’s work simply
collects the causal tree entirely so that a root cause can be
found.
Pervasive Frameworks. Alternatively, some approaches
enforce infrastructure change. Specifically, the interface of
all modules is widened to include request information. This
work assumes that all participating modules will be modified
to implement the new interface.

Pinpoint [7] is designed specifically for J2EE web appli-
cations that associate each request with exactly one thread.
This association allows any module to record the request
it is working on by examining a thread-local variable. By
contrast, BorderPatrol, allows applications to be written in
almost any language, to use a variety of execution models
(multi-threaded/event-driven), and to cross process and ma-
chine boundaries.

Causeway [2] advocates pervasive changes to applications
and protocols in order to bundle meta-data alongside exist-
ing module communication. X-Trace [8] is philosophically
similar work that focuses on debugging paths through many
network layers. Each layer must be modified to carry X-
Trace meta-data that allows path reconstruction. Border-
Patrol focuses on tracing without changing applications.
Probabilistic Correlation. An alternative approach
avoids augmenting the control- or data-flow by compromis-
ing on precision: the correlation between inputs and outputs
can be done statistically. HP Labs has used this approach on
network traffic [1], and more recently [14] on a per-process
granularity using library interposition. In both cases, causal-
ity is inferred from the relative time-stamps of input arrivals
and output departures.

Whodunit [6] obtains transactional profiles that follow re-
quest hand-offs that occur in shared memory, invisible to
BorderPatrol’s tracing mechanism, by observing and analyz-
ing module lock usage. Whodunit obtains aggregate perfor-
mance information, rather than precise traces of individual
requests. Nonetheless, it represents an interesting comple-
mentary approach that could augment BorderPatrol in the
context of difficult to trace architectures.

202

Analysis From Causal Paths. Analysis of causal paths
is an emerging area of research. These analyses [13, 7] as-
sume causal paths can be obtained and perform higher-order
analysis such as failure detection or capacity planning. Bor-
derPatrol provides the opportunity to take advantage of this
research in systems that are otherwise untraceable. Pip [13]
finds bugs by dynamically detecting request paths that de-
viate from paths specifications provided by developers. Pin-
point [7] finds faulty modules by recording the modules in-
volved in handling each request and applying data mining
techniques to failure cases. BorderPatrol could be used to
ease the adoption of these promising tools.

9. CONCLUSIONS
The lesson of BorderPatrol is that traces can be obtained

for unmodified programs without sacrificing precision. We
present a model for understanding the behavior of black-box
distributed systems. Our model allows us to safely employ a
mechanism that isolates conflated input events arriving at a
module, without preventing the application from multiplex-
ing requests. Rather than requiring systems to adopt new
conventions to make request paths explicit, we are able to
automatically extract causal paths through active observa-
tion.

BorderPatrol is freely available from
http://cs.brown.edu/research/borderpatrol/.

Acknowledgments

The authors would also like to thank Yanif Ahmad, Shriram
Krishnamurthi, Kiran Pamnany, Steve Reiss, and the anony-
mous reviewers for their valuable feedback on improving the
presentation.

This research supported by the National Science Founda-
tion under Grant No. CNS-0614944. We thank the NSF for
their support.

10. REFERENCES
[1] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L.

Wiener, Patrick Reynolds, and Athicha
Muthitacharoen. Performance debugging for
distributed systems of black boxes. In Proc. of the
19th ACM Symposium on Operating Systems
Principles (SOSP’03), October 2003.

[2] Khaled Elmeleegy Anupam Chanda, Alan L. Cox, and
Willy Zwaenepoel. Causeway: Operating system
support for controlling and analyzing the execution of
distributed programs. In Proc. of the 10th Workshop
on Hot Topics in Operating Systems (HotOS-X). IEEE
Computer Society Technical Committee on Operating
Systems, 2005.

[3] Apache HTTP server. http://httpd.apache.org/.

[4] Andrew Ayers, Richard Schooler, Chris Metcalf,
Anant Agarwal, Junghwan Rhee, and Emmett
Witchel. TraceBack: First fault diagnosis by
reconstruction of distributed control flow. In Proc. of
the ACM SIGPLAN 2005 conference on Programming
Language Design and Implementation (PLDI’05),
2005.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using Magpie for request extraction
and workload modelling. In Proc. of the 6th
Symposium on Operating Systems Design and
Implementation (SOSP’04), December 2004.

[6] Anupam Chanda, Alan Cox, and Willy Zwaenepoel.
Whodunit: Transactional profiling for multi-tier
applications. In Proc. of the 2nd European Conference
on Computer Systems (EuroSys’07), March 2007.

[7] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic internet services. In Proc. of the
International Conference on Dependable Systems and
Networks (IPDS Track), 2002.

[8] Rodrigo Fonseca, George Porter, Randy h. Katz, Scott
Shenker, and Ion Stoica. X-Trace: A Pervasive
Network Tracing Framework. In Proc. of the 4th
USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI’07), April 2007.

[9] Samuel King Analyzing Intrusions Using Operating
System Level Information Flow. Ph.D. thesis.
September 2006.

[10] libevent. http://www.monkey.org/~provos/libevent.

[11] David Mazières. A toolkit for user-level file systems.
In Proc. of the General Track: 2001 USENIX Annual
Technical Conference, 2001.

[12] Vivek Pai, Peter Druschel, and Willy Zwaenepoel.
Flash: an efficient and portable web server. In Proc. of
the USENIX 1999 Annual Technical Conference, June
1999.

[13] Patrick Reynolds, Charles Killian, Janet L. Wiener,
Jeffrey C. Mogul, Mehul A. Shah, and Amin Vahdat.
PIP: Detecting the unexpected in distributed systems.
In Proc. of the 3rd USENIX/ACM Symposium on
Networked Systems Design and Implementation
(NSDI’07), May 2006.

[14] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul,
Marcos K. Aguilera, and Amin Vahdat. WAP5:
Blackbox performance debugging for widearea
systems. In Proc. of the 15th International World
Wide Web Conference (WWW’06), May 2006.

[15] Quest Software R©. PerformaSure R©.
http://www.quest.com/performasure/.

[16] SQLObject. http://www.sqlobject.org/.

[17] Symantec. Indepth. http://www.symantec.com/
enterprise/products/category.jsp?pcid=1021.

[18] Wily Technology. Introscope R©.
http://www.wilytech.com/solutions/products/

Introscope.html.

[19] E. Thereska, B. Salmon, J. Strunk, M. Wachs,
M. Abd-El-Malek, J. Lopez, and G. Ganger. Stardust:
Tracking activity in a distributed storage system. In
Proc. of the ACM SIGMETRICS Conference, June
2006.

[20] TurboGears. http://www.turbogears.org/.

[21] Zeus web server. http://www.zeus.com/.

203

